Skip to content

Colors


Source code in ultralytics/yolo/utils/plotting.py
class Colors:
    # Ultralytics color palette https://ultralytics.com/
    def __init__(self):
        """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
        hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
                '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
        self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
        self.n = len(self.palette)
        self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
                                      [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
                                      [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
                                      [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]],
                                     dtype=np.uint8)

    def __call__(self, i, bgr=False):
        """Converts hex color codes to rgb values."""
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):  # rgb order (PIL)
        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))

__call__(i, bgr=False)

Converts hex color codes to rgb values.

Source code in ultralytics/yolo/utils/plotting.py
def __call__(self, i, bgr=False):
    """Converts hex color codes to rgb values."""
    c = self.palette[int(i) % self.n]
    return (c[2], c[1], c[0]) if bgr else c

__init__()

Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().

Source code in ultralytics/yolo/utils/plotting.py
def __init__(self):
    """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
    hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
            '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
    self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
    self.n = len(self.palette)
    self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255],
                                  [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255],
                                  [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102],
                                  [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]],
                                 dtype=np.uint8)



Annotator


Source code in ultralytics/yolo/utils/plotting.py
class Annotator:
    # YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
    def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
        """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
        assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
        self.pil = pil or non_ascii
        if self.pil:  # use PIL
            self.pil_9_2_0_check = check_version(pil_version, '9.2.0')  # deprecation check
            self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            try:
                font = check_font('Arial.Unicode.ttf' if non_ascii else font)
                size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
                self.font = ImageFont.truetype(str(font), size)
            except Exception:
                self.font = ImageFont.load_default()
        else:  # use cv2
            self.im = im
        self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
        # Pose
        self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
                         [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]

        self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
        self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]

    def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
        """Add one xyxy box to image with label."""
        if isinstance(box, torch.Tensor):
            box = box.tolist()
        if self.pil or not is_ascii(label):
            self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                if self.pil_9_2_0_check:
                    _, _, w, h = self.font.getbbox(label)  # text width, height (New)
                else:
                    w, h = self.font.getsize(label)  # text width, height (Old, deprecated in 9.2.0)
                outside = box[1] - h >= 0  # label fits outside box
                self.draw.rectangle(
                    (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
                     box[1] + 1 if outside else box[1] + h + 1),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
        else:  # cv2
            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
            if label:
                tf = max(self.lw - 1, 1)  # font thickness
                w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
                outside = p1[1] - h >= 3
                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(self.im,
                            label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                            0,
                            self.lw / 3,
                            txt_color,
                            thickness=tf,
                            lineType=cv2.LINE_AA)

    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
        """Plot masks at once.
        Args:
            masks (tensor): predicted masks on cuda, shape: [n, h, w]
            colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
            im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
            alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        if len(masks) == 0:
            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
        if im_gpu.device != masks.device:
            im_gpu = im_gpu.to(masks.device)
        colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
        colors = colors[:, None, None]  # shape(n,1,1,3)
        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

        inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

        im_gpu = im_gpu.flip(dims=[0])  # flip channel
        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
        im_gpu = im_gpu * inv_alph_masks[-1] + mcs
        im_mask = (im_gpu * 255)
        im_mask_np = im_mask.byte().cpu().numpy()
        self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
        """Plot keypoints on the image.

        Args:
            kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
            shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
            radius (int, optional): Radius of the drawn keypoints. Default is 5.
            kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
                                       for human pose. Default is True.

        Note: `kpt_line=True` currently only supports human pose plotting.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        nkpt, ndim = kpts.shape
        is_pose = nkpt == 17 and ndim == 3
        kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
        for i, k in enumerate(kpts):
            color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < 0.5:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

        if kpt_line:
            ndim = kpts.shape[-1]
            for i, sk in enumerate(self.skeleton):
                pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
                pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
                if ndim == 3:
                    conf1 = kpts[(sk[0] - 1), 2]
                    conf2 = kpts[(sk[1] - 1), 2]
                    if conf1 < 0.5 or conf2 < 0.5:
                        continue
                if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                    continue
                if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                    continue
                cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def rectangle(self, xy, fill=None, outline=None, width=1):
        """Add rectangle to image (PIL-only)."""
        self.draw.rectangle(xy, fill, outline, width)

    def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
        """Adds text to an image using PIL or cv2."""
        if anchor == 'bottom':  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        if self.pil:
            if box_style:
                w, h = self.font.getsize(text)
                self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            self.draw.text(xy, text, fill=txt_color, font=self.font)
        else:
            if box_style:
                tf = max(self.lw - 1, 1)  # font thickness
                w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
                outside = xy[1] - h >= 3
                p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
                cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            tf = max(self.lw - 1, 1)  # font thickness
            cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)

    def fromarray(self, im):
        """Update self.im from a numpy array."""
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)

    def result(self):
        """Return annotated image as array."""
        return np.asarray(self.im)

__init__(im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc')

Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.

