Reference for ultralytics/models/yolo/classify/train.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/classify/train.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
ClassificationTrainer.set_model_attributesClassificationTrainer.get_modelClassificationTrainer.setup_modelClassificationTrainer.build_datasetClassificationTrainer.get_dataloaderClassificationTrainer.preprocess_batchClassificationTrainer.progress_stringClassificationTrainer.get_validatorClassificationTrainer.label_loss_itemsClassificationTrainer.plot_training_samples
class ultralytics.models.yolo.classify.train.ClassificationTrainer
ClassificationTrainer(self, cfg = DEFAULT_CFG, overrides: dict[str, Any] | None = None, _callbacks = None)
Bases: BaseTrainer
A trainer class extending BaseTrainer for training image classification models.
This trainer handles the training process for image classification tasks, supporting both YOLO classification models and torchvision models with comprehensive dataset handling and validation.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | dict[str, Any], optional | Default configuration dictionary containing training parameters. | DEFAULT_CFG |
overrides | dict[str, Any], optional | Dictionary of parameter overrides for the default configuration. | None |
_callbacks | list[Any], optional | List of callback functions to be executed during training. | None |
Attributes
| Name | Type | Description |
|---|---|---|
model | ClassificationModel | The classification model to be trained. |
data | dict[str, Any] | Dictionary containing dataset information including class names and number of classes. |
loss_names | list[str] | Names of the loss functions used during training. |
validator | ClassificationValidator | Validator instance for model evaluation. |
Methods
| Name | Description |
|---|---|
build_dataset | Create a ClassificationDataset instance given an image path and mode. |
get_dataloader | Return PyTorch DataLoader with transforms to preprocess images. |
get_model | Return a modified PyTorch model configured for training YOLO classification. |
get_validator | Return an instance of ClassificationValidator for validation. |
label_loss_items | Return a loss dict with labeled training loss items tensor. |
plot_training_samples | Plot training samples with their annotations. |
preprocess_batch | Preprocess a batch of images and classes. |
progress_string | Return a formatted string showing training progress. |
set_model_attributes | Set the YOLO model's class names from the loaded dataset. |
setup_model | Load, create or download model for classification tasks. |
Examples
Initialize and train a classification model
>>> from ultralytics.models.yolo.classify import ClassificationTrainer
>>> args = dict(model="yolo11n-cls.pt", data="imagenet10", epochs=3)
>>> trainer = ClassificationTrainer(overrides=args)
>>> trainer.train()
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubclass ClassificationTrainer(BaseTrainer):
"""A trainer class extending BaseTrainer for training image classification models.
This trainer handles the training process for image classification tasks, supporting both YOLO classification models
and torchvision models with comprehensive dataset handling and validation.
Attributes:
model (ClassificationModel): The classification model to be trained.
data (dict[str, Any]): Dictionary containing dataset information including class names and number of classes.
loss_names (list[str]): Names of the loss functions used during training.
validator (ClassificationValidator): Validator instance for model evaluation.
Methods:
set_model_attributes: Set the model's class names from the loaded dataset.
get_model: Return a modified PyTorch model configured for training.
setup_model: Load, create or download model for classification.
build_dataset: Create a ClassificationDataset instance.
get_dataloader: Return PyTorch DataLoader with transforms for image preprocessing.
preprocess_batch: Preprocess a batch of images and classes.
progress_string: Return a formatted string showing training progress.
get_validator: Return an instance of ClassificationValidator.
label_loss_items: Return a loss dict with labeled training loss items.
final_eval: Evaluate trained model and save validation results.
plot_training_samples: Plot training samples with their annotations.
Examples:
Initialize and train a classification model
>>> from ultralytics.models.yolo.classify import ClassificationTrainer
>>> args = dict(model="yolo11n-cls.pt", data="imagenet10", epochs=3)
>>> trainer = ClassificationTrainer(overrides=args)
>>> trainer.train()
"""
def __init__(self, cfg=DEFAULT_CFG, overrides: dict[str, Any] | None = None, _callbacks=None):
"""Initialize a ClassificationTrainer object.
