Skip to content

on_pretrain_routine_start


Initiate and start project if module is present.

Source code in ultralytics/yolo/utils/callbacks/wb.py
def on_pretrain_routine_start(trainer):
    """Initiate and start project if module is present."""
    wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))



on_fit_epoch_end


Logs training metrics and model information at the end of an epoch.

Source code in ultralytics/yolo/utils/callbacks/wb.py
def on_fit_epoch_end(trainer):
    """Logs training metrics and model information at the end of an epoch."""
    wb.run.log(trainer.metrics, step=trainer.epoch + 1)
    _log_plots(trainer.plots, step=trainer.epoch + 1)
    _log_plots(trainer.validator.plots, step=trainer.epoch + 1)
    if trainer.epoch == 0:
        wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)



on_train_epoch_end


Log metrics and save images at the end of each training epoch.

Source code in ultralytics/yolo/utils/callbacks/wb.py
def on_train_epoch_end(trainer):
    """Log metrics and save images at the end of each training epoch."""
    wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1)
    wb.run.log(trainer.lr, step=trainer.epoch + 1)
    if trainer.epoch == 1:
        _log_plots(trainer.plots, step=trainer.epoch + 1)



on_train_end


Save the best model as an artifact at end of training.

Source code in ultralytics/yolo/utils/callbacks/wb.py
def on_train_end(trainer):
    """Save the best model as an artifact at end of training."""
    _log_plots(trainer.validator.plots, step=trainer.epoch + 1)
    _log_plots(trainer.plots, step=trainer.epoch + 1)
    art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model')
    if trainer.best.exists():
        art.add_file(trainer.best)
        wb.run.log_artifact(art)




Created 2023-04-16, Updated 2023-05-17
Authors: Glenn Jocher (3)