Skip to content

YOLO


YOLO (You Only Look Once) object detection model.

Parameters:

Name Type Description Default
model str, Path

Path to the model file to load or create.

'yolov8n.pt'
task Any

Task type for the YOLO model. Defaults to None.

None

Attributes:

Name Type Description
predictor Any

The predictor object.

model Any

The model object.

trainer Any

The trainer object.

task str

The type of model task.

ckpt Any

The checkpoint object if the model loaded from *.pt file.

cfg str

The model configuration if loaded from *.yaml file.

ckpt_path str

The checkpoint file path.

overrides dict

Overrides for the trainer object.

metrics Any

The data for metrics.

Methods

call(source=None, stream=False, kwargs): Alias for the predict method. _new(cfg:str, verbose:bool=True) -> None: Initializes a new model and infers the task type from the model definitions. _load(weights:str, task:str='') -> None: Initializes a new model and infers the task type from the model head. _check_is_pytorch_model() -> None: Raises TypeError if the model is not a PyTorch model. reset() -> None: Resets the model modules. info(verbose:bool=False) -> None: Logs the model info. fuse() -> None: Fuses the model for faster inference. predict(source=None, stream=False, kwargs) -> List[ultralytics.yolo.engine.results.Results]: Performs prediction using the YOLO model.

Returns:

Name Type Description
list ultralytics.yolo.engine.results.Results

The prediction results.

Source code in ultralytics/yolo/engine/model.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
class YOLO:
    """
    YOLO (You Only Look Once) object detection model.

    Args:
        model (str, Path): Path to the model file to load or create.
        task (Any, optional): Task type for the YOLO model. Defaults to None.

    Attributes:
        predictor (Any): The predictor object.
        model (Any): The model object.
        trainer (Any): The trainer object.
        task (str): The type of model task.
        ckpt (Any): The checkpoint object if the model loaded from *.pt file.
        cfg (str): The model configuration if loaded from *.yaml file.
        ckpt_path (str): The checkpoint file path.
        overrides (dict): Overrides for the trainer object.
        metrics (Any): The data for metrics.

    Methods:
        __call__(source=None, stream=False, **kwargs):
            Alias for the predict method.
        _new(cfg:str, verbose:bool=True) -> None:
            Initializes a new model and infers the task type from the model definitions.
        _load(weights:str, task:str='') -> None:
            Initializes a new model and infers the task type from the model head.
        _check_is_pytorch_model() -> None:
            Raises TypeError if the model is not a PyTorch model.
        reset() -> None:
            Resets the model modules.
        info(verbose:bool=False) -> None:
            Logs the model info.
        fuse() -> None:
            Fuses the model for faster inference.
        predict(source=None, stream=False, **kwargs) -> List[ultralytics.yolo.engine.results.Results]:
            Performs prediction using the YOLO model.

    Returns:
        list(ultralytics.yolo.engine.results.Results): The prediction results.
    """

    def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
        """
        Initializes the YOLO model.

        Args:
            model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.
            task (Any, optional): Task type for the YOLO model. Defaults to None.
        """
        self.callbacks = callbacks.get_default_callbacks()
        self.predictor = None  # reuse predictor
        self.model = None  # model object
        self.trainer = None  # trainer object
        self.task = None  # task type
        self.ckpt = None  # if loaded from *.pt
        self.cfg = None  # if loaded from *.yaml
        self.ckpt_path = None
        self.overrides = {}  # overrides for trainer object
        self.metrics = None  # validation/training metrics
        self.session = None  # HUB session
        model = str(model).strip()  # strip spaces

        # Check if Ultralytics HUB model from https://hub.ultralytics.com
        if self.is_hub_model(model):
            from ultralytics.hub.session import HUBTrainingSession
            self.session = HUBTrainingSession(model)
            model = self.session.model_file

