Reference for ultralytics/models/sam/modules/decoders.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/decoders.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
class ultralytics.models.sam.modules.decoders.MaskDecoder
def __init__(
self,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None
Bases: nn.Module
Decoder module for generating masks and their associated quality scores using a transformer architecture.
This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and generate mask predictions along with their quality scores.
Args
| Name | Type | Description | Default |
|---|---|---|---|
transformer_dim | int | Channel dimension for the transformer module. | required |
transformer | nn.Module | Transformer module used for mask prediction. | required |
num_multimask_outputs | int | Number of masks to predict for disambiguating masks. | 3 |
activation | Type[nn.Module] | Type of activation to use when upscaling masks. | nn.GELU |
iou_head_depth | int | Depth of the MLP used to predict mask quality. | 3 |
iou_head_hidden_dim | int | Hidden dimension of the MLP used to predict mask quality. | 256 |
Attributes
| Name | Type | Description |
|---|---|---|
transformer_dim | int | Channel dimension for the transformer module. |
transformer | nn.Module | Transformer module used for mask prediction. |
num_multimask_outputs | int | Number of masks to predict for disambiguating masks. |
iou_token | nn.Embedding | Embedding for the IoU token. |
num_mask_tokens | int | Number of mask tokens. |
mask_tokens | nn.Embedding | Embedding for the mask tokens. |
output_upscaling | nn.Sequential | Neural network sequence for upscaling the output. |
output_hypernetworks_mlps | nn.ModuleList | Hypernetwork MLPs for generating masks. |
iou_prediction_head | nn.Module | MLP for predicting mask quality. |
Methods
| Name | Description |
|---|---|
forward | Predict masks given image and prompt embeddings. |
predict_masks | Predict masks and quality scores using image and prompt embeddings via transformer architecture. |
Examples
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
>>> masks, iou_pred = decoder(
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True
... )
>>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubclass MaskDecoder(nn.Module):
"""Decoder module for generating masks and their associated quality scores using a transformer architecture.
This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and
generate mask predictions along with their quality scores.
Attributes:
transformer_dim (int): Channel dimension for the transformer module.
transformer (nn.Module): Transformer module used for mask prediction.
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
iou_token (nn.Embedding): Embedding for the IoU token.
num_mask_tokens (int): Number of mask tokens.
mask_tokens (nn.Embedding): Embedding for the mask tokens.
output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
iou_prediction_head (nn.Module): MLP for predicting mask quality.
Methods:
forward: Predict masks given image and prompt embeddings.
predict_masks: Internal method for mask prediction.
Examples:
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
>>> masks, iou_pred = decoder(
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True
... )
>>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
"""
def __init__(
self,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
"""Initialize the MaskDecoder module for generating masks and their associated quality scores.
Args:
transformer_dim (int): Channel dimension for the transformer module.
transformer (nn.Module): Transformer module used for mask prediction.
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
activation (Type[nn.Module]): Type of activation to use when upscaling masks.
iou_head_depth (int): Depth of the MLP used to predict mask quality.
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
)
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
method ultralytics.models.sam.modules.decoders.MaskDecoder.forward
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> tuple[torch.Tensor, torch.Tensor]
Predict masks given image and prompt embeddings.
Args
| Name | Type | Description | Default |
|---|---|---|---|
image_embeddings | torch.Tensor | Embeddings from the image encoder. | required |
image_pe | torch.Tensor | Positional encoding with the shape of image_embeddings. | required |
sparse_prompt_embeddings | torch.Tensor | Embeddings of the points and boxes. | required |
dense_prompt_embeddings | torch.Tensor | Embeddings of the mask inputs. | required |
multimask_output | bool | Whether to return multiple masks or a single mask. | required |
Returns
| Type | Description |
|---|---|
masks (torch.Tensor) | Batched predicted masks. |
iou_pred (torch.Tensor) | Batched predictions of mask quality. |
Examples
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
>>> image_emb = torch.rand(1, 256, 64, 64)
>>> image_pe = torch.rand(1, 256, 64, 64)
>>> sparse_emb = torch.rand(1, 2, 256)
>>> dense_emb = torch.rand(1, 256, 64, 64)
>>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True)
>>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubdef forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Predict masks given image and prompt embeddings.
Args:
image_embeddings (torch.Tensor): Embeddings from the image encoder.
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.
multimask_output (bool): Whether to return multiple masks or a single mask.
Returns:
masks (torch.Tensor): Batched predicted masks.
iou_pred (torch.Tensor): Batched predictions of mask quality.
