Reference for ultralytics/models/sam/modules/encoders.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/encoders.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.sam.modules.encoders.ImageEncoderViT
ImageEncoderViT(
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: type[Module] = nn.LayerNorm,
act_layer: type[Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: tuple[int, ...] = (),
)
Bases: Module
flowchart TD
ultralytics.models.sam.modules.encoders.ImageEncoderViT[ImageEncoderViT]
click ultralytics.models.sam.modules.encoders.ImageEncoderViT href "" "ultralytics.models.sam.modules.encoders.ImageEncoderViT"
An image encoder using Vision Transformer (ViT) architecture for encoding images into a compact latent space.
This class processes images by splitting them into patches, applying transformer blocks, and generating a final encoded representation through a neck module.
Attributes:
| Name | Type | Description |
|---|---|---|
img_size |
int
| Dimension of input images, assumed to be square. |
patch_embed |
PatchEmbed
| Module for patch embedding. |
pos_embed |
Parameter | None
| Absolute positional embedding for patches. |
blocks |
ModuleList
| List of transformer blocks for processing patch embeddings. |
neck |
Sequential
| Neck module to further process the output. |
Methods:
| Name | Description |
|---|---|
forward | Process input through patch embedding, positional embedding, blocks, and neck. |
Examples:
>>> import torch
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
>>> input_image = torch.randn(1, 3, 224, 224)
>>> output = encoder(input_image)
>>> print(output.shape)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
img_size
|
int
| Input image size, assumed to be square. |
1024
|
patch_size
|
int
| Size of image patches. |
16
|
in_chans
|
int
| Number of input image channels. |
3
|
embed_dim
|
int
| Dimension of patch embeddings. |
768
|
depth
|
int
| Number of transformer blocks. |
12
|
num_heads
|
int
| Number of attention heads in each block. |
12
|
mlp_ratio
|
float
| Ratio of MLP hidden dimension to embedding dimension. |
4.0
|
out_chans
|
int
| Number of output channels from the neck module. |
256
|
qkv_bias
|
bool
| If True, adds learnable bias to query, key, value projections. |
True
|
norm_layer
|
Type[Module]
| Type of normalization layer to use. |
LayerNorm
|
act_layer
|
Type[Module]
| Type of activation layer to use. |
GELU
|
use_abs_pos
|
bool
| If True, uses absolute positional embeddings. |
True
|
use_rel_pos
|
bool
| If True, adds relative positional embeddings to attention maps. |
False
|
rel_pos_zero_init
|
bool
| If True, initializes relative positional parameters to zero. |
True
|
window_size
|
int
| Size of attention window for windowed attention blocks. |
0
|
global_attn_indexes
|
tuple[int, ...]
| Indices of blocks that use global attention. |
()
|
Examples:
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
>>> input_image = torch.randn(1, 3, 224, 224)
>>> output = encoder(input_image)
>>> print(output.shape)
Source code in ultralytics/models/sam/modules/encoders.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | |
forward
forward(x: Tensor) -> torch.Tensor
Process input through patch embedding, positional embedding, transformer blocks, and neck module.
Source code in ultralytics/models/sam/modules/encoders.py
141 142 143 144 145 146 147 148 149 150 151 152 153 | |
ultralytics.models.sam.modules.encoders.PromptEncoder
PromptEncoder(
embed_dim: int,
image_embedding_size: tuple[int, int],
input_image_size: tuple[int, int],
mask_in_chans: int,
activation: type[Module] = nn.GELU,
)
Bases: Module
flowchart TD
ultralytics.models.sam.modules.encoders.PromptEncoder[PromptEncoder]
click ultralytics.models.sam.modules.encoders.PromptEncoder href "" "ultralytics.models.sam.modules.encoders.PromptEncoder"
Encode different types of prompts for input to SAM's mask decoder, producing sparse and dense embeddings.