        # Load or create new YOLO model
        suffix = Path(model).suffix
        if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
            model, suffix = Path(model).with_suffix('.pt'), '.pt'  # add suffix, i.e. yolov8n -> yolov8n.pt
        if suffix == '.yaml':
            self._new(model, task)
        else:
            self._load(model, task)

    def __call__(self, source=None, stream=False, **kwargs):
        """Calls the 'predict' function with given arguments to perform object detection."""
        return self.predict(source, stream, **kwargs)

    def __getattr__(self, attr):
        """Raises error if object has no requested attribute."""
        name = self.__class__.__name__
        raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")

    @staticmethod
    def is_hub_model(model):
        """Check if the provided model is a HUB model."""
        return any((
            model.startswith('https://hub.ultra'),  # i.e. https://hub.ultralytics.com/models/MODEL_ID
            [len(x) for x in model.split('_')] == [42, 20],  # APIKEY_MODELID
            len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\')))  # MODELID

    def _new(self, cfg: str, task=None, verbose=True):
        """
        Initializes a new model and infers the task type from the model definitions.

        Args:
            cfg (str): model configuration file
            task (str) or (None): model task
            verbose (bool): display model info on load
        """
        cfg_dict = yaml_model_load(cfg)
        self.cfg = cfg
        self.task = task or guess_model_task(cfg_dict)
        self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1)  # build model
        self.overrides['model'] = self.cfg

        # Below added to allow export from yamls
        args = {**DEFAULT_CFG_DICT, **self.overrides}  # combine model and default args, preferring model args
        self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
        self.model.task = self.task

    def _load(self, weights: str, task=None):
        """
        Initializes a new model and infers the task type from the model head.

        Args:
            weights (str): model checkpoint to be loaded
            task (str) or (None): model task
        """
        suffix = Path(weights).suffix
        if suffix == '.pt':
            self.model, self.ckpt = attempt_load_one_weight(weights)
            self.task = self.model.args['task']
            self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
            self.ckpt_path = self.model.pt_path
        else:
            weights = check_file(weights)
            self.model, self.ckpt = weights, None
            self.task = task or guess_model_task(weights)
            self.ckpt_path = weights
        self.overrides['model'] = weights
        self.overrides['task'] = self.task

    def _check_is_pytorch_model(self):
        """
        Raises TypeError is model is not a PyTorch model
        """
        pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
        pt_module = isinstance(self.model, nn.Module)
        if not (pt_module or pt_str):
            raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
                            f'PyTorch models can be used to train, val, predict and export, i.e. '
                            f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
                            f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")

    @smart_inference_mode()
    def reset_weights(self):
        """
        Resets the model modules parameters to randomly initialized values, losing all training information.
        """
        self._check_is_pytorch_model()
        for m in self.model.modules():
            if hasattr(m, 'reset_parameters'):
                m.reset_parameters()
        for p in self.model.parameters():
            p.requires_grad = True
        return self

    @smart_inference_mode()
    def load(self, weights='yolov8n.pt'):
        """
        Transfers parameters with matching names and shapes from 'weights' to model.
        """
        self._check_is_pytorch_model()
        if isinstance(weights, (str, Path)):
            weights, self.ckpt = attempt_load_one_weight(weights)
        self.model.load(weights)
        return self

    def info(self, detailed=False, verbose=True):
        """
        Logs model info.

        Args:
            detailed (bool): Show detailed information about model.
            verbose (bool): Controls verbosity.
        """
        self._check_is_pytorch_model()
        return self.model.info(detailed=detailed, verbose=verbose)

    def fuse(self):
        """Fuse PyTorch Conv2d and BatchNorm2d layers."""
        self._check_is_pytorch_model()
        self.model.fuse()

    @smart_inference_mode()
    def predict(self, source=None, stream=False, **kwargs):
        """
        Perform prediction using the YOLO model.

        Args:
            source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
                          Accepts all source types accepted by the YOLO model.
            stream (bool): Whether to stream the predictions or not. Defaults to False.
            **kwargs : Additional keyword arguments passed to the predictor.
                       Check the 'configuration' section in the documentation for all available options.

