defon_pretrain_routine_start(trainer):"""Initiate and start project if module is present."""wb.runorwb.init(project=trainer.args.projector'YOLOv8',name=trainer.args.name,config=vars(trainer.args))
on_fit_epoch_end
Logs training metrics and model information at the end of an epoch.
Source code in ultralytics/yolo/utils/callbacks/wb.py
defon_fit_epoch_end(trainer):"""Logs training metrics and model information at the end of an epoch."""wb.run.log(trainer.metrics,step=trainer.epoch+1)_log_plots(trainer.plots,step=trainer.epoch+1)_log_plots(trainer.validator.plots,step=trainer.epoch+1)iftrainer.epoch==0:wb.run.log(model_info_for_loggers(trainer),step=trainer.epoch+1)
on_train_epoch_end
Log metrics and save images at the end of each training epoch.
Source code in ultralytics/yolo/utils/callbacks/wb.py
defon_train_epoch_end(trainer):"""Log metrics and save images at the end of each training epoch."""wb.run.log(trainer.label_loss_items(trainer.tloss,prefix='train'),step=trainer.epoch+1)wb.run.log(trainer.lr,step=trainer.epoch+1)iftrainer.epoch==1:_log_plots(trainer.plots,step=trainer.epoch+1)
on_train_end
Save the best model as an artifact at end of training.
Source code in ultralytics/yolo/utils/callbacks/wb.py
defon_train_end(trainer):"""Save the best model as an artifact at end of training."""_log_plots(trainer.validator.plots,step=trainer.epoch+1)_log_plots(trainer.plots,step=trainer.epoch+1)art=wb.Artifact(type='model',name=f'run_{wb.run.id}_model')iftrainer.best.exists():art.add_file(trainer.best)wb.run.log_artifact(art)
Created 2023-04-16, Updated 2023-05-17 Authors: Glenn Jocher (3)