Reference for ultralytics/models/rtdetr/val.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/rtdetr/val.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
class ultralytics.models.rtdetr.val.RTDETRDataset
RTDETRDataset(self, *args, data = None, **kwargs)
Bases: YOLODataset
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for real-time detection and tracking tasks.
This constructor sets up a dataset specifically optimized for the RT-DETR (Real-Time DEtection and TRacking) model, building upon the base YOLODataset functionality.
Args
| Name | Type | Description | Default |
|---|---|---|---|
*args | Any | Variable length argument list passed to the parent YOLODataset class. | required |
data | dict | None | Dictionary containing dataset information. If None, default values will be used. | None |
**kwargs | Any | Additional keyword arguments passed to the parent YOLODataset class. | required |
Attributes
| Name | Type | Description |
|---|---|---|
augment | bool | Whether to apply data augmentation. |
rect | bool | Whether to use rectangular training. |
use_segments | bool | Whether to use segmentation masks. |
use_keypoints | bool | Whether to use keypoint annotations. |
imgsz | int | Target image size for training. |
Methods
| Name | Description |
|---|---|
build_transforms | Build transformation pipeline for the dataset. |
load_image | Load one image from dataset index 'i'. |
Examples
Initialize an RT-DETR dataset
>>> dataset = RTDETRDataset(img_path="path/to/images", imgsz=640)
>>> image, hw = dataset.load_image(0)
Source code in ultralytics/models/rtdetr/val.py
View on GitHubclass RTDETRDataset(YOLODataset):
"""Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
real-time detection and tracking tasks.
Attributes:
augment (bool): Whether to apply data augmentation.
rect (bool): Whether to use rectangular training.
use_segments (bool): Whether to use segmentation masks.
use_keypoints (bool): Whether to use keypoint annotations.
imgsz (int): Target image size for training.
Methods:
load_image: Load one image from dataset index.
build_transforms: Build transformation pipeline for the dataset.
Examples:
Initialize an RT-DETR dataset
>>> dataset = RTDETRDataset(img_path="path/to/images", imgsz=640)
>>> image, hw = dataset.load_image(0)
"""
def __init__(self, *args, data=None, **kwargs):
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class.
This constructor sets up a dataset specifically optimized for the RT-DETR (Real-Time DEtection and TRacking)
model, building upon the base YOLODataset functionality.
Args:
*args (Any): Variable length argument list passed to the parent YOLODataset class.
data (dict | None): Dictionary containing dataset information. If None, default values will be used.
**kwargs (Any): Additional keyword arguments passed to the parent YOLODataset class.
"""
super().__init__(*args, data=data, **kwargs)
method ultralytics.models.rtdetr.val.RTDETRDataset.build_transforms
def build_transforms(self, hyp = None)
Build transformation pipeline for the dataset.
Args
| Name | Type | Description | Default |
|---|---|---|---|
hyp | dict, optional | Hyperparameters for transformations. | None |
Returns
| Type | Description |
|---|---|
Compose | Composition of transformation functions. |
Source code in ultralytics/models/rtdetr/val.py
View on GitHubdef build_transforms(self, hyp=None):
"""Build transformation pipeline for the dataset.
Args:
hyp (dict, optional): Hyperparameters for transformations.
Returns:
(Compose): Composition of transformation functions.
"""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
hyp.cutmix = hyp.cutmix if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
else:
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)])
transforms = Compose([lambda x: {**x, **{"ratio_pad": [x["ratio_pad"], [0, 0]]}}])
transforms.append(
Format(
bbox_format="xywh",
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask,
)
)
return transforms
method ultralytics.models.rtdetr.val.RTDETRDataset.load_image
def load_image(self, i, rect_mode = False)
Load one image from dataset index 'i'.
Args
| Name | Type | Description | Default |
|---|---|---|---|
i | int | Index of the image to load. | required |
rect_mode | bool, optional | Whether to use rectangular mode for batch inference. | False |
Returns
| Type | Description |
|---|---|
im (torch.Tensor) | The loaded image. |
resized_hw (tuple) | Height and width of the resized image with shape (2,). |
Examples
Load an image from the dataset
>>> dataset = RTDETRDataset(img_path="path/to/images")
>>> image, hw = dataset.load_image(0)
Source code in ultralytics/models/rtdetr/val.py
View on GitHubdef load_image(self, i, rect_mode=False):
"""Load one image from dataset index 'i'.
Args:
i (int): Index of the image to load.
rect_mode (bool, optional): Whether to use rectangular mode for batch inference.
Returns:
im (torch.Tensor): The loaded image.
resized_hw (tuple): Height and width of the resized image with shape (2,).
Examples:
Load an image from the dataset
>>> dataset = RTDETRDataset(img_path="path/to/images")
>>> image, hw = dataset.load_image(0)
"""
return super().load_image(i=i, rect_mode=rect_mode)
class ultralytics.models.rtdetr.val.RTDETRValidator
RTDETRValidator()
Bases: DetectionValidator
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
the RT-DETR (Real-Time DETR) object detection model.
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for post-processing, and updates evaluation metrics accordingly.