        Returns:
            (List[ultralytics.yolo.engine.results.Results]): The prediction results.
        """
        if source is None:
            source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
            LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
        is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
            x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
        overrides = self.overrides.copy()
        overrides['conf'] = 0.25
        overrides.update(kwargs)  # prefer kwargs
        overrides['mode'] = kwargs.get('mode', 'predict')
        assert overrides['mode'] in ['track', 'predict']
        if not is_cli:
            overrides['save'] = kwargs.get('save', False)  # do not save by default if called in Python
        if not self.predictor:
            self.task = overrides.get('task') or self.task
            self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks)
            self.predictor.setup_model(model=self.model, verbose=is_cli)
        else:  # only update args if predictor is already setup
            self.predictor.args = get_cfg(self.predictor.args, overrides)
        return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)

    def track(self, source=None, stream=False, persist=False, **kwargs):
        """
        Perform object tracking on the input source using the registered trackers.

        Args:
            source (str, optional): The input source for object tracking. Can be a file path or a video stream.
            stream (bool, optional): Whether the input source is a video stream. Defaults to False.
            persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
            **kwargs (optional): Additional keyword arguments for the tracking process.

        Returns:
            (List[ultralytics.yolo.engine.results.Results]): The tracking results.

        """
        if not hasattr(self.predictor, 'trackers'):
            from ultralytics.tracker import register_tracker
            register_tracker(self, persist)
        # ByteTrack-based method needs low confidence predictions as input
        conf = kwargs.get('conf') or 0.1
        kwargs['conf'] = conf
        kwargs['mode'] = 'track'
        return self.predict(source=source, stream=stream, **kwargs)

    @smart_inference_mode()
    def val(self, data=None, **kwargs):
        """
        Validate a model on a given dataset.

        Args:
            data (str): The dataset to validate on. Accepts all formats accepted by yolo
            **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
        """
        overrides = self.overrides.copy()
        overrides['rect'] = True  # rect batches as default
        overrides.update(kwargs)
        overrides['mode'] = 'val'
        args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
        args.data = data or args.data
        if 'task' in overrides:
            self.task = args.task
        else:
            args.task = self.task
        if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
            args.imgsz = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
        args.imgsz = check_imgsz(args.imgsz, max_dim=1)

        validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks)
        validator(model=self.model)
        self.metrics = validator.metrics

        return validator.metrics

    @smart_inference_mode()
    def benchmark(self, **kwargs):
        """
        Benchmark a model on all export formats.

        Args:
            **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
        """
        self._check_is_pytorch_model()
        from ultralytics.yolo.utils.benchmarks import benchmark
        overrides = self.model.args.copy()
        overrides.update(kwargs)
        overrides['mode'] = 'benchmark'
        overrides = {**DEFAULT_CFG_DICT, **overrides}  # fill in missing overrides keys with defaults
        return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device'])

    def export(self, **kwargs):
        """
        Export model.

        Args:
            **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
        """
        self._check_is_pytorch_model()
        overrides = self.overrides.copy()
        overrides.update(kwargs)
        overrides['mode'] = 'export'
        if overrides.get('imgsz') is None:
            overrides['imgsz'] = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
        if overrides.get('batch') is None:
            overrides['batch'] = 1  # default to 1 if not modified
        args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
        args.task = self.task
        return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)

    def train(self, **kwargs):
        """
        Trains the model on a given dataset.

        Args:
            **kwargs (Any): Any number of arguments representing the training configuration.
        """
        self._check_is_pytorch_model()
        if self.session:  # Ultralytics HUB session
            if any(kwargs):
                LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
            kwargs = self.session.train_args
        check_pip_update_available()
        overrides = self.overrides.copy()
        if kwargs.get('cfg'):
            LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
            overrides = yaml_load(check_yaml(kwargs['cfg']))
        overrides.update(kwargs)
        overrides['mode'] = 'train'
        if not overrides.get('data'):
            raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
        if overrides.get('resume'):
            overrides['resume'] = self.ckpt_path
        self.task = overrides.get('task') or self.task
        self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks)
        if not overrides.get('resume'):  # manually set model only if not resuming
            self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
            self.model = self.trainer.model
        self.trainer.hub_session = self.session  # attach optional HUB session
        self.trainer.train()
        # Update model and cfg after training
        if RANK in (-1, 0):
            self.model, _ = attempt_load_one_weight(str(self.trainer.best))
            self.overrides = self.model.args
            self.metrics = getattr(self.trainer.validator, 'metrics', None)  # TODO: no metrics returned by DDP