Args:
cfg (dict[str, Any], optional): Default configuration dictionary containing training parameters.
overrides (dict[str, Any], optional): Dictionary of parameter overrides for the default configuration.
_callbacks (list[Any], optional): List of callback functions to be executed during training.
"""
if overrides is None:
overrides = {}
overrides["task"] = "classify"
if overrides.get("imgsz") is None:
overrides["imgsz"] = 224
super().__init__(cfg, overrides, _callbacks)
method ultralytics.models.yolo.classify.train.ClassificationTrainer.build_dataset
def build_dataset(self, img_path: str, mode: str = "train", batch = None)
Create a ClassificationDataset instance given an image path and mode.
Args
| Name | Type | Description | Default |
|---|---|---|---|
img_path | str | Path to the dataset images. | required |
mode | str, optional | Dataset mode ('train', 'val', or 'test'). | "train" |
batch | Any, optional | Batch information (unused in this implementation). | None |
Returns
| Type | Description |
|---|---|
ClassificationDataset | Dataset for the specified mode. |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef build_dataset(self, img_path: str, mode: str = "train", batch=None):
"""Create a ClassificationDataset instance given an image path and mode.
Args:
img_path (str): Path to the dataset images.
mode (str, optional): Dataset mode ('train', 'val', or 'test').
batch (Any, optional): Batch information (unused in this implementation).
Returns:
(ClassificationDataset): Dataset for the specified mode.
"""
return ClassificationDataset(root=img_path, args=self.args, augment=mode == "train", prefix=mode)
method ultralytics.models.yolo.classify.train.ClassificationTrainer.get_dataloader
def get_dataloader(self, dataset_path: str, batch_size: int = 16, rank: int = 0, mode: str = "train")
Return PyTorch DataLoader with transforms to preprocess images.
Args
| Name | Type | Description | Default |
|---|---|---|---|
dataset_path | str | Path to the dataset. | required |
batch_size | int, optional | Number of images per batch. | 16 |
rank | int, optional | Process rank for distributed training. | 0 |
mode | str, optional | 'train', 'val', or 'test' mode. | "train" |
Returns
| Type | Description |
|---|---|
torch.utils.data.DataLoader | DataLoader for the specified dataset and mode. |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef get_dataloader(self, dataset_path: str, batch_size: int = 16, rank: int = 0, mode: str = "train"):
"""Return PyTorch DataLoader with transforms to preprocess images.
Args:
dataset_path (str): Path to the dataset.
batch_size (int, optional): Number of images per batch.
rank (int, optional): Process rank for distributed training.
mode (str, optional): 'train', 'val', or 'test' mode.
Returns:
(torch.utils.data.DataLoader): DataLoader for the specified dataset and mode.
"""
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = self.build_dataset(dataset_path, mode)
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank, drop_last=self.args.compile)
# Attach inference transforms
if mode != "train":
if is_parallel(self.model):
self.model.module.transforms = loader.dataset.torch_transforms
else:
self.model.transforms = loader.dataset.torch_transforms
return loader
method ultralytics.models.yolo.classify.train.ClassificationTrainer.get_model
def get_model(self, cfg = None, weights = None, verbose: bool = True)
Return a modified PyTorch model configured for training YOLO classification.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | Any, optional | Model configuration. | None |
weights | Any, optional | Pre-trained model weights. | None |
verbose | bool, optional | Whether to display model information. | True |
Returns
| Type | Description |
|---|---|
ClassificationModel | Configured PyTorch model for classification. |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef get_model(self, cfg=None, weights=None, verbose: bool = True):
"""Return a modified PyTorch model configured for training YOLO classification.
Args:
cfg (Any, optional): Model configuration.
weights (Any, optional): Pre-trained model weights.
verbose (bool, optional): Whether to display model information.
Returns:
(ClassificationModel): Configured PyTorch model for classification.
"""
model = ClassificationModel(cfg, nc=self.data["nc"], ch=self.data["channels"], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
for m in model.modules():
if not self.args.pretrained and hasattr(m, "reset_parameters"):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
return model
method ultralytics.models.yolo.classify.train.ClassificationTrainer.get_validator
def get_validator(self)
Return an instance of ClassificationValidator for validation.
