Reference for ultralytics/engine/validator.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/validator.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.engine.validator.BaseValidator
BaseValidator(
dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None
)
A base class for creating validators.
This class provides the foundation for validation processes, including model evaluation, metric computation, and result visualization.
Attributes:
Name | Type | Description |
---|---|---|
args |
SimpleNamespace
|
Configuration for the validator. |
dataloader |
DataLoader
|
Dataloader to use for validation. |
pbar |
tqdm
|
Progress bar to update during validation. |
model |
Module
|
Model to validate. |
data |
dict
|
Data dictionary containing dataset information. |
device |
device
|
Device to use for validation. |
batch_i |
int
|
Current batch index. |
training |
bool
|
Whether the model is in training mode. |
names |
dict
|
Class names mapping. |
seen |
int
|
Number of images seen so far during validation. |
stats |
dict
|
Statistics collected during validation. |
confusion_matrix |
Confusion matrix for classification evaluation. |
|
nc |
int
|
Number of classes. |
iouv |
Tensor
|
IoU thresholds from 0.50 to 0.95 in spaces of 0.05. |
jdict |
list
|
List to store JSON validation results. |
speed |
dict
|
Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective batch processing times in milliseconds. |
save_dir |
Path
|
Directory to save results. |
plots |
dict
|
Dictionary to store plots for visualization. |
callbacks |
dict
|
Dictionary to store various callback functions. |
Methods:
Name | Description |
---|---|
__call__ |
Execute validation process, running inference on dataloader and computing performance metrics. |
match_predictions |
Match predictions to ground truth objects using IoU. |
add_callback |
Append the given callback to the specified event. |
run_callbacks |
Run all callbacks associated with a specified event. |
get_dataloader |
Get data loader from dataset path and batch size. |
build_dataset |
Build dataset from image path. |
preprocess |
Preprocess an input batch. |
postprocess |
Postprocess the predictions. |
init_metrics |
Initialize performance metrics for the YOLO model. |
update_metrics |
Update metrics based on predictions and batch. |
finalize_metrics |
Finalize and return all metrics. |
get_stats |
Return statistics about the model's performance. |
check_stats |
Check statistics. |
print_results |
Print the results of the model's predictions. |
get_desc |
Get description of the YOLO model. |
on_plot |
Register plots (e.g. to be consumed in callbacks). |
plot_val_samples |
Plot validation samples during training. |
plot_predictions |
Plot YOLO model predictions on batch images. |
pred_to_json |
Convert predictions to JSON format. |
eval_json |
Evaluate and return JSON format of prediction statistics. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataloader
|
DataLoader
|
Dataloader to be used for validation. |
None
|
save_dir
|
Path
|
Directory to save results. |
None
|
pbar
|
tqdm
|
Progress bar for displaying progress. |
None
|
args
|
SimpleNamespace
|
Configuration for the validator. |
None
|
_callbacks
|
dict
|
Dictionary to store various callback functions. |
None
|
Source code in ultralytics/engine/validator.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
metric_keys
property
metric_keys
Return the metric keys used in YOLO training/validation.
__call__
__call__(trainer=None, model=None)
Execute validation process, running inference on dataloader and computing performance metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer
|
object
|
Trainer object that contains the model to validate. |
None
|
model
|
Module
|
Model to validate if not using a trainer. |
None
|
Returns:
Name | Type | Description |
---|---|---|
stats |
dict
|
Dictionary containing validation statistics. |
Source code in ultralytics/engine/validator.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|
add_callback
add_callback(event: str, callback)
Append the given callback to the specified event.
Source code in ultralytics/engine/validator.py
300 301 302 |
|
build_dataset
build_dataset(img_path)
Build dataset from image path.
Source code in ultralytics/engine/validator.py
313 314 315 |
|
check_stats
check_stats(stats)
Check statistics.
Source code in ultralytics/engine/validator.py
341 342 343 |
|
eval_json
eval_json(stats)
Evaluate and return JSON format of prediction statistics.
Source code in ultralytics/engine/validator.py
375 376 377 |
|
finalize_metrics
finalize_metrics(*args, **kwargs)
Finalize and return all metrics.
Source code in ultralytics/engine/validator.py
333 334 335 |
|
get_dataloader
get_dataloader(dataset_path, batch_size)
Get data loader from dataset path and batch size.
Source code in ultralytics/engine/validator.py
309 310 311 |
|
get_desc
get_desc()
Get description of the YOLO model.
Source code in ultralytics/engine/validator.py
349 350 351 |
|
get_stats
get_stats()
Return statistics about the model's performance.
Source code in ultralytics/engine/validator.py
337 338 339 |
|
init_metrics
init_metrics(model)
Initialize performance metrics for the YOLO model.
Source code in ultralytics/engine/validator.py
325 326 327 |
|
match_predictions
match_predictions(
pred_classes: Tensor,
true_classes: Tensor,
iou: Tensor,
use_scipy: bool = False,
) -> torch.Tensor
Match predictions to ground truth objects using IoU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_classes
|
Tensor
|
Predicted class indices of shape (N,). |
required |
true_classes
|
Tensor
|
Target class indices of shape (M,). |
required |
iou
|
Tensor
|
An NxM tensor containing the pairwise IoU values for predictions and ground truth. |
required |
use_scipy
|
bool
|
Whether to use scipy for matching (more precise). |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
Correct tensor of shape (N, 10) for 10 IoU thresholds. |
Source code in ultralytics/engine/validator.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
on_plot
on_plot(name, data=None)
Register plots (e.g. to be consumed in callbacks).
Source code in ultralytics/engine/validator.py
358 359 360 |
|
plot_predictions
plot_predictions(batch, preds, ni)
Plot YOLO model predictions on batch images.
Source code in ultralytics/engine/validator.py
367 368 369 |
|
plot_val_samples
plot_val_samples(batch, ni)
Plot validation samples during training.
Source code in ultralytics/engine/validator.py
363 364 365 |
|
postprocess
postprocess(preds)
Postprocess the predictions.
Source code in ultralytics/engine/validator.py
321 322 323 |
|
pred_to_json
pred_to_json(preds, batch)
Convert predictions to JSON format.
Source code in ultralytics/engine/validator.py
371 372 373 |
|
preprocess
preprocess(batch)
Preprocess an input batch.
Source code in ultralytics/engine/validator.py
317 318 319 |
|
print_results
print_results()
Print the results of the model's predictions.
Source code in ultralytics/engine/validator.py
345 346 347 |
|
run_callbacks
run_callbacks(event: str)
Run all callbacks associated with a specified event.
Source code in ultralytics/engine/validator.py
304 305 306 307 |
|
update_metrics
update_metrics(preds, batch)
Update metrics based on predictions and batch.
Source code in ultralytics/engine/validator.py
329 330 331 |
|