Zum Inhalt springen

MNN-Export für YOLO11 Modelle und Einsatz

MNN

MNN-Architektur

MNN ist ein hocheffizientes und leichtgewichtiges Deep-Learning-Framework. Es unterstützt die Inferenz und das Training von Deep-Learning-Modellen und bietet eine branchenführende Leistung für Inferenz und Training auf dem Gerät. Derzeit ist MNN in mehr als 30 Apps von Alibaba Inc. integriert, wie z. B. Taobao, Tmall, Youku, DingTalk, Xianyu usw., und deckt mehr als 70 Nutzungsszenarien ab, wie z. B. Live-Übertragungen, kurze Videoaufnahmen, Suchempfehlungen, Produktsuche nach Bildern, interaktives Marketing, Aktienverteilung und Kontrolle von Sicherheitsrisiken. Darüber hinaus wird MNN auch auf eingebetteten Geräten wie dem IoT eingesetzt.

Nach MNN exportieren: Konvertieren Ihres YOLO11 Modells

Sie können die Modellkompatibilität und die Einsatzflexibilität erweitern, indem Sie die Modelle von YOLO11 in das MNN-Format konvertieren.

Einrichtung

Um die erforderlichen Pakete zu installieren, führen Sie aus:

Einrichtung

# Install the required package for YOLO11 and MNN
pip install ultralytics
pip install MNN

Verwendung

Bevor wir uns den Anweisungen zur Verwendung zuwenden, ist es wichtig zu wissen, dass alle Modelle vonUltralytics YOLO11 für den Export verfügbar sind.

Verwendung

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export the model to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn'

# Load the exported MNN model
mnn_model = YOLO("yolo11n.mnn")

# Run inference
results = mnn_model("https://ultralytics.com/images/bus.jpg")
# Export a YOLO11n PyTorch model to MNN format
yolo export model=yolo11n.pt format=mnn  # creates 'yolo11n.mnn'

# Run inference with the exported model
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'

Weitere Einzelheiten zu den unterstützten Exportoptionen finden Sie auf der Dokumentationsseite zu den Bereitstellungsoptionen unter Ultralytics .

MNN-ausschließlich Inferenz

Es wurde eine Funktion implementiert, die ausschließlich auf MNN für die Inferenz und Vorverarbeitung von YOLO11 basiert und sowohl Python als auch C++-Versionen für den einfachen Einsatz in jedem Szenario bereitstellt.

MNN

import argparse

import MNN
import MNN.cv as cv2
import MNN.numpy as np


def inference(model, img, precision, backend, thread):
    config = {}
    config["precision"] = precision
    config["backend"] = backend
    config["numThread"] = thread
    rt = MNN.nn.create_runtime_manager((config,))
    # net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
    net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
    original_image = cv2.imread(img)
    ih, iw, _ = original_image.shape
    length = max((ih, iw))
    scale = length / 640
    image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
    image = cv2.resize(
        image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
    )
    input_var = np.expand_dims(image, 0)
    input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
    output_var = net.forward(input_var)
    output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
    output_var = output_var.squeeze()
    # output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    cx = output_var[0]
    cy = output_var[1]
    w = output_var[2]
    h = output_var[3]
    probs = output_var[4:]
    # [cx, cy, w, h] -> [y0, x0, y1, x1]
    x0 = cx - w * 0.5
    y0 = cy - h * 0.5
    x1 = cx + w * 0.5
    y1 = cy + h * 0.5
    boxes = np.stack([x0, y0, x1, y1], axis=1)
    # get max prob and idx
    scores = np.max(probs, 0)
    class_ids = np.argmax(probs, 0)
    result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
    print(result_ids.shape)
    # nms result box, score, ids
    result_boxes = boxes[result_ids]
    result_scores = scores[result_ids]
    result_class_ids = class_ids[result_ids]
    for i in range(len(result_boxes)):
        x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
        y0 = int(y0 * scale)
        y1 = int(y1 * scale)
        x0 = int(x0 * scale)
        x1 = int(x1 * scale)
        print(result_class_ids[i])
        cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
    cv2.imwrite("res.jpg", original_image)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
    parser.add_argument("--img", type=str, required=True, help="the input image path")
    parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
    parser.add_argument(
        "--backend",
        type=str,
        default="CPU",
        help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
    )
    parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
    args = parser.parse_args()
    inference(args.model, args.img, args.precision, args.backend, args.thread)
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>

#include <cv/cv.hpp>

using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;

int main(int argc, const char* argv[]) {
    if (argc < 3) {
        MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
        return 0;
    }
    int thread = 4;
    int precision = 0;
    int forwardType = MNN_FORWARD_CPU;
    if (argc >= 4) {
        forwardType = atoi(argv[3]);
    }
    if (argc >= 5) {
        precision = atoi(argv[4]);
    }
    if (argc >= 6) {
        thread = atoi(argv[5]);
    }
    MNN::ScheduleConfig sConfig;
    sConfig.type = static_cast<MNNForwardType>(forwardType);
    sConfig.numThread = thread;
    BackendConfig bConfig;
    bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
    sConfig.backendConfig = &bConfig;
    std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
    if(rtmgr == nullptr) {
        MNN_ERROR("Empty RuntimeManger\n");
        return 0;
    }
    rtmgr->setCache(".cachefile");