Source code in ultralytics/yolo/utils/plotting.py
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
    """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
    assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
    non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
    self.pil = pil or non_ascii
    if self.pil:  # use PIL
        self.pil_9_2_0_check = check_version(pil_version, '9.2.0')  # deprecation check
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)
        try:
            font = check_font('Arial.Unicode.ttf' if non_ascii else font)
            size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
            self.font = ImageFont.truetype(str(font), size)
        except Exception:
            self.font = ImageFont.load_default()
    else:  # use cv2
        self.im = im
    self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
    # Pose
    self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9],
                     [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]

    self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
    self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]

box_label(box, label='', color=(128, 128, 128), txt_color=(255, 255, 255))

Add one xyxy box to image with label.

Source code in ultralytics/yolo/utils/plotting.py
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
    """Add one xyxy box to image with label."""
    if isinstance(box, torch.Tensor):
        box = box.tolist()
    if self.pil or not is_ascii(label):
        self.draw.rectangle(box, width=self.lw, outline=color)  # box
        if label:
            if self.pil_9_2_0_check:
                _, _, w, h = self.font.getbbox(label)  # text width, height (New)
            else:
                w, h = self.font.getsize(label)  # text width, height (Old, deprecated in 9.2.0)
            outside = box[1] - h >= 0  # label fits outside box
            self.draw.rectangle(
                (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
                 box[1] + 1 if outside else box[1] + h + 1),
                fill=color,
            )
            # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
            self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
    else:  # cv2
        p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
        cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
        if label:
            tf = max(self.lw - 1, 1)  # font thickness
            w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
            outside = p1[1] - h >= 3
            p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
            cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(self.im,
                        label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                        0,
                        self.lw / 3,
                        txt_color,
                        thickness=tf,
                        lineType=cv2.LINE_AA)

fromarray(im)

Update self.im from a numpy array.

Source code in ultralytics/yolo/utils/plotting.py
def fromarray(self, im):
    """Update self.im from a numpy array."""
    self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
    self.draw = ImageDraw.Draw(self.im)

kpts(kpts, shape=(640, 640), radius=5, kpt_line=True)

Plot keypoints on the image.

Parameters:

Name Type Description Default
kpts tensor

Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).

required
shape tuple

Image shape as a tuple (h, w), where h is the height and w is the width.

(640, 640)
radius int

Radius of the drawn keypoints. Default is 5.

5
kpt_line bool

If True, the function will draw lines connecting keypoints for human pose. Default is True.

True

Note: kpt_line=True currently only supports human pose plotting.

Source code in ultralytics/yolo/utils/plotting.py
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):
    """Plot keypoints on the image.

    Args:
        kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).
        shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.
        radius (int, optional): Radius of the drawn keypoints. Default is 5.
        kpt_line (bool, optional): If True, the function will draw lines connecting keypoints
                                   for human pose. Default is True.

    Note: `kpt_line=True` currently only supports human pose plotting.
    """
    if self.pil:
        # Convert to numpy first
        self.im = np.asarray(self.im).copy()
    nkpt, ndim = kpts.shape
    is_pose = nkpt == 17 and ndim == 3
    kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
    for i, k in enumerate(kpts):
        color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)
        x_coord, y_coord = k[0], k[1]
        if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
            if len(k) == 3:
                conf = k[2]
                if conf < 0.5:
                    continue
            cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

    if kpt_line:
        ndim = kpts.shape[-1]
        for i, sk in enumerate(self.skeleton):
            pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
            pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
            if ndim == 3:
                conf1 = kpts[(sk[0] - 1), 2]
                conf2 = kpts[(sk[1] - 1), 2]
                if conf1 < 0.5 or conf2 < 0.5:
                    continue
            if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                continue
            if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                continue
            cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)
    if self.pil:
        # Convert im back to PIL and update draw
        self.fromarray(self.im)

masks(masks, colors, im_gpu, alpha=0.5, retina_masks=False)

Plot masks at once.