    def to(self, device):
        """
        Sends the model to the given device.

        Args:
            device (str): device
        """
        self._check_is_pytorch_model()
        self.model.to(device)

    def tune(self,
             data: str,
             space: dict = None,
             grace_period: int = 10,
             gpu_per_trial: int = None,
             max_samples: int = 10,
             train_args: dict = {}):
        """
        Runs hyperparameter tuning using Ray Tune.

        Args:
            data (str): The dataset to run the tuner on.
            space (dict, optional): The hyperparameter search space. Defaults to None.
            grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
            gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
            max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
            train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.

        Returns:
            (dict): A dictionary containing the results of the hyperparameter search.

        Raises:
            ModuleNotFoundError: If Ray Tune is not installed.
        """

        try:
            from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space,
                                                      task_metric_map, tune)
        except ImportError:
            raise ModuleNotFoundError("Install Ray Tune: `pip install 'ray[tune]'`")

        try:
            import wandb
            from wandb import __version__  # noqa
        except ImportError:
            wandb = False

        def _tune(config):
            """
            Trains the YOLO model with the specified hyperparameters and additional arguments.

            Args:
                config (dict): A dictionary of hyperparameters to use for training.

            Returns:
                None.
            """
            self._reset_callbacks()
            config.update(train_args)
            self.train(**config)

        if not space:
            LOGGER.warning('WARNING: search space not provided. Using default search space')
            space = default_space

        space['data'] = data

        # Define the trainable function with allocated resources
        trainable_with_resources = tune.with_resources(_tune, {'cpu': 8, 'gpu': gpu_per_trial if gpu_per_trial else 0})

        # Define the ASHA scheduler for hyperparameter search
        asha_scheduler = ASHAScheduler(time_attr='epoch',
                                       metric=task_metric_map[self.task],
                                       mode='max',
                                       max_t=train_args.get('epochs') or 100,
                                       grace_period=grace_period,
                                       reduction_factor=3)

        # Define the callbacks for the hyperparameter search
        tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune')] if wandb else []

        # Create the Ray Tune hyperparameter search tuner
        tuner = tune.Tuner(trainable_with_resources,
                           param_space=space,
                           tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
                           run_config=RunConfig(callbacks=tuner_callbacks, local_dir='./runs'))

        # Run the hyperparameter search
        tuner.fit()

        # Return the results of the hyperparameter search
        return tuner.get_results()

    @property
    def names(self):
        """Returns class names of the loaded model."""
        return self.model.names if hasattr(self.model, 'names') else None

    @property
    def device(self):
        """Returns device if PyTorch model."""
        return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None

    @property
    def transforms(self):
        """Returns transform of the loaded model."""
        return self.model.transforms if hasattr(self.model, 'transforms') else None

    def add_callback(self, event: str, func):
        """Add a callback."""
        self.callbacks[event].append(func)

    def clear_callback(self, event: str):
        """Clear all event callbacks."""
        self.callbacks[event] = []

    @staticmethod
    def _reset_ckpt_args(args):
        """Reset arguments when loading a PyTorch model."""
        include = {'imgsz', 'data', 'task', 'single_cls'}  # only remember these arguments when loading a PyTorch model
        return {k: v for k, v in args.items() if k in include}

    def _reset_callbacks(self):
        """Reset all registered callbacks."""
        for event in callbacks.default_callbacks.keys():
            self.callbacks[event] = [callbacks.default_callbacks[event][0]]

device property

Returns device if PyTorch model.

names property

Returns class names of the loaded model.

transforms property

Returns transform of the loaded model.