Attributes:
| Name | Type | Description |
|---|---|---|
embed_dim |
int
| Dimension of the embeddings. |
input_image_size |
tuple[int, int]
| Size of the input image as (H, W). |
image_embedding_size |
tuple[int, int]
| Spatial size of the image embedding as (H, W). |
pe_layer |
PositionEmbeddingRandom
| Module for random position embedding. |
num_point_embeddings |
int
| Number of point embeddings for different types of points. |
point_embeddings |
ModuleList
| List of point embeddings. |
not_a_point_embed |
Embedding
| Embedding for points that are not part of any label. |
mask_input_size |
tuple[int, int]
| Size of the input mask. |
mask_downscaling |
Sequential
| Neural network for downscaling the mask. |
no_mask_embed |
Embedding
| Embedding for cases where no mask is provided. |
Methods:
| Name | Description |
|---|---|
get_dense_pe | Return the positional encoding used to encode point prompts. |
forward | Embed different types of prompts, returning both sparse and dense embeddings. |
Examples:
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
>>> boxes = torch.rand(1, 2, 2)
>>> masks = torch.rand(1, 1, 256, 256)
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
embed_dim
|
int
| The dimension of the embeddings. | required |
image_embedding_size
|
tuple[int, int]
| The spatial size of the image embedding as (H, W). | required |
input_image_size
|
tuple[int, int]
| The padded size of the input image as (H, W). | required |
mask_in_chans
|
int
| The number of hidden channels used for encoding input masks. | required |
activation
|
Type[Module]
| The activation function to use when encoding input masks. |
GELU
|
Examples:
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
>>> boxes = torch.rand(1, 2, 2)
>>> masks = torch.rand(1, 1, 256, 256)
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
Source code in ultralytics/models/sam/modules/encoders.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | |
forward
forward(
points: tuple[Tensor, Tensor] | None,
boxes: Tensor | None,
masks: Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]
Embed different types of prompts, returning both sparse and dense embeddings.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
points
|
tuple[Tensor, Tensor] | None
| Point coordinates and labels to embed. The first tensor contains coordinates of shape (B, N, 2), and the second tensor contains labels of shape (B, N). | required |
boxes
|
Tensor | None
| Boxes to embed with shape (B, M, 2, 2), where M is the number of boxes. | required |
masks
|
Tensor | None
| Masks to embed with shape (B, 1, H, W). | required |
Returns:
| Name | Type | Description |
|---|---|---|
sparse_embeddings |
Tensor
| Sparse embeddings for points and boxes with shape (B, N, embed_dim). |
dense_embeddings |
Tensor
| Dense embeddings for masks of shape (B, embed_dim, embed_H, embed_W). |
Examples:
>>> encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
>>> boxes = torch.rand(1, 2, 2, 2)
>>> masks = torch.rand(1, 1, 256, 256)
>>> sparse_emb, dense_emb = encoder(points, boxes, masks)
>>> print(sparse_emb.shape, dense_emb.shape)
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
Source code in ultralytics/models/sam/modules/encoders.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | |
get_dense_pe
get_dense_pe() -> torch.Tensor
Return the dense positional encoding used for encoding point prompts.
Generate a positional encoding for a dense set of points matching the shape of the image encoding. The encoding is used to provide spatial information to the model when processing point prompts.
Returns:
| Type | Description |
|---|---|
Tensor
| Positional encoding tensor with shape (1, embed_dim, H, W), where H and W are the height and width of the image embedding size, respectively. |
Examples:
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> dense_pe = prompt_encoder.get_dense_pe()
>>> print(dense_pe.shape)
torch.Size([1, 256, 64, 64])
Source code in ultralytics/models/sam/modules/encoders.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | |
ultralytics.models.sam.modules.encoders.MemoryEncoder
MemoryEncoder(out_dim, in_dim=256)
Bases: Module
flowchart TD
ultralytics.models.sam.modules.encoders.MemoryEncoder[MemoryEncoder]
click ultralytics.models.sam.modules.encoders.MemoryEncoder href "" "ultralytics.models.sam.modules.encoders.MemoryEncoder"
Encode pixel features and masks into a memory representation for efficient image segmentation.