Examples:
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
>>> image_emb = torch.rand(1, 256, 64, 64)
>>> image_pe = torch.rand(1, 256, 64, 64)
>>> sparse_emb = torch.rand(1, 2, 256)
>>> dense_emb = torch.rand(1, 256, 64, 64)
>>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True)
>>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
"""
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
mask_slice = slice(1, None) if multimask_output else slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
return masks, iou_pred
method ultralytics.models.sam.modules.decoders.MaskDecoder.predict_masks
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]
Predict masks and quality scores using image and prompt embeddings via transformer architecture.
Args
| Name | Type | Description | Default |
|---|---|---|---|
image_embeddings | torch.Tensor | required | |
image_pe | torch.Tensor | required | |
sparse_prompt_embeddings | torch.Tensor | required | |
dense_prompt_embeddings | torch.Tensor | required |
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubdef predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Predict masks and quality scores using image and prompt embeddings via transformer architecture."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: list[torch.Tensor] = [
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
]
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
class ultralytics.models.sam.modules.decoders.SAM2MaskDecoder
def __init__(
self,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
use_high_res_features: bool = False,
iou_prediction_use_sigmoid=False,
dynamic_multimask_via_stability=False,
dynamic_multimask_stability_delta=0.05,
dynamic_multimask_stability_thresh=0.98,
pred_obj_scores: bool = False,
pred_obj_scores_mlp: bool = False,
use_multimask_token_for_obj_ptr: bool = False,
) -> None
Bases: nn.Module
Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings.
This class extends the functionality of the MaskDecoder, incorporating additional features such as high-resolution feature processing, dynamic multimask output, and object score prediction.
This decoder extends the functionality of MaskDecoder, incorporating additional features such as high-resolution feature processing, dynamic multimask output, and object score prediction.
Args
| Name | Type | Description | Default |
|---|---|---|---|
transformer_dim | int | Channel dimension of the transformer. | required |
transformer | nn.Module | Transformer used to predict masks. | required |
num_multimask_outputs | int | Number of masks to predict when disambiguating masks. | 3 |
activation | Type[nn.Module] | Type of activation to use when upscaling masks. | nn.GELU |
iou_head_depth | int | Depth of the MLP used to predict mask quality. | 3 |
iou_head_hidden_dim | int | Hidden dimension of the MLP used to predict mask quality. | 256 |
use_high_res_features | bool | Whether to use high-resolution features. | False |
iou_prediction_use_sigmoid | bool | Whether to use sigmoid for IOU prediction. | False |
dynamic_multimask_via_stability | bool | Whether to use dynamic multimask via stability. | False |
dynamic_multimask_stability_delta | float | Delta value for dynamic multimask stability. | 0.05 |
dynamic_multimask_stability_thresh | float | Threshold for dynamic multimask stability. | 0.98 |
pred_obj_scores | bool | Whether to predict object scores. | False |
pred_obj_scores_mlp | bool | Whether to use MLP for object score prediction. | False |
use_multimask_token_for_obj_ptr | bool | Whether to use multimask token for object pointer. | False |
Attributes
| Name | Type | Description |
|---|---|---|
transformer_dim | int | Channel dimension of the transformer. |
transformer | nn.Module | Transformer used to predict masks. |
num_multimask_outputs | int | Number of masks to predict when disambiguating masks. |
iou_token | nn.Embedding | Embedding for IOU token. |
num_mask_tokens | int | Total number of mask tokens. |
mask_tokens | nn.Embedding | Embedding for mask tokens. |
pred_obj_scores | bool | Whether to predict object scores. |
obj_score_token | nn.Embedding | Embedding for object score token. |
use_multimask_token_for_obj_ptr | bool | Whether to use multimask token for object pointer. |
output_upscaling | nn.Sequential | Upscaling layers for output. |
use_high_res_features | bool | Whether to use high-resolution features. |
conv_s0 | nn.Conv2d | Convolutional layer for high-resolution features (s0). |
conv_s1 | nn.Conv2d | Convolutional layer for high-resolution features (s1). |
output_hypernetworks_mlps | nn.ModuleList | List of MLPs for output hypernetworks. |
iou_prediction_head | MLP | MLP for IOU prediction. |
pred_obj_score_head | nn.Linear | MLP | Linear layer or MLP for object score prediction. |
dynamic_multimask_via_stability | bool | Whether to use dynamic multimask via stability. |
dynamic_multimask_stability_delta | float | Delta value for dynamic multimask stability. |
dynamic_multimask_stability_thresh | float | Threshold for dynamic multimask stability. |
Methods
| Name | Description |
|---|---|
_dynamic_multimask_via_stability | Dynamically select the most stable mask output based on stability scores and IoU predictions. |
_get_stability_scores | Compute mask stability scores based on IoU between upper and lower thresholds. |
forward | Predict masks given image and prompt embeddings. |
predict_masks | Predict instance segmentation masks from image and prompt embeddings using a transformer. |
Examples
>>> image_embeddings = torch.rand(1, 256, 64, 64)
>>> image_pe = torch.rand(1, 256, 64, 64)
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
>>> decoder = SAM2MaskDecoder(256, transformer)
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
... )
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubclass SAM2MaskDecoder(nn.Module):
"""Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings.
