ProfileModels
ProfileModels class for profiling different models on ONNX and TensorRT.
This class profiles the performance of different models, provided their paths. The profiling includes parameters such as model speed and FLOPs.
Attributes:
Name | Type | Description |
---|---|---|
paths |
list
|
Paths of the models to profile. |
num_timed_runs |
int
|
Number of timed runs for the profiling. Default is 100. |
num_warmup_runs |
int
|
Number of warmup runs before profiling. Default is 10. |
min_time |
float
|
Minimum number of seconds to profile for. Default is 60. |
imgsz |
int
|
Image size used in the models. Default is 640. |
Methods
profile(): Profiles the models and prints the result.
Source code in ultralytics/yolo/utils/benchmarks.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
benchmark
Benchmark a YOLO model across different formats for speed and accuracy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Union[str, Path]
|
Path to the model file or directory. Default is Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. |
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
|
imgsz |
int
|
Image size for the benchmark. Default is 160. |
160
|
half |
bool
|
Use half-precision for the model if True. Default is False. |
False
|
int8 |
bool
|
Use int8-precision for the model if True. Default is False. |
False
|
device |
str
|
Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. |
'cpu'
|
hard_fail |
Union[bool, float]
|
If True or a float, assert benchmarks pass with given metric. Default is False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
df |
pandas.DataFrame
|
A pandas DataFrame with benchmark results for each format, including file size, metric, and inference time. |
Source code in ultralytics/yolo/utils/benchmarks.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
Created 2023-04-16, Updated 2023-05-28
Authors: Glenn Jocher (4)