Reference for ultralytics/models/sam/modules/transformer.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/transformer.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
class ultralytics.models.sam.modules.transformer.TwoWayTransformer
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None
Bases: nn.Module
A Two-Way Transformer module for simultaneous attention to image and query points.
This class implements a specialized transformer decoder that attends to an input image using queries with supplied positional embeddings. It's useful for tasks like object detection, image segmentation, and point cloud processing.
Args
| Name | Type | Description | Default |
|---|---|---|---|
depth | int | Number of layers in the transformer. | required |
embedding_dim | int | Channel dimension for input embeddings. | required |
num_heads | int | Number of heads for multihead attention. Must divide embedding_dim. | required |
mlp_dim | int | Internal channel dimension for the MLP block. | required |
activation | Type[nn.Module], optional | Activation function to use in the MLP block. | nn.ReLU |
attention_downsample_rate | int, optional | Downsampling rate for attention mechanism. | 2 |
Attributes