Parameters:

Name Type Description Default
masks tensor

predicted masks on cuda, shape: [n, h, w]

required
colors List[List[Int]]

colors for predicted masks, [[r, g, b] * n]

required
im_gpu tensor

img is in cuda, shape: [3, h, w], range: [0, 1]

required
alpha float

mask transparency: 0.0 fully transparent, 1.0 opaque

0.5
Source code in ultralytics/yolo/utils/plotting.py
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
    """Plot masks at once.
    Args:
        masks (tensor): predicted masks on cuda, shape: [n, h, w]
        colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
        im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
        alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
    """
    if self.pil:
        # Convert to numpy first
        self.im = np.asarray(self.im).copy()
    if len(masks) == 0:
        self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
    if im_gpu.device != masks.device:
        im_gpu = im_gpu.to(masks.device)
    colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
    colors = colors[:, None, None]  # shape(n,1,1,3)
    masks = masks.unsqueeze(3)  # shape(n,h,w,1)
    masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

    inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
    mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

    im_gpu = im_gpu.flip(dims=[0])  # flip channel
    im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
    im_gpu = im_gpu * inv_alph_masks[-1] + mcs
    im_mask = (im_gpu * 255)
    im_mask_np = im_mask.byte().cpu().numpy()
    self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape)
    if self.pil:
        # Convert im back to PIL and update draw
        self.fromarray(self.im)

rectangle(xy, fill=None, outline=None, width=1)

Add rectangle to image (PIL-only).

Source code in ultralytics/yolo/utils/plotting.py
def rectangle(self, xy, fill=None, outline=None, width=1):
    """Add rectangle to image (PIL-only)."""
    self.draw.rectangle(xy, fill, outline, width)

result()

Return annotated image as array.

Source code in ultralytics/yolo/utils/plotting.py
def result(self):
    """Return annotated image as array."""
    return np.asarray(self.im)

text(xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False)

Adds text to an image using PIL or cv2.

Source code in ultralytics/yolo/utils/plotting.py
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False):
    """Adds text to an image using PIL or cv2."""
    if anchor == 'bottom':  # start y from font bottom
        w, h = self.font.getsize(text)  # text width, height
        xy[1] += 1 - h
    if self.pil:
        if box_style:
            w, h = self.font.getsize(text)
            self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
            # Using `txt_color` for background and draw fg with white color
            txt_color = (255, 255, 255)
        self.draw.text(xy, text, fill=txt_color, font=self.font)
    else:
        if box_style:
            tf = max(self.lw - 1, 1)  # font thickness
            w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
            outside = xy[1] - h >= 3
            p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3
            cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
            # Using `txt_color` for background and draw fg with white color
            txt_color = (255, 255, 255)
        tf = max(self.lw - 1, 1)  # font thickness
        cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA)



plot_labels


Save and plot image with no axis or spines.

Source code in ultralytics/yolo/utils/plotting.py
@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None):
    """Save and plot image with no axis or spines."""
    import pandas as pd
    import seaborn as sn

    # Plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    b = boxes.transpose()  # classes, boxes
    nc = int(cls.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])

    # Seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
    plt.close()

    # Matplotlib labels
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    with contextlib.suppress(Exception):  # color histogram bars by class
        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
    ax[0].set_ylabel('instances')
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel('classes')
    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)

    # Rectangles
    boxes[:, 0:2] = 0.5  # center
    boxes = xywh2xyxy(boxes) * 1000
    img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
    for cls, box in zip(cls[:500], boxes[:500]):
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis('off')

    for a in [0, 1, 2, 3]:
        for s in ['top', 'right', 'left', 'bottom']:
            ax[a].spines[s].set_visible(False)

    fname = save_dir / 'labels.jpg'
    plt.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)



save_one_box


Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.

Source code in ultralytics/yolo/utils/plotting.py
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
    """Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop."""
    b = xyxy2xywh(xyxy.view(-1, 4))  # boxes
    if square:
        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = xywh2xyxy(b).long()
    clip_boxes(xyxy, im.shape)
    crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
    if save:
        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
        f = str(increment_path(file).with_suffix('.jpg'))
        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
    return crop



plot_images


Source code in ultralytics/yolo/utils/plotting.py
@threaded
def plot_images(images,
                batch_idx,
                cls,
                bboxes=np.zeros(0, dtype=np.float32),
                masks=np.zeros(0, dtype=np.uint8),
                kpts=np.zeros((0, 51), dtype=np.float32),
                paths=None,
                fname='images.jpg',
                names=None,
                on_plot=None):
    # Plot image grid with labels
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(cls, torch.Tensor):
        cls = cls.cpu().numpy()
    if isinstance(bboxes, torch.Tensor):
        bboxes = bboxes.cpu().numpy()
    if isinstance(masks, torch.Tensor):
        masks = masks.cpu().numpy().astype(int)
    if isinstance(kpts, torch.Tensor):
        kpts = kpts.cpu().numpy()
    if isinstance(batch_idx, torch.Tensor):
        batch_idx = batch_idx.cpu().numpy()

    max_size = 1920  # max image size
    max_subplots = 16  # max image subplots, i.e. 4x4
    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i, im in enumerate(images):
        if i == max_subplots:  # if last batch has fewer images than we expect
            break
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        im = im.transpose(1, 2, 0)
        mosaic[y:y + h, x:x + w, :] = im