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef get_validator(self):
"""Return an instance of ClassificationValidator for validation."""
self.loss_names = ["loss"]
return yolo.classify.ClassificationValidator(
self.test_loader, self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
method ultralytics.models.yolo.classify.train.ClassificationTrainer.label_loss_items
def label_loss_items(self, loss_items: torch.Tensor | None = None, prefix: str = "train")
Return a loss dict with labeled training loss items tensor.
Args
| Name | Type | Description | Default |
|---|---|---|---|
loss_items | torch.Tensor, optional | Loss tensor items. | None |
prefix | str, optional | Prefix to prepend to loss names. | "train" |
Returns
| Type | Description |
|---|---|
keys (list[str]) | List of loss keys if loss_items is None. |
loss_dict (dict[str, float]) | Dictionary of loss items if loss_items is provided. |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef label_loss_items(self, loss_items: torch.Tensor | None = None, prefix: str = "train"):
"""Return a loss dict with labeled training loss items tensor.
Args:
loss_items (torch.Tensor, optional): Loss tensor items.
prefix (str, optional): Prefix to prepend to loss names.
Returns:
keys (list[str]): List of loss keys if loss_items is None.
loss_dict (dict[str, float]): Dictionary of loss items if loss_items is provided.
"""
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is None:
return keys
loss_items = [round(float(loss_items), 5)]
return dict(zip(keys, loss_items))
method ultralytics.models.yolo.classify.train.ClassificationTrainer.plot_training_samples
def plot_training_samples(self, batch: dict[str, torch.Tensor], ni: int)
Plot training samples with their annotations.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict[str, torch.Tensor] | Batch containing images and class labels. | required |
ni | int | Number of iterations. | required |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef plot_training_samples(self, batch: dict[str, torch.Tensor], ni: int):
"""Plot training samples with their annotations.
Args:
batch (dict[str, torch.Tensor]): Batch containing images and class labels.
ni (int): Number of iterations.
"""
batch["batch_idx"] = torch.arange(batch["img"].shape[0]) # add batch index for plotting
plot_images(
labels=batch,
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
method ultralytics.models.yolo.classify.train.ClassificationTrainer.preprocess_batch
def preprocess_batch(self, batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]
Preprocess a batch of images and classes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict[str, torch.Tensor] | required |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef preprocess_batch(self, batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""Preprocess a batch of images and classes."""
batch["img"] = batch["img"].to(self.device, non_blocking=self.device.type == "cuda")
batch["cls"] = batch["cls"].to(self.device, non_blocking=self.device.type == "cuda")
return batch
method ultralytics.models.yolo.classify.train.ClassificationTrainer.progress_string
def progress_string(self) -> str
Return a formatted string showing training progress.
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef progress_string(self) -> str:
"""Return a formatted string showing training progress."""
return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
"Epoch",
"GPU_mem",
*self.loss_names,
"Instances",
"Size",
)
method ultralytics.models.yolo.classify.train.ClassificationTrainer.set_model_attributes
def set_model_attributes(self)
Set the YOLO model's class names from the loaded dataset.
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef set_model_attributes(self):
"""Set the YOLO model's class names from the loaded dataset."""
self.model.names = self.data["names"]
method ultralytics.models.yolo.classify.train.ClassificationTrainer.setup_model
def setup_model(self)
Load, create or download model for classification tasks.
Returns
| Type | Description |
|---|---|
Any | Model checkpoint if applicable, otherwise None. |
Source code in ultralytics/models/yolo/classify/train.py
View on GitHubdef setup_model(self):
"""Load, create or download model for classification tasks.
Returns:
(Any): Model checkpoint if applicable, otherwise None.
"""
import torchvision # scope for faster 'import ultralytics'
if str(self.model) in torchvision.models.__dict__:
self.model = torchvision.models.__dict__[self.model](
weights="IMAGENET1K_V1" if self.args.pretrained else None
)
ckpt = None
else:
ckpt = super().setup_model()
ClassificationModel.reshape_outputs(self.model, self.data["nc"])
return ckpt