    std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
    auto original_image = imread(argv[2]);
    auto dims = original_image->getInfo()->dim;
    int ih = dims[0];
    int iw = dims[1];
    int len = ih > iw ? ih : iw;
    float scale = len / 640.0;
    std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
    auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
    auto image = _Pad(original_image, pads, CONSTANT);
    image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
    auto input = _Unsqueeze(image, {0});
    input = _Convert(input, NC4HW4);
    auto outputs = net->onForward({input});
    auto output = _Convert(outputs[0], NCHW);
    output = _Squeeze(output);
    // output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    auto cx = _Gather(output, _Scalar<int>(0));
    auto cy = _Gather(output, _Scalar<int>(1));
    auto w = _Gather(output, _Scalar<int>(2));
    auto h = _Gather(output, _Scalar<int>(3));
    std::vector<int> startvals { 4, 0 };
    auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
    std::vector<int> sizevals { -1, -1 };
    auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
    auto probs = _Slice(output, start, size);
    // [cx, cy, w, h] -> [y0, x0, y1, x1]
    auto x0 = cx - w * _Const(0.5);
    auto y0 = cy - h * _Const(0.5);
    auto x1 = cx + w * _Const(0.5);
    auto y1 = cy + h * _Const(0.5);
    auto boxes = _Stack({x0, y0, x1, y1}, 1);
    auto scores = _ReduceMax(probs, {0});
    auto ids = _ArgMax(probs, 0);
    auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
    auto result_ptr = result_ids->readMap<int>();
    auto box_ptr = boxes->readMap<float>();
    auto ids_ptr = ids->readMap<int>();
    auto score_ptr = scores->readMap<float>();
    for (int i = 0; i < 100; i++) {
        auto idx = result_ptr[i];
        if (idx < 0) break;
        auto x0 = box_ptr[idx * 4 + 0] * scale;
        auto y0 = box_ptr[idx * 4 + 1] * scale;
        auto x1 = box_ptr[idx * 4 + 2] * scale;
        auto y1 = box_ptr[idx * 4 + 3] * scale;
        auto class_idx = ids_ptr[idx];
        auto score = score_ptr[idx];
        rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
    }
    if (imwrite("res.jpg", original_image)) {
        MNN_PRINT("result image write to `res.jpg`.\n");
    }
    rtmgr->updateCache();
    return 0;
}

Zusammenfassung

In diesem Leitfaden wird beschrieben, wie man das Modell Ultralytics YOLO11 nach MNN exportiert und MNN zur Inferenz verwendet.

Weitere Informationen zur Verwendung finden Sie in der MNN-Dokumentation.

FAQ

Wie exportiere ich Ultralytics YOLO11 Modelle in das MNN-Format?

Gehen Sie folgendermaßen vor, um Ihr Modell Ultralytics YOLO11 in das MNN-Format zu exportieren:

Exportieren

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn' with fp32 weight
model.export(format="mnn", half=True)  # creates 'yolo11n.mnn' with fp16 weight
model.export(format="mnn", int8=True)  # creates 'yolo11n.mnn' with int8 weight
yolo export model=yolo11n.pt format=mnn            # creates 'yolo11n.mnn' with fp32 weight
yolo export model=yolo11n.pt format=mnn half=True  # creates 'yolo11n.mnn' with fp16 weight
yolo export model=yolo11n.pt format=mnn int8=True  # creates 'yolo11n.mnn' with int8 weight

Ausführliche Informationen zu den Exportoptionen finden Sie auf der Seite Export in der Dokumentation.

Wie kann ich mit einem exportierten YOLO11 MNN-Modell Vorhersagen treffen?

Um mit einem exportierten YOLO11 MNN-Modell Vorhersagen zu treffen, verwenden Sie die predict Funktion aus der Klasse YOLO .

Vorhersage

from ultralytics import YOLO

# Load the YOLO11 MNN model
model = YOLO("yolo11n.mnn")

# Export to MNN format
results = mnn_model("https://ultralytics.com/images/bus.jpg")  # predict with `fp32`
results = mnn_model("https://ultralytics.com/images/bus.jpg", half=True)  # predict with `fp16` if device support

for result in results:
    result.show()  # display to screen
    result.save(filename="result.jpg")  # save to disk
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'              # predict with `fp32`
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' --half=True  # predict with `fp16` if device support

Welche Plattformen werden für MNN unterstützt?

MNN ist vielseitig und unterstützt verschiedene Plattformen:

  • Mobil: Android, iOS, Harmony.
  • Eingebettete Systeme und IoT-Geräte: Geräte wie Raspberry Pi und NVIDIA Jetson.
  • Desktop und Server: Linux, Windows und macOS.

Wie kann ich Ultralytics YOLO11 MNN-Modelle auf mobilen Geräten einsetzen?

Um Ihre YOLO11 Modelle auf mobilen Geräten einzusetzen:

  1. Bauen Sie für Android: Folgen Sie dem MNN Android.
  2. Bauen Sie für iOS: Folgen Sie dem MNN iOS.
  3. Bauen Sie für Harmonie: Folgen Sie der MNN Harmony.
📅 Created 2 months ago ✏️ Updated 2 months ago

Kommentare