This class processes pixel-level features and masks, fusing them to generate encoded memory representations suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
Attributes:
| Name | Type | Description |
|---|---|---|
mask_downsampler |
MaskDownSampler
| Module for downsampling input masks. |
pix_feat_proj |
Conv2d
| Convolutional layer for projecting pixel features. |
fuser |
Fuser
| Module for fusing pixel features and masks. |
position_encoding |
PositionEmbeddingSine
| Module for adding positional encoding to features. |
out_proj |
Module
| Output projection layer, either nn.Identity or nn.Conv2d. |
Methods:
| Name | Description |
|---|---|
forward | Process input pixel features and masks to generate encoded memory representations. |
Examples:
>>> import torch
>>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
>>> pix_feat = torch.randn(1, 256, 64, 64)
>>> masks = torch.randn(1, 1, 64, 64)
>>> encoded_feat, pos = encoder(pix_feat, masks)
>>> print(encoded_feat.shape, pos.shape)
torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
This encoder processes pixel-level features and masks, fusing them to generate encoded memory representations suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
out_dim
|
int
| Output dimension of the encoded features. | required |
in_dim
|
int
| Input dimension of the pixel features. |
256
|
Examples:
>>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
>>> pix_feat = torch.randn(1, 256, 64, 64)
>>> masks = torch.randn(1, 1, 64, 64)
>>> encoded_feat, pos = encoder(pix_feat, masks)
>>> print(encoded_feat.shape, pos.shape)
torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
Source code in ultralytics/models/sam/modules/encoders.py
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | |
forward
forward(
pix_feat: Tensor, masks: Tensor, skip_mask_sigmoid: bool = False
) -> dict
Process pixel features and masks to generate encoded memory representations for segmentation.
Source code in ultralytics/models/sam/modules/encoders.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | |
ultralytics.models.sam.modules.encoders.ImageEncoder
ImageEncoder(trunk: Module, neck: Module, scalp: int = 0)
Bases: Module
flowchart TD
ultralytics.models.sam.modules.encoders.ImageEncoder[ImageEncoder]
click ultralytics.models.sam.modules.encoders.ImageEncoder href "" "ultralytics.models.sam.modules.encoders.ImageEncoder"
Encode images using a trunk-neck architecture, producing multiscale features and positional encodings.
This class combines a trunk network for feature extraction with a neck network for feature refinement and positional encoding generation. It can optionally discard the lowest resolution features.
Attributes:
| Name | Type | Description |
|---|---|---|
trunk |
Module
| The trunk network for initial feature extraction. |
neck |
Module
| The neck network for feature refinement and positional encoding generation. |
scalp |
int
| Number of lowest resolution feature levels to discard. |
Methods:
| Name | Description |
|---|---|
forward | Process the input image through the trunk and neck networks. |
Examples:
>>> trunk = SomeTrunkNetwork()
>>> neck = SomeNeckNetwork()
>>> encoder = ImageEncoder(trunk, neck, scalp=1)
>>> image = torch.randn(1, 3, 224, 224)
>>> output = encoder(image)
>>> print(output.keys())
dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
This encoder combines a trunk network for feature extraction with a neck network for feature refinement and positional encoding generation. It can optionally discard the lowest resolution features.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
trunk
|
Module
| The trunk network for initial feature extraction. | required |
neck
|
Module
| The neck network for feature refinement and positional encoding generation. | required |
scalp
|
int
| Number of lowest resolution feature levels to discard. |
0
|
Examples:
>>> trunk = SomeTrunkNetwork()
>>> neck = SomeNeckNetwork()
>>> encoder = ImageEncoder(trunk, neck, scalp=1)
>>> image = torch.randn(1, 3, 224, 224)
>>> output = encoder(image)
>>> print(output.keys())
dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
Source code in ultralytics/models/sam/modules/encoders.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | |
forward
forward(sample: Tensor)
Encode input through trunk and neck networks, returning multiscale features and positional encodings.
Source code in ultralytics/models/sam/modules/encoders.py
489 490 491 492 493 494 495 496 497 498 499 500 501 | |
ultralytics.models.sam.modules.encoders.FpnNeck
FpnNeck(
d_model: int,
backbone_channel_list: list[int],
kernel_size: int = 1,
stride: int = 1,
padding: int = 0,
fpn_interp_model: str = "bilinear",
fuse_type: str = "sum",
fpn_top_down_levels: list[int] | None = None,
)
Bases: Module
flowchart TD
ultralytics.models.sam.modules.encoders.FpnNeck[FpnNeck]
click ultralytics.models.sam.modules.encoders.FpnNeck href "" "ultralytics.models.sam.modules.encoders.FpnNeck"
A Feature Pyramid Network (FPN) neck variant for multiscale feature fusion in object detection models.