__call__(source=None, stream=False, **kwargs)

Calls the 'predict' function with given arguments to perform object detection.

Source code in ultralytics/yolo/engine/model.py
def __call__(self, source=None, stream=False, **kwargs):
    """Calls the 'predict' function with given arguments to perform object detection."""
    return self.predict(source, stream, **kwargs)

__getattr__(attr)

Raises error if object has no requested attribute.

Source code in ultralytics/yolo/engine/model.py
def __getattr__(self, attr):
    """Raises error if object has no requested attribute."""
    name = self.__class__.__name__
    raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")

__init__(model='yolov8n.pt', task=None)

Initializes the YOLO model.

Parameters:

Name Type Description Default
model Union[str, Path]

Path or name of the model to load or create. Defaults to 'yolov8n.pt'.

'yolov8n.pt'
task Any

Task type for the YOLO model. Defaults to None.

None
Source code in ultralytics/yolo/engine/model.py
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
    """
    Initializes the YOLO model.

    Args:
        model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.
        task (Any, optional): Task type for the YOLO model. Defaults to None.
    """
    self.callbacks = callbacks.get_default_callbacks()
    self.predictor = None  # reuse predictor
    self.model = None  # model object
    self.trainer = None  # trainer object
    self.task = None  # task type
    self.ckpt = None  # if loaded from *.pt
    self.cfg = None  # if loaded from *.yaml
    self.ckpt_path = None
    self.overrides = {}  # overrides for trainer object
    self.metrics = None  # validation/training metrics
    self.session = None  # HUB session
    model = str(model).strip()  # strip spaces

    # Check if Ultralytics HUB model from https://hub.ultralytics.com
    if self.is_hub_model(model):
        from ultralytics.hub.session import HUBTrainingSession
        self.session = HUBTrainingSession(model)
        model = self.session.model_file

    # Load or create new YOLO model
    suffix = Path(model).suffix
    if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
        model, suffix = Path(model).with_suffix('.pt'), '.pt'  # add suffix, i.e. yolov8n -> yolov8n.pt
    if suffix == '.yaml':
        self._new(model, task)
    else:
        self._load(model, task)

add_callback(event, func)

Add a callback.

Source code in ultralytics/yolo/engine/model.py
def add_callback(self, event: str, func):
    """Add a callback."""
    self.callbacks[event].append(func)

benchmark(**kwargs)

Benchmark a model on all export formats.

Parameters:

Name Type Description Default
**kwargs

Any other args accepted by the validators. To see all args check 'configuration' section in docs

{}
Source code in ultralytics/yolo/engine/model.py
@smart_inference_mode()
def benchmark(self, **kwargs):
    """
    Benchmark a model on all export formats.

    Args:
        **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
    """
    self._check_is_pytorch_model()
    from ultralytics.yolo.utils.benchmarks import benchmark
    overrides = self.model.args.copy()
    overrides.update(kwargs)
    overrides['mode'] = 'benchmark'
    overrides = {**DEFAULT_CFG_DICT, **overrides}  # fill in missing overrides keys with defaults
    return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device'])

clear_callback(event)

Clear all event callbacks.

Source code in ultralytics/yolo/engine/model.py
def clear_callback(self, event: str):
    """Clear all event callbacks."""
    self.callbacks[event] = []

export(**kwargs)

Export model.

Parameters:

Name Type Description Default
**kwargs

Any other args accepted by the predictors. To see all args check 'configuration' section in docs

{}
Source code in ultralytics/yolo/engine/model.py
def export(self, **kwargs):
    """
    Export model.

    Args:
        **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
    """
    self._check_is_pytorch_model()
    overrides = self.overrides.copy()
    overrides.update(kwargs)
    overrides['mode'] = 'export'
    if overrides.get('imgsz') is None:
        overrides['imgsz'] = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
    if overrides.get('batch') is None:
        overrides['batch'] = 1  # default to 1 if not modified
    args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
    args.task = self.task
    return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)

fuse()

Fuse PyTorch Conv2d and BatchNorm2d layers.