This class extends the functionality of the MaskDecoder, incorporating additional features such as high-resolution
feature processing, dynamic multimask output, and object score prediction.
Attributes:
transformer_dim (int): Channel dimension of the transformer.
transformer (nn.Module): Transformer used to predict masks.
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
iou_token (nn.Embedding): Embedding for IOU token.
num_mask_tokens (int): Total number of mask tokens.
mask_tokens (nn.Embedding): Embedding for mask tokens.
pred_obj_scores (bool): Whether to predict object scores.
obj_score_token (nn.Embedding): Embedding for object score token.
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
output_upscaling (nn.Sequential): Upscaling layers for output.
use_high_res_features (bool): Whether to use high-resolution features.
conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).
conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).
output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.
iou_prediction_head (MLP): MLP for IOU prediction.
pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
Methods:
forward: Predict masks given image and prompt embeddings.
predict_masks: Predict instance segmentation masks from image and prompt embeddings.
_get_stability_scores: Compute mask stability scores based on IoU between thresholds.
_dynamic_multimask_via_stability: Dynamically select the most stable mask output.
Examples:
>>> image_embeddings = torch.rand(1, 256, 64, 64)
>>> image_pe = torch.rand(1, 256, 64, 64)
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
>>> decoder = SAM2MaskDecoder(256, transformer)
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
... )
"""
def __init__(
self,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
use_high_res_features: bool = False,
iou_prediction_use_sigmoid=False,
dynamic_multimask_via_stability=False,
dynamic_multimask_stability_delta=0.05,
dynamic_multimask_stability_thresh=0.98,
pred_obj_scores: bool = False,
pred_obj_scores_mlp: bool = False,
use_multimask_token_for_obj_ptr: bool = False,
) -> None:
"""Initialize the SAM2MaskDecoder module for predicting instance segmentation masks.
This decoder extends the functionality of MaskDecoder, incorporating additional features such as high-resolution
feature processing, dynamic multimask output, and object score prediction.
Args:
transformer_dim (int): Channel dimension of the transformer.
transformer (nn.Module): Transformer used to predict masks.
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
activation (Type[nn.Module]): Type of activation to use when upscaling masks.
iou_head_depth (int): Depth of the MLP used to predict mask quality.
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
use_high_res_features (bool): Whether to use high-resolution features.
iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
pred_obj_scores (bool): Whether to predict object scores.
pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.pred_obj_scores = pred_obj_scores
if self.pred_obj_scores:
self.obj_score_token = nn.Embedding(1, transformer_dim)
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.use_high_res_features = use_high_res_features
if use_high_res_features:
self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
self.output_hypernetworks_mlps = nn.ModuleList(
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
)
self.iou_prediction_head = MLP(
transformer_dim,
iou_head_hidden_dim,
self.num_mask_tokens,
iou_head_depth,
sigmoid=iou_prediction_use_sigmoid,
)
if self.pred_obj_scores:
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
if pred_obj_scores_mlp:
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
# When outputting a single mask, optionally we can dynamically fall back to the best
# multimask output token if the single mask output token gives low stability scores.
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
method ultralytics.models.sam.modules.decoders.SAM2MaskDecoder._dynamic_multimask_via_stability
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores)
Dynamically select the most stable mask output based on stability scores and IoU predictions.
This method is used when outputting a single mask. If the stability score from the current single-mask output (based on output token 0) falls below a threshold, it instead selects from multi-mask outputs (based on output tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask for both clicking and tracking scenarios.
