Skip to content

Reference for ultralytics/utils/export.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/export.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.utils.export.export_onnx

export_onnx(
    torch_model,
    im,
    onnx_file,
    opset=14,
    input_names=["images"],
    output_names=["output0"],
    dynamic=False,
)

Exports a PyTorch model to ONNX format.

Parameters:

Name Type Description Default
torch_model Module

The PyTorch model to export.

required
im Tensor

Example input tensor for the model.

required
onnx_file str

Path to save the exported ONNX file.

required
opset int

ONNX opset version to use for export.

14
input_names list

List of input tensor names.

['images']
output_names list

List of output tensor names.

['output0']
dynamic bool | dict

Whether to enable dynamic axes. Defaults to False.

False
Notes
  • Setting do_constant_folding=True may cause issues with DNN inference for torch>=1.12.
Source code in ultralytics/utils/export.py
def export_onnx(
    torch_model,
    im,
    onnx_file,
    opset=14,
    input_names=["images"],
    output_names=["output0"],
    dynamic=False,
):
    """
    Exports a PyTorch model to ONNX format.

    Args:
        torch_model (torch.nn.Module): The PyTorch model to export.
        im (torch.Tensor): Example input tensor for the model.
        onnx_file (str): Path to save the exported ONNX file.
        opset (int): ONNX opset version to use for export.
        input_names (list): List of input tensor names.
        output_names (list): List of output tensor names.
        dynamic (bool | dict, optional): Whether to enable dynamic axes. Defaults to False.

    Notes:
        - Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
    """
    torch.onnx.export(
        torch_model,
        im,
        onnx_file,
        verbose=False,
        opset_version=opset,
        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
        input_names=input_names,
        output_names=output_names,
        dynamic_axes=dynamic or None,
    )





ultralytics.utils.export.export_engine

export_engine(
    onnx_file,
    engine_file=None,
    workspace=None,
    half=False,
    int8=False,
    dynamic=False,
    shape=(1, 3, 640, 640),
    dla=None,
    dataset=None,
    metadata=None,
    verbose=False,
    prefix="",
)

Exports a YOLO model to TensorRT engine format.

Parameters:

Name Type Description Default
onnx_file str

Path to the ONNX file to be converted.

required
engine_file str

Path to save the generated TensorRT engine file.

None
workspace int

Workspace size in GB for TensorRT. Defaults to None.

None
half bool

Enable FP16 precision. Defaults to False.

False
int8 bool

Enable INT8 precision. Defaults to False.

False
dynamic bool

Enable dynamic input shapes. Defaults to False.

False
shape tuple

Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).

(1, 3, 640, 640)
dla int

DLA core to use (Jetson devices only). Defaults to None.

None
dataset InfiniteDataLoader

Dataset for INT8 calibration. Defaults to None.

None
metadata dict

Metadata to include in the engine file. Defaults to None.

None
verbose bool

Enable verbose logging. Defaults to False.

False
prefix str

Prefix for log messages. Defaults to "".

''

Raises:

Type Description
ValueError

If DLA is enabled on non-Jetson devices or required precision is not set.

RuntimeError

If the ONNX file cannot be parsed.

Notes
  • TensorRT version compatibility is handled for workspace size and engine building.
  • INT8 calibration requires a dataset and generates a calibration cache.
  • Metadata is serialized and written to the engine file if provided.
Source code in ultralytics/utils/export.py
def export_engine(
    onnx_file,
    engine_file=None,
    workspace=None,
    half=False,
    int8=False,
    dynamic=False,
    shape=(1, 3, 640, 640),
    dla=None,
    dataset=None,
    metadata=None,
    verbose=False,
    prefix="",
):
    """
    Exports a YOLO model to TensorRT engine format.

    Args:
        onnx_file (str): Path to the ONNX file to be converted.
        engine_file (str, optional): Path to save the generated TensorRT engine file.
        workspace (int, optional): Workspace size in GB for TensorRT. Defaults to None.
        half (bool, optional): Enable FP16 precision. Defaults to False.
        int8 (bool, optional): Enable INT8 precision. Defaults to False.
        dynamic (bool, optional): Enable dynamic input shapes. Defaults to False.
        shape (tuple, optional): Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).
        dla (int, optional): DLA core to use (Jetson devices only). Defaults to None.
        dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration. Defaults to None.
        metadata (dict, optional): Metadata to include in the engine file. Defaults to None.
        verbose (bool, optional): Enable verbose logging. Defaults to False.
        prefix (str, optional): Prefix for log messages. Defaults to "".

    Raises:
        ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
        RuntimeError: If the ONNX file cannot be parsed.