Attributes
| Name | Type | Description |
|---|---|---|
args | Namespace | Configuration arguments for validation. |
data | dict | Dataset configuration dictionary. |
Methods
| Name | Description |
|---|---|
build_dataset | Build an RTDETR Dataset. |
postprocess | Apply Non-maximum suppression to prediction outputs. |
pred_to_json | Serialize YOLO predictions to COCO json format. |
Examples
Initialize and run RT-DETR validation
>>> from ultralytics.models.rtdetr import RTDETRValidator
>>> args = dict(model="rtdetr-l.pt", data="coco8.yaml")
>>> validator = RTDETRValidator(args=args)
>>> validator()
Notes
For further details on the attributes and methods, refer to the parent DetectionValidator class.
Source code in ultralytics/models/rtdetr/val.py
View on GitHubclass RTDETRValidator(DetectionValidator):
method ultralytics.models.rtdetr.val.RTDETRValidator.build_dataset
def build_dataset(self, img_path, mode = "val", batch = None)
Build an RTDETR Dataset.
Args
| Name | Type | Description | Default |
|---|---|---|---|
img_path | str | Path to the folder containing images. | required |
mode | str, optional | train mode or val mode, users are able to customize different augmentations for each mode. | "val" |
batch | int, optional | Size of batches, this is for rect. | None |
Returns
| Type | Description |
|---|---|
RTDETRDataset | Dataset configured for RT-DETR validation. |
Source code in ultralytics/models/rtdetr/val.py
View on GitHubdef build_dataset(self, img_path, mode="val", batch=None):
"""Build an RTDETR Dataset.
Args:
img_path (str): Path to the folder containing images.
mode (str, optional): `train` mode or `val` mode, users are able to customize different augmentations for
each mode.
batch (int, optional): Size of batches, this is for `rect`.
Returns:
(RTDETRDataset): Dataset configured for RT-DETR validation.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=False, # no augmentation
hyp=self.args,
rect=False, # no rect
cache=self.args.cache or None,
prefix=colorstr(f"{mode}: "),
data=self.data,
)
method ultralytics.models.rtdetr.val.RTDETRValidator.postprocess
def postprocess(self, preds: torch.Tensor | list[torch.Tensor] | tuple[torch.Tensor]) -> list[dict[str, torch.Tensor]]
Apply Non-maximum suppression to prediction outputs.
Args
| Name | Type | Description | Default |
|---|---|---|---|
preds | torch.Tensor | list | tuple | Raw predictions from the model. If tensor, should have shape (batch_size, num_predictions, num_classes + 4) where last dimension contains bbox coords and class scores. | required |
Returns
| Type | Description |
|---|---|
list[dict[str, torch.Tensor]] | List of dictionaries for each image, each containing: |
Source code in ultralytics/models/rtdetr/val.py
View on GitHubdef postprocess(
self, preds: torch.Tensor | list[torch.Tensor] | tuple[torch.Tensor]
) -> list[dict[str, torch.Tensor]]:
"""Apply Non-maximum suppression to prediction outputs.
Args:
preds (torch.Tensor | list | tuple): Raw predictions from the model. If tensor, should have shape
(batch_size, num_predictions, num_classes + 4) where last dimension contains bbox coords and
class scores.
Returns:
(list[dict[str, torch.Tensor]]): List of dictionaries for each image, each containing:
- 'bboxes': Tensor of shape (N, 4) with bounding box coordinates
- 'conf': Tensor of shape (N,) with confidence scores
- 'cls': Tensor of shape (N,) with class indices
"""
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
preds = [preds, None]
bs, _, nd = preds[0].shape
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
bboxes *= self.args.imgsz
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1) # (300, )
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
# Sort by confidence to correctly get internal metrics
pred = pred[score.argsort(descending=True)]
outputs[i] = pred[score > self.args.conf]
return [{"bboxes": x[:, :4], "conf": x[:, 4], "cls": x[:, 5]} for x in outputs]
method ultralytics.models.rtdetr.val.RTDETRValidator.pred_to_json
def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None
Serialize YOLO predictions to COCO json format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
predn | dict[str, torch.Tensor] | Predictions dictionary containing 'bboxes', 'conf', and 'cls' keys with bounding box coordinates, confidence scores, and class predictions. | required |
pbatch | dict[str, Any] | Batch dictionary containing 'imgsz', 'ori_shape', 'ratio_pad', and 'im_file'. | required |
Source code in ultralytics/models/rtdetr/val.py
View on GitHubdef pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None:
"""Serialize YOLO predictions to COCO json format.
Args:
predn (dict[str, torch.Tensor]): Predictions dictionary containing 'bboxes', 'conf', and 'cls' keys with
bounding box coordinates, confidence scores, and class predictions.
pbatch (dict[str, Any]): Batch dictionary containing 'imgsz', 'ori_shape', 'ratio_pad', and 'im_file'.
"""
path = Path(pbatch["im_file"])
stem = path.stem
image_id = int(stem) if stem.isnumeric() else stem
box = predn["bboxes"].clone()
box[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
box[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
box = ops.xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for b, s, c in zip(box.tolist(), predn["conf"].tolist(), predn["cls"].tolist()):
self.jdict.append(
{
"image_id": image_id,
"file_name": path.name,
"category_id": self.class_map[int(c)],
"bbox": [round(x, 3) for x in b],
"score": round(s, 5),
}
)