Args
| Name | Type | Description | Default |
|---|---|---|---|
all_mask_logits | torch.Tensor | Logits for all predicted masks, shape (B, N, H, W) where B is batch size, N is number of masks (typically 4), and H, W are mask dimensions. | required |
all_iou_scores | torch.Tensor | Predicted IoU scores for all masks, shape (B, N). | required |
Returns
| Type | Description |
|---|---|
mask_logits_out (torch.Tensor) | Selected mask logits, shape (B, 1, H, W). |
iou_scores_out (torch.Tensor) | Selected IoU scores, shape (B, 1). |
Examples
>>> decoder = SAM2MaskDecoder(...)
>>> all_mask_logits = torch.rand(2, 4, 256, 256) # 2 images, 4 masks each
>>> all_iou_scores = torch.rand(2, 4)
>>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores)
>>> print(mask_logits.shape, iou_scores.shape)
torch.Size([2, 1, 256, 256]) torch.Size([2, 1])
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubdef _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
"""Dynamically select the most stable mask output based on stability scores and IoU predictions.
This method is used when outputting a single mask. If the stability score from the current single-mask output
(based on output token 0) falls below a threshold, it instead selects from multi-mask outputs (based on output
tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask for both clicking and
tracking scenarios.
Args:
all_mask_logits (torch.Tensor): Logits for all predicted masks, shape (B, N, H, W) where B is batch size, N
is number of masks (typically 4), and H, W are mask dimensions.
all_iou_scores (torch.Tensor): Predicted IoU scores for all masks, shape (B, N).
Returns:
mask_logits_out (torch.Tensor): Selected mask logits, shape (B, 1, H, W).
iou_scores_out (torch.Tensor): Selected IoU scores, shape (B, 1).
Examples:
>>> decoder = SAM2MaskDecoder(...)
>>> all_mask_logits = torch.rand(2, 4, 256, 256) # 2 images, 4 masks each
>>> all_iou_scores = torch.rand(2, 4)
>>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores)
>>> print(mask_logits.shape, iou_scores.shape)
torch.Size([2, 1, 256, 256]) torch.Size([2, 1])
"""
# The best mask from multimask output tokens (1~3)
multimask_logits = all_mask_logits[:, 1:, :, :]
multimask_iou_scores = all_iou_scores[:, 1:]
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
batch_inds = torch.arange(multimask_iou_scores.shape[0], device=all_iou_scores.device)
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
best_multimask_logits = best_multimask_logits.unsqueeze(1)
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
# The mask from singlemask output token 0 and its stability score
singlemask_logits = all_mask_logits[:, 0:1, :, :]
singlemask_iou_scores = all_iou_scores[:, 0:1]
stability_scores = self._get_stability_scores(singlemask_logits)
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
# Dynamically fall back to best multimask output upon low stability scores.
mask_logits_out = torch.where(
is_stable[..., None, None].expand_as(singlemask_logits),
singlemask_logits,
best_multimask_logits,
)
iou_scores_out = torch.where(
is_stable.expand_as(singlemask_iou_scores),
singlemask_iou_scores,
best_multimask_iou_scores,
)
return mask_logits_out, iou_scores_out
method ultralytics.models.sam.modules.decoders.SAM2MaskDecoder._get_stability_scores
def _get_stability_scores(self, mask_logits)
Compute mask stability scores based on IoU between upper and lower thresholds.
Args
| Name | Type | Description | Default |
|---|---|---|---|
mask_logits | required |
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubdef _get_stability_scores(self, mask_logits):
"""Compute mask stability scores based on IoU between upper and lower thresholds."""
mask_logits = mask_logits.flatten(-2)
stability_delta = self.dynamic_multimask_stability_delta
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
return torch.where(area_u > 0, area_i / area_u, 1.0)
method ultralytics.models.sam.modules.decoders.SAM2MaskDecoder.forward
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
repeat_image: bool,
high_res_features: list[torch.Tensor] | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
Predict masks given image and prompt embeddings.