    Notes:
        - TensorRT version compatibility is handled for workspace size and engine building.
        - INT8 calibration requires a dataset and generates a calibration cache.
        - Metadata is serialized and written to the engine file if provided.
    """
    import tensorrt as trt  # noqa

    engine_file = engine_file or Path(onnx_file).with_suffix(".engine")

    logger = trt.Logger(trt.Logger.INFO)
    if verbose:
        logger.min_severity = trt.Logger.Severity.VERBOSE

    # Engine builder
    builder = trt.Builder(logger)
    config = builder.create_builder_config()
    workspace = int((workspace or 0) * (1 << 30))
    is_trt10 = int(trt.__version__.split(".")[0]) >= 10  # is TensorRT >= 10
    if is_trt10 and workspace > 0:
        config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
    elif workspace > 0:  # TensorRT versions 7, 8
        config.max_workspace_size = workspace
    flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    network = builder.create_network(flag)
    half = builder.platform_has_fast_fp16 and half
    int8 = builder.platform_has_fast_int8 and int8

    # Optionally switch to DLA if enabled
    if dla is not None:
        if not IS_JETSON:
            raise ValueError("DLA is only available on NVIDIA Jetson devices")
        LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
        if not half and not int8:
            raise ValueError(
                "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
            )
        config.default_device_type = trt.DeviceType.DLA
        config.DLA_core = int(dla)
        config.set_flag(trt.BuilderFlag.GPU_FALLBACK)

    # Read ONNX file
    parser = trt.OnnxParser(network, logger)
    if not parser.parse_from_file(onnx_file):
        raise RuntimeError(f"failed to load ONNX file: {onnx_file}")

    # Network inputs
    inputs = [network.get_input(i) for i in range(network.num_inputs)]
    outputs = [network.get_output(i) for i in range(network.num_outputs)]
    for inp in inputs:
        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
    for out in outputs:
        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')

    if dynamic:
        if shape[0] <= 1:
            LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
        profile = builder.create_optimization_profile()
        min_shape = (1, shape[1], 32, 32)  # minimum input shape
        max_shape = (*shape[:2], *(int(max(1, workspace or 1) * d) for d in shape[2:]))  # max input shape
        for inp in inputs:
            profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
        config.add_optimization_profile(profile)

    LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
    if int8:
        config.set_flag(trt.BuilderFlag.INT8)
        config.set_calibration_profile(profile)
        config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED

        class EngineCalibrator(trt.IInt8Calibrator):
            """
            Custom INT8 calibrator for TensorRT.

            Args:
                dataset (object): Dataset for calibration.
                batch (int): Batch size for calibration.
                cache (str, optional): Path to save the calibration cache. Defaults to "".
            """

            def __init__(
                self,
                dataset,  # ultralytics.data.build.InfiniteDataLoader
                cache: str = "",
            ) -> None:
                trt.IInt8Calibrator.__init__(self)
                self.dataset = dataset
                self.data_iter = iter(dataset)
                self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
                self.batch = dataset.batch_size
                self.cache = Path(cache)

            def get_algorithm(self) -> trt.CalibrationAlgoType:
                """Get the calibration algorithm to use."""
                return self.algo

            def get_batch_size(self) -> int:
                """Get the batch size to use for calibration."""
                return self.batch or 1

            def get_batch(self, names) -> list:
                """Get the next batch to use for calibration, as a list of device memory pointers."""
                try:
                    im0s = next(self.data_iter)["img"] / 255.0
                    im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
                    return [int(im0s.data_ptr())]
                except StopIteration:
                    # Return [] or None, signal to TensorRT there is no calibration data remaining
                    return None

            def read_calibration_cache(self) -> bytes:
                """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
                if self.cache.exists() and self.cache.suffix == ".cache":
                    return self.cache.read_bytes()

            def write_calibration_cache(self, cache) -> None:
                """Write calibration cache to disk."""
                _ = self.cache.write_bytes(cache)

        # Load dataset w/ builder (for batching) and calibrate
        config.int8_calibrator = EngineCalibrator(
            dataset=dataset,
            cache=str(Path(onnx_file).with_suffix(".cache")),
        )

    elif half:
        config.set_flag(trt.BuilderFlag.FP16)

    # Write file
    build = builder.build_serialized_network if is_trt10 else builder.build_engine
    with build(network, config) as engine, open(engine_file, "wb") as t:
        # Metadata
        if metadata is not None:
            meta = json.dumps(metadata)
            t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
            t.write(meta.encode())
        # Model
        t.write(engine if is_trt10 else engine.serialize())



📅 Created 8 days ago ✏️ Updated 8 days ago