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing, similar to ViT positional embedding interpolation.
Attributes:
| Name | Type | Description |
|---|---|---|
position_encoding |
PositionEmbeddingSine
| Sinusoidal positional encoding module. |
convs |
ModuleList
| List of convolutional layers for each backbone level. |
backbone_channel_list |
list[int]
| List of channel dimensions from the backbone. |
fpn_interp_model |
str
| Interpolation mode for FPN feature resizing. |
fuse_type |
str
| Type of feature fusion, either 'sum' or 'avg'. |
fpn_top_down_levels |
list[int]
| Levels to have top-down features in outputs. |
Methods:
| Name | Description |
|---|---|
forward | Perform forward pass through the FPN neck. |
Examples:
>>> backbone_channels = [64, 128, 256, 512]
>>> fpn_neck = FpnNeck(256, backbone_channels)
>>> inputs = [torch.rand(1, c, 32, 32) for c in backbone_channels]
>>> outputs, positions = fpn_neck(inputs)
>>> print(len(outputs), len(positions))
4 4
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing, similar to ViT positional embedding interpolation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
d_model
|
int
| Dimension of the model. | required |
backbone_channel_list
|
list[int]
| List of channel dimensions from the backbone. | required |
kernel_size
|
int
| Kernel size for the convolutional layers. |
1
|
stride
|
int
| Stride for the convolutional layers. |
1
|
padding
|
int
| Padding for the convolutional layers. |
0
|
fpn_interp_model
|
str
| Interpolation mode for FPN feature resizing. |
'bilinear'
|
fuse_type
|
str
| Type of feature fusion, either 'sum' or 'avg'. |
'sum'
|
fpn_top_down_levels
|
Optional[list[int]]
| Levels to have top-down features in outputs. |
None
|
Examples:
>>> backbone_channels = [64, 128, 256, 512]
>>> fpn_neck = FpnNeck(256, backbone_channels)
>>> print(fpn_neck)
Source code in ultralytics/models/sam/modules/encoders.py
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | |
forward
forward(xs: list[Tensor])
Perform forward pass through the Feature Pyramid Network (FPN) neck.
This method processes a list of input tensors from the backbone through the FPN, applying lateral connections and top-down feature fusion. It generates output feature maps and corresponding positional encodings.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
xs
|
list[Tensor]
| List of input tensors from the backbone, each with shape (B, C, H, W). | required |
Returns:
| Name | Type | Description |
|---|---|---|
out |
list[Tensor]
| List of output feature maps after FPN processing, each with shape (B, d_model, H, W). |
pos |
list[Tensor]
| List of positional encodings corresponding to each output feature map. |
Examples:
>>> fpn_neck = FpnNeck(d_model=256, backbone_channel_list=[64, 128, 256, 512])
>>> inputs = [torch.rand(1, c, 32, 32) for c in [64, 128, 256, 512]]
>>> outputs, positions = fpn_neck(inputs)
>>> print(len(outputs), len(positions))
4 4
Source code in ultralytics/models/sam/modules/encoders.py
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 | |
ultralytics.models.sam.modules.encoders.Hiera
Hiera(
embed_dim: int = 96,
num_heads: int = 1,
drop_path_rate: float = 0.0,
q_pool: int = 3,
q_stride: tuple[int, int] = (2, 2),
stages: tuple[int, ...] = (2, 3, 16, 3),
dim_mul: float = 2.0,
head_mul: float = 2.0,
window_pos_embed_bkg_spatial_size: tuple[int, int] = (14, 14),
window_spec: tuple[int, ...] = (8, 4, 14, 7),
global_att_blocks: tuple[int, ...] = (12, 16, 20),
return_interm_layers=True,
)
Bases: Module
flowchart TD
ultralytics.models.sam.modules.encoders.Hiera[Hiera]
click ultralytics.models.sam.modules.encoders.Hiera href "" "ultralytics.models.sam.modules.encoders.Hiera"
Hierarchical vision transformer for efficient multiscale feature extraction in image processing tasks.