Args
| Name | Type | Description | Default |
|---|---|---|---|
image_embeddings | torch.Tensor | Embeddings from the image encoder with shape (B, C, H, W). | required |
image_pe | torch.Tensor | Positional encoding with the shape of image_embeddings (B, C, H, W). | required |
sparse_prompt_embeddings | torch.Tensor | Embeddings of the points and boxes with shape (B, N, C). | required |
dense_prompt_embeddings | torch.Tensor | Embeddings of the mask inputs with shape (B, C, H, W). | required |
multimask_output | bool | Whether to return multiple masks or a single mask. | required |
repeat_image | bool | Flag to repeat the image embeddings. | required |
high_res_features | list[torch.Tensor] | None, optional | Optional high-resolution features. | None |
Returns
| Type | Description |
|---|---|
masks (torch.Tensor) | Batched predicted masks with shape (B, N, H, W). |
iou_pred (torch.Tensor) | Batched predictions of mask quality with shape (B, N). |
sam_tokens_out (torch.Tensor) | Batched SAM token for mask output with shape (B, N, C). |
object_score_logits (torch.Tensor) | Batched object score logits with shape (B, 1). |
Examples
>>> image_embeddings = torch.rand(1, 256, 64, 64)
>>> image_pe = torch.rand(1, 256, 64, 64)
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
>>> decoder = SAM2MaskDecoder(256, transformer)
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
... )
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubdef forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
repeat_image: bool,
high_res_features: list[torch.Tensor] | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Predict masks given image and prompt embeddings.
Args:
image_embeddings (torch.Tensor): Embeddings from the image encoder with shape (B, C, H, W).
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings (B, C, H, W).
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes with shape (B, N, C).
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs with shape (B, C, H, W).
multimask_output (bool): Whether to return multiple masks or a single mask.
repeat_image (bool): Flag to repeat the image embeddings.
high_res_features (list[torch.Tensor] | None, optional): Optional high-resolution features.
Returns:
masks (torch.Tensor): Batched predicted masks with shape (B, N, H, W).
iou_pred (torch.Tensor): Batched predictions of mask quality with shape (B, N).
sam_tokens_out (torch.Tensor): Batched SAM token for mask output with shape (B, N, C).
object_score_logits (torch.Tensor): Batched object score logits with shape (B, 1).
Examples:
>>> image_embeddings = torch.rand(1, 256, 64, 64)
>>> image_pe = torch.rand(1, 256, 64, 64)
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
>>> decoder = SAM2MaskDecoder(256, transformer)
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
... )
"""
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
repeat_image=repeat_image,
high_res_features=high_res_features,
)
# Select the correct mask or masks for output
if multimask_output:
masks = masks[:, 1:, :, :]
iou_pred = iou_pred[:, 1:]
elif self.dynamic_multimask_via_stability and not self.training:
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
else:
masks = masks[:, 0:1, :, :]
iou_pred = iou_pred[:, 0:1]
if multimask_output and self.use_multimask_token_for_obj_ptr:
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
else:
# Take the mask output token. Here we *always* use the token for single mask output.
# At test time, even if we track after 1-click (and using multimask_output=True),
# we still take the single mask token here. The rationale is that we always track
# after multiple clicks during training, so the past tokens seen during training
# are always the single mask token (and we'll let it be the object-memory token).
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
return masks, iou_pred, sam_tokens_out, object_score_logits
method ultralytics.models.sam.modules.decoders.SAM2MaskDecoder.predict_masks
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
repeat_image: bool,
high_res_features: list[torch.Tensor] | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
Predict instance segmentation masks from image and prompt embeddings using a transformer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
image_embeddings | torch.Tensor | required | |
image_pe | torch.Tensor | required | |
sparse_prompt_embeddings | torch.Tensor | required | |
dense_prompt_embeddings | torch.Tensor | required | |
repeat_image | bool | required | |
high_res_features | list[torch.Tensor] | None | None |
Source code in ultralytics/models/sam/modules/decoders.py
View on GitHubdef predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
repeat_image: bool,
high_res_features: list[torch.Tensor] | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Predict instance segmentation masks from image and prompt embeddings using a transformer."""
# Concatenate output tokens
s = 0
if self.pred_obj_scores:
output_tokens = torch.cat(
[
self.obj_score_token.weight,
self.iou_token.weight,
self.mask_tokens.weight,
],
dim=0,
)
s = 1
else:
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
if repeat_image:
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
else:
assert image_embeddings.shape[0] == tokens.shape[0]
src = image_embeddings
src = src + dense_prompt_embeddings
assert image_pe.shape[0] == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, s, :]
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
if not self.use_high_res_features or high_res_features is None:
upscaled_embedding = self.output_upscaling(src)
else:
dc1, ln1, act1, dc2, act2 = self.output_upscaling
feat_s0, feat_s1 = high_res_features
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
hyper_in_list: list[torch.Tensor] = [
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
]
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
if self.pred_obj_scores:
assert s == 1
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
else:
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
return masks, iou_pred, mask_tokens_out, object_score_logits