YOLO
YOLO (You Only Look Once) object detection model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str, Path
|
Path to the model file to load or create. |
'yolov8n.pt'
|
task |
Any
|
Task type for the YOLO model. Defaults to None. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
predictor |
Any
|
The predictor object. |
model |
Any
|
The model object. |
trainer |
Any
|
The trainer object. |
task |
str
|
The type of model task. |
ckpt |
Any
|
The checkpoint object if the model loaded from *.pt file. |
cfg |
str
|
The model configuration if loaded from *.yaml file. |
ckpt_path |
str
|
The checkpoint file path. |
overrides |
dict
|
Overrides for the trainer object. |
metrics |
Any
|
The data for metrics. |
Methods
call(source=None, stream=False, kwargs): Alias for the predict method. _new(cfg:str, verbose:bool=True) -> None: Initializes a new model and infers the task type from the model definitions. _load(weights:str, task:str='') -> None: Initializes a new model and infers the task type from the model head. _check_is_pytorch_model() -> None: Raises TypeError if the model is not a PyTorch model. reset() -> None: Resets the model modules. info(verbose:bool=False) -> None: Logs the model info. fuse() -> None: Fuses the model for faster inference. predict(source=None, stream=False, kwargs) -> List[ultralytics.yolo.engine.results.Results]: Performs prediction using the YOLO model.
Returns:
Name | Type | Description |
---|---|---|
list |
ultralytics.yolo.engine.results.Results
|
The prediction results. |
Source code in ultralytics/yolo/engine/model.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
device
property
Returns device if PyTorch model.
names
property
Returns class names of the loaded model.
transforms
property
Returns transform of the loaded model.
__call__(source=None, stream=False, **kwargs)
Calls the 'predict' function with given arguments to perform object detection.
__getattr__(attr)
Raises error if object has no requested attribute.
__init__(model='yolov8n.pt', task=None)
Initializes the YOLO model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Union[str, Path]
|
Path or name of the model to load or create. Defaults to 'yolov8n.pt'. |
'yolov8n.pt'
|
task |
Any
|
Task type for the YOLO model. Defaults to None. |
None
|
Source code in ultralytics/yolo/engine/model.py
add_callback(event, func)
benchmark(**kwargs)
Benchmark a model on all export formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Any other args accepted by the validators. To see all args check 'configuration' section in docs |
{}
|
Source code in ultralytics/yolo/engine/model.py
clear_callback(event)
export(**kwargs)
Export model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
{}
|
Source code in ultralytics/yolo/engine/model.py
fuse()
info(detailed=False, verbose=True)
Logs model info.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detailed |
bool
|
Show detailed information about model. |
False
|
verbose |
bool
|
Controls verbosity. |
True
|
Source code in ultralytics/yolo/engine/model.py
is_hub_model(model)
staticmethod
Check if the provided model is a HUB model.
Source code in ultralytics/yolo/engine/model.py
load(weights='yolov8n.pt')
Transfers parameters with matching names and shapes from 'weights' to model.
Source code in ultralytics/yolo/engine/model.py
predict(source=None, stream=False, **kwargs)
Perform prediction using the YOLO model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str | int | PIL | np.ndarray
|
The source of the image to make predictions on. Accepts all source types accepted by the YOLO model. |
None
|
stream |
bool
|
Whether to stream the predictions or not. Defaults to False. |
False
|
**kwargs |
Additional keyword arguments passed to the predictor. Check the 'configuration' section in the documentation for all available options. |
{}
|
Returns:
Type | Description |
---|---|
List[ultralytics.yolo.engine.results.Results]
|
The prediction results. |
Source code in ultralytics/yolo/engine/model.py
reset_weights()
Resets the model modules parameters to randomly initialized values, losing all training information.
Source code in ultralytics/yolo/engine/model.py
to(device)
Sends the model to the given device.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device |
str
|
device |
required |
track(source=None, stream=False, persist=False, **kwargs)
Perform object tracking on the input source using the registered trackers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str
|
The input source for object tracking. Can be a file path or a video stream. |
None
|
stream |
bool
|
Whether the input source is a video stream. Defaults to False. |
False
|
persist |
bool
|
Whether to persist the trackers if they already exist. Defaults to False. |
False
|
**kwargs |
optional
|
Additional keyword arguments for the tracking process. |
{}
|
Returns:
Type | Description |
---|---|
List[ultralytics.yolo.engine.results.Results]
|
The tracking results. |
Source code in ultralytics/yolo/engine/model.py
train(**kwargs)
Trains the model on a given dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Any
|
Any number of arguments representing the training configuration. |
{}
|
Source code in ultralytics/yolo/engine/model.py
tune(data, space=None, grace_period=10, gpu_per_trial=None, max_samples=10, train_args={})
Runs hyperparameter tuning using Ray Tune.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str
|
The dataset to run the tuner on. |
required |
space |
dict
|
The hyperparameter search space. Defaults to None. |
None
|
grace_period |
int
|
The grace period in epochs of the ASHA scheduler. Defaults to 10. |
10
|
gpu_per_trial |
int
|
The number of GPUs to allocate per trial. Defaults to None. |
None
|
max_samples |
int
|
The maximum number of trials to run. Defaults to 10. |
10
|
train_args |
dict
|
Additional arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing the results of the hyperparameter search. |
Raises:
Type | Description |
---|---|
ModuleNotFoundError
|
If Ray Tune is not installed. |
Source code in ultralytics/yolo/engine/model.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
|
val(data=None, **kwargs)
Validate a model on a given dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str
|
The dataset to validate on. Accepts all formats accepted by yolo |
None
|
**kwargs |
Any other args accepted by the validators. To see all args check 'configuration' section in docs |
{}
|
Source code in ultralytics/yolo/engine/model.py
Created 2023-04-16, Updated 2023-05-17
Authors: Glenn Jocher (3)