This class implements a Hiera model, which is a hierarchical vision transformer architecture designed for efficient multiscale feature extraction. It uses a series of transformer blocks organized into stages, with optional pooling and global attention mechanisms.
Attributes:
| Name | Type | Description |
|---|---|---|
window_spec |
tuple[int, ...]
| Window sizes for each stage. |
q_stride |
tuple[int, int]
| Downsampling stride between stages. |
stage_ends |
list[int]
| Indices of the last block in each stage. |
q_pool_blocks |
list[int]
| Indices of blocks where pooling is applied. |
return_interm_layers |
bool
| Whether to return intermediate layer outputs. |
patch_embed |
PatchEmbed
| Module for patch embedding. |
global_att_blocks |
tuple[int, ...]
| Indices of blocks with global attention. |
window_pos_embed_bkg_spatial_size |
tuple[int, int]
| Spatial size for window positional embedding background. |
pos_embed |
Parameter
| Positional embedding for the background. |
pos_embed_window |
Parameter
| Positional embedding for the window. |
blocks |
ModuleList
| List of MultiScaleBlock modules. |
channel_list |
list[int]
| List of output channel dimensions for each stage. |
Methods:
| Name | Description |
|---|---|
_get_pos_embed | Generate positional embeddings by interpolating and combining window and background embeddings. |
forward | Perform the forward pass through the Hiera model. |
Examples:
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
>>> input_tensor = torch.randn(1, 3, 224, 224)
>>> output_features = model(input_tensor)
>>> for feat in output_features:
... print(feat.shape)
Hiera is a hierarchical vision transformer architecture designed for efficient multiscale feature extraction in image processing tasks. It uses a series of transformer blocks organized into stages, with optional pooling and global attention mechanisms.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
embed_dim
|
int
| Initial embedding dimension for the model. |
96
|
num_heads
|
int
| Initial number of attention heads. |
1
|
drop_path_rate
|
float
| Stochastic depth rate. |
0.0
|
q_pool
|
int
| Number of query pooling stages. |
3
|
q_stride
|
tuple[int, int]
| Downsampling stride between stages. |
(2, 2)
|
stages
|
tuple[int, ...]
| Number of blocks per stage. |
(2, 3, 16, 3)
|
dim_mul
|
float
| Dimension multiplier factor at stage transitions. |
2.0
|
head_mul
|
float
| Head multiplier factor at stage transitions. |
2.0
|
window_pos_embed_bkg_spatial_size
|
tuple[int, int]
| Spatial size for window positional embedding background. |
(14, 14)
|
window_spec
|
tuple[int, ...]
| Window sizes for each stage when not using global attention. |
(8, 4, 14, 7)
|
global_att_blocks
|
tuple[int, ...]
| Indices of blocks that use global attention. |
(12, 16, 20)
|
return_interm_layers
|
bool
| Whether to return intermediate layer outputs. |
True
|
Examples:
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
>>> input_tensor = torch.randn(1, 3, 224, 224)
>>> output_features = model(input_tensor)
>>> for feat in output_features:
... print(feat.shape)
Source code in ultralytics/models/sam/modules/encoders.py
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | |
forward
forward(x: Tensor) -> list[torch.Tensor]
Perform forward pass through Hiera model, extracting multiscale features from input images.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
Tensor
| Input tensor with shape (B, C, H, W) representing a batch of images. | required |
Returns:
| Type | Description |
|---|---|
list[Tensor]
| List of feature maps at different scales, each with shape (B, C_i, H_i, W_i), where C_i is the channel dimension and H_i, W_i are the spatial dimensions at scale i. The list is ordered from highest resolution (fine features) to lowest resolution (coarse features) if return_interm_layers is True, otherwise contains only the final output. |
Examples:
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
>>> input_tensor = torch.randn(1, 3, 224, 224)
>>> output_features = model(input_tensor)
>>> for feat in output_features:
... print(feat.shape)
Source code in ultralytics/models/sam/modules/encoders.py
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | |