YOLODataset
Bases: BaseDataset
Dataset class for loading object detection and/or segmentation labels in YOLO format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
dict
|
A dataset YAML dictionary. Defaults to None. |
None
|
use_segments |
bool
|
If True, segmentation masks are used as labels. Defaults to False. |
False
|
use_keypoints |
bool
|
If True, keypoints are used as labels. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
torch.utils.data.Dataset
|
A PyTorch dataset object that can be used for training an object detection model. |
Source code in ultralytics/yolo/data/dataset.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
build_transforms(hyp=None)
Builds and appends transforms to the list.
Source code in ultralytics/yolo/data/dataset.py
cache_labels(path=Path('./labels.cache'))
Cache dataset labels, check images and read shapes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Path
|
path where to save the cache file (default: Path('./labels.cache')). |
Path('./labels.cache')
|
Returns:
Type | Description |
---|---|
dict
|
labels. |
Source code in ultralytics/yolo/data/dataset.py
close_mosaic(hyp)
Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.
Source code in ultralytics/yolo/data/dataset.py
collate_fn(batch)
staticmethod
Collates data samples into batches.
Source code in ultralytics/yolo/data/dataset.py
get_labels()
Returns dictionary of labels for YOLO training.
Source code in ultralytics/yolo/data/dataset.py
update_labels_info(label)
custom your label format here.
Source code in ultralytics/yolo/data/dataset.py
ClassificationDataset
Bases: torchvision.datasets.ImageFolder
YOLO Classification Dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root |
str
|
Dataset path. |
required |
Attributes:
Name | Type | Description |
---|---|---|
cache_ram |
bool
|
True if images should be cached in RAM, False otherwise. |
cache_disk |
bool
|
True if images should be cached on disk, False otherwise. |
samples |
list
|
List of samples containing file, index, npy, and im. |
torch_transforms |
callable
|
torchvision transforms applied to the dataset. |
album_transforms |
callable
|
Albumentations transforms applied to the dataset if augment is True. |
Source code in ultralytics/yolo/data/dataset.py
__getitem__(i)
Returns subset of data and targets corresponding to given indices.
Source code in ultralytics/yolo/data/dataset.py
__init__(root, args, augment=False, cache=False)
Initialize YOLO object with root, image size, augmentations, and cache settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root |
str
|
Dataset path. |
required |
args |
Namespace
|
Argument parser containing dataset related settings. |
required |
augment |
bool
|
True if dataset should be augmented, False otherwise. Defaults to False. |
False
|
cache |
Union[bool, str]
|
Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False. |
False
|
Source code in ultralytics/yolo/data/dataset.py
SemanticDataset
Bases: BaseDataset
Source code in ultralytics/yolo/data/dataset.py
Created 2023-04-16, Updated 2023-05-17
Authors: Glenn Jocher (3)