Source code in ultralytics/yolo/engine/model.py
def fuse(self):
    """Fuse PyTorch Conv2d and BatchNorm2d layers."""
    self._check_is_pytorch_model()
    self.model.fuse()

info(detailed=False, verbose=True)

Logs model info.

Parameters:

Name Type Description Default
detailed bool

Show detailed information about model.

False
verbose bool

Controls verbosity.

True
Source code in ultralytics/yolo/engine/model.py
def info(self, detailed=False, verbose=True):
    """
    Logs model info.

    Args:
        detailed (bool): Show detailed information about model.
        verbose (bool): Controls verbosity.
    """
    self._check_is_pytorch_model()
    return self.model.info(detailed=detailed, verbose=verbose)

is_hub_model(model) staticmethod

Check if the provided model is a HUB model.

Source code in ultralytics/yolo/engine/model.py
@staticmethod
def is_hub_model(model):
    """Check if the provided model is a HUB model."""
    return any((
        model.startswith('https://hub.ultra'),  # i.e. https://hub.ultralytics.com/models/MODEL_ID
        [len(x) for x in model.split('_')] == [42, 20],  # APIKEY_MODELID
        len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\')))  # MODELID

load(weights='yolov8n.pt')

Transfers parameters with matching names and shapes from 'weights' to model.

Source code in ultralytics/yolo/engine/model.py
@smart_inference_mode()
def load(self, weights='yolov8n.pt'):
    """
    Transfers parameters with matching names and shapes from 'weights' to model.
    """
    self._check_is_pytorch_model()
    if isinstance(weights, (str, Path)):
        weights, self.ckpt = attempt_load_one_weight(weights)
    self.model.load(weights)
    return self

predict(source=None, stream=False, **kwargs)

Perform prediction using the YOLO model.

Parameters:

Name Type Description Default
source str | int | PIL | np.ndarray

The source of the image to make predictions on. Accepts all source types accepted by the YOLO model.

None
stream bool

Whether to stream the predictions or not. Defaults to False.

False
**kwargs

Additional keyword arguments passed to the predictor. Check the 'configuration' section in the documentation for all available options.

{}

Returns:

Type Description
List[ultralytics.yolo.engine.results.Results]

The prediction results.

Source code in ultralytics/yolo/engine/model.py
@smart_inference_mode()
def predict(self, source=None, stream=False, **kwargs):
    """
    Perform prediction using the YOLO model.

    Args:
        source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
                      Accepts all source types accepted by the YOLO model.
        stream (bool): Whether to stream the predictions or not. Defaults to False.
        **kwargs : Additional keyword arguments passed to the predictor.
                   Check the 'configuration' section in the documentation for all available options.

    Returns:
        (List[ultralytics.yolo.engine.results.Results]): The prediction results.
    """
    if source is None:
        source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
        LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
    is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
        x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
    overrides = self.overrides.copy()
    overrides['conf'] = 0.25
    overrides.update(kwargs)  # prefer kwargs
    overrides['mode'] = kwargs.get('mode', 'predict')
    assert overrides['mode'] in ['track', 'predict']
    if not is_cli:
        overrides['save'] = kwargs.get('save', False)  # do not save by default if called in Python
    if not self.predictor:
        self.task = overrides.get('task') or self.task
        self.predictor = TASK_MAP[self.task][3](overrides=overrides, _callbacks=self.callbacks)
        self.predictor.setup_model(model=self.model, verbose=is_cli)
    else:  # only update args if predictor is already setup
        self.predictor.args = get_cfg(self.predictor.args, overrides)
    return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)

reset_weights()

Resets the model modules parameters to randomly initialized values, losing all training information.