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
    for i in range(i + 1):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
        if paths:
            annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
        if len(cls) > 0:
            idx = batch_idx == i
            classes = cls[idx].astype('int')

            if len(bboxes):
                boxes = xywh2xyxy(bboxes[idx, :4]).T
                labels = bboxes.shape[1] == 4  # labels if no conf column
                conf = None if labels else bboxes[idx, 4]  # check for confidence presence (label vs pred)

                if boxes.shape[1]:
                    if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
                        boxes[[0, 2]] *= w  # scale to pixels
                        boxes[[1, 3]] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        boxes *= scale
                boxes[[0, 2]] += x
                boxes[[1, 3]] += y
                for j, box in enumerate(boxes.T.tolist()):
                    c = classes[j]
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    if labels or conf[j] > 0.25:  # 0.25 conf thresh
                        label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
                        annotator.box_label(box, label, color=color)
            elif len(classes):
                for c in classes:
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    annotator.text((x, y), f'{c}', txt_color=color, box_style=True)

            # Plot keypoints
            if len(kpts):
                kpts_ = kpts[idx].copy()
                if len(kpts_):
                    if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01:  # if normalized with tolerance .01
                        kpts_[..., 0] *= w  # scale to pixels
                        kpts_[..., 1] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        kpts_ *= scale
                kpts_[..., 0] += x
                kpts_[..., 1] += y
                for j in range(len(kpts_)):
                    if labels or conf[j] > 0.25:  # 0.25 conf thresh
                        annotator.kpts(kpts_[j])

            # Plot masks
            if len(masks):
                if idx.shape[0] == masks.shape[0]:  # overlap_masks=False
                    image_masks = masks[idx]
                else:  # overlap_masks=True
                    image_masks = masks[[i]]  # (1, 640, 640)
                    nl = idx.sum()
                    index = np.arange(nl).reshape((nl, 1, 1)) + 1
                    image_masks = np.repeat(image_masks, nl, axis=0)
                    image_masks = np.where(image_masks == index, 1.0, 0.0)

                im = np.asarray(annotator.im).copy()
                for j, box in enumerate(boxes.T.tolist()):
                    if labels or conf[j] > 0.25:  # 0.25 conf thresh
                        color = colors(classes[j])
                        mh, mw = image_masks[j].shape
                        if mh != h or mw != w:
                            mask = image_masks[j].astype(np.uint8)
                            mask = cv2.resize(mask, (w, h))
                            mask = mask.astype(bool)
                        else:
                            mask = image_masks[j].astype(bool)
                        with contextlib.suppress(Exception):
                            im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
                annotator.fromarray(im)
    annotator.im.save(fname)  # save
    if on_plot:
        on_plot(fname)



plot_results


Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv').

Source code in ultralytics/yolo/utils/plotting.py
@plt_settings()
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None):
    """Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')."""
    import pandas as pd
    save_dir = Path(file).parent if file else Path(dir)
    if classify:
        fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
        index = [1, 4, 2, 3]
    elif segment:
        fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
    elif pose:
        fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
    else:
        fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
    ax = ax.ravel()
    files = list(save_dir.glob('results*.csv'))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate(index):
                y = data.values[:, j].astype('float')
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)  # actual results
                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2)  # smoothing line
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.warning(f'WARNING: Plotting error for {f}: {e}')
    ax[1].legend()
    fname = save_dir / 'results.png'
    fig.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)



output_to_target


Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.

Source code in ultralytics/yolo/utils/plotting.py
def output_to_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:]



feature_visualization


Visualize feature maps of a given model module during inference.

Parameters:

Name Type Description Default
x torch.Tensor

Features to be visualized.

required
module_type str

Module type.

required
stage int

Module stage within the model.

required
n int

Maximum number of feature maps to plot. Defaults to 32.

32
save_dir Path

Directory to save results. Defaults to Path('runs/detect/exp').

Path('runs/detect/exp')
Source code in ultralytics/yolo/utils/plotting.py
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
    """
    Visualize feature maps of a given model module during inference.

    Args:
        x (torch.Tensor): Features to be visualized.
        module_type (str): Module type.
        stage (int): Module stage within the model.
        n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
        save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
    """
    for m in ['Detect', 'Pose', 'Segment']:
        if m in module_type:
            return
    batch, channels, height, width = x.shape  # batch, channels, height, width
    if height > 1 and width > 1:
        f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

        blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
        n = min(n, channels)  # number of plots
        fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
        ax = ax.ravel()
        plt.subplots_adjust(wspace=0.05, hspace=0.05)
        for i in range(n):
            ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
            ax[i].axis('off')

        LOGGER.info(f'Saving {f}... ({n}/{channels})')
        plt.savefig(f, dpi=300, bbox_inches='tight')
        plt.close()
        np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy())  # npy save




Created 2023-04-16, Updated 2023-05-17
Authors: Glenn Jocher (4)