Source code in ultralytics/yolo/engine/model.py
@smart_inference_mode()
def reset_weights(self):
    """
    Resets the model modules parameters to randomly initialized values, losing all training information.
    """
    self._check_is_pytorch_model()
    for m in self.model.modules():
        if hasattr(m, 'reset_parameters'):
            m.reset_parameters()
    for p in self.model.parameters():
        p.requires_grad = True
    return self

to(device)

Sends the model to the given device.

Parameters:

Name Type Description Default
device str

device

required
Source code in ultralytics/yolo/engine/model.py
def to(self, device):
    """
    Sends the model to the given device.

    Args:
        device (str): device
    """
    self._check_is_pytorch_model()
    self.model.to(device)

track(source=None, stream=False, persist=False, **kwargs)

Perform object tracking on the input source using the registered trackers.

Parameters:

Name Type Description Default
source str

The input source for object tracking. Can be a file path or a video stream.

None
stream bool

Whether the input source is a video stream. Defaults to False.

False
persist bool

Whether to persist the trackers if they already exist. Defaults to False.

False
**kwargs optional

Additional keyword arguments for the tracking process.

{}

Returns:

Type Description
List[ultralytics.yolo.engine.results.Results]

The tracking results.

Source code in ultralytics/yolo/engine/model.py
def track(self, source=None, stream=False, persist=False, **kwargs):
    """
    Perform object tracking on the input source using the registered trackers.

    Args:
        source (str, optional): The input source for object tracking. Can be a file path or a video stream.
        stream (bool, optional): Whether the input source is a video stream. Defaults to False.
        persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
        **kwargs (optional): Additional keyword arguments for the tracking process.

    Returns:
        (List[ultralytics.yolo.engine.results.Results]): The tracking results.

    """
    if not hasattr(self.predictor, 'trackers'):
        from ultralytics.tracker import register_tracker
        register_tracker(self, persist)
    # ByteTrack-based method needs low confidence predictions as input
    conf = kwargs.get('conf') or 0.1
    kwargs['conf'] = conf
    kwargs['mode'] = 'track'
    return self.predict(source=source, stream=stream, **kwargs)

train(**kwargs)

Trains the model on a given dataset.

Parameters:

Name Type Description Default
**kwargs Any

Any number of arguments representing the training configuration.

{}
Source code in ultralytics/yolo/engine/model.py
def train(self, **kwargs):
    """
    Trains the model on a given dataset.

    Args:
        **kwargs (Any): Any number of arguments representing the training configuration.
    """
    self._check_is_pytorch_model()
    if self.session:  # Ultralytics HUB session
        if any(kwargs):
            LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
        kwargs = self.session.train_args
    check_pip_update_available()
    overrides = self.overrides.copy()
    if kwargs.get('cfg'):
        LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
        overrides = yaml_load(check_yaml(kwargs['cfg']))
    overrides.update(kwargs)
    overrides['mode'] = 'train'
    if not overrides.get('data'):
        raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
    if overrides.get('resume'):
        overrides['resume'] = self.ckpt_path
    self.task = overrides.get('task') or self.task
    self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks)
    if not overrides.get('resume'):  # manually set model only if not resuming
        self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
        self.model = self.trainer.model
    self.trainer.hub_session = self.session  # attach optional HUB session
    self.trainer.train()
    # Update model and cfg after training
    if RANK in (-1, 0):
        self.model, _ = attempt_load_one_weight(str(self.trainer.best))
        self.overrides = self.model.args
        self.metrics = getattr(self.trainer.validator, 'metrics', None)  # TODO: no metrics returned by DDP

tune(data, space=None, grace_period=10, gpu_per_trial=None, max_samples=10, train_args={})

Runs hyperparameter tuning using Ray Tune.

Parameters:

Name Type Description Default
data str

The dataset to run the tuner on.

required
space dict

The hyperparameter search space. Defaults to None.

None
grace_period int

The grace period in epochs of the ASHA scheduler. Defaults to 10.

10
gpu_per_trial int

The number of GPUs to allocate per trial. Defaults to None.

None
max_samples int

The maximum number of trials to run. Defaults to 10.

10
train_args dict

Additional arguments to pass to the train() method. Defaults to {}.

{}

Returns:

Type Description
dict

A dictionary containing the results of the hyperparameter search.

Raises:

Type Description
ModuleNotFoundError

If Ray Tune is not installed.

Source code in ultralytics/yolo/engine/model.py
def tune(self,
         data: str,
         space: dict = None,
         grace_period: int = 10,
         gpu_per_trial: int = None,
         max_samples: int = 10,
         train_args: dict = {}):
    """
    Runs hyperparameter tuning using Ray Tune.

    Args:
        data (str): The dataset to run the tuner on.
        space (dict, optional): The hyperparameter search space. Defaults to None.
        grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
        gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
        max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
        train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.

    Returns:
        (dict): A dictionary containing the results of the hyperparameter search.

    Raises:
        ModuleNotFoundError: If Ray Tune is not installed.
    """

    try:
        from ultralytics.yolo.utils.tuner import (ASHAScheduler, RunConfig, WandbLoggerCallback, default_space,
                                                  task_metric_map, tune)
    except ImportError:
        raise ModuleNotFoundError("Install Ray Tune: `pip install 'ray[tune]'`")

    try:
        import wandb
        from wandb import __version__  # noqa
    except ImportError:
        wandb = False

    def _tune(config):
        """
        Trains the YOLO model with the specified hyperparameters and additional arguments.

        Args:
            config (dict): A dictionary of hyperparameters to use for training.

        Returns:
            None.
        """
        self._reset_callbacks()
        config.update(train_args)
        self.train(**config)

    if not space:
        LOGGER.warning('WARNING: search space not provided. Using default search space')
        space = default_space

    space['data'] = data

    # Define the trainable function with allocated resources
    trainable_with_resources = tune.with_resources(_tune, {'cpu': 8, 'gpu': gpu_per_trial if gpu_per_trial else 0})

    # Define the ASHA scheduler for hyperparameter search
    asha_scheduler = ASHAScheduler(time_attr='epoch',
                                   metric=task_metric_map[self.task],
                                   mode='max',
                                   max_t=train_args.get('epochs') or 100,
                                   grace_period=grace_period,
                                   reduction_factor=3)

    # Define the callbacks for the hyperparameter search
    tuner_callbacks = [WandbLoggerCallback(project='yolov8_tune')] if wandb else []

    # Create the Ray Tune hyperparameter search tuner
    tuner = tune.Tuner(trainable_with_resources,
                       param_space=space,
                       tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
                       run_config=RunConfig(callbacks=tuner_callbacks, local_dir='./runs'))

    # Run the hyperparameter search
    tuner.fit()

    # Return the results of the hyperparameter search
    return tuner.get_results()

val(data=None, **kwargs)

Validate a model on a given dataset.

Parameters:

Name Type Description Default
data str

The dataset to validate on. Accepts all formats accepted by yolo

None
**kwargs

Any other args accepted by the validators. To see all args check 'configuration' section in docs

{}
Source code in ultralytics/yolo/engine/model.py
@smart_inference_mode()
def val(self, data=None, **kwargs):
    """
    Validate a model on a given dataset.

    Args:
        data (str): The dataset to validate on. Accepts all formats accepted by yolo
        **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
    """
    overrides = self.overrides.copy()
    overrides['rect'] = True  # rect batches as default
    overrides.update(kwargs)
    overrides['mode'] = 'val'
    args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
    args.data = data or args.data
    if 'task' in overrides:
        self.task = args.task
    else:
        args.task = self.task
    if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
        args.imgsz = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
    args.imgsz = check_imgsz(args.imgsz, max_dim=1)

    validator = TASK_MAP[self.task][2](args=args, _callbacks=self.callbacks)
    validator(model=self.model)
    self.metrics = validator.metrics

    return validator.metrics




Created 2023-04-16, Updated 2023-05-17
Authors: Glenn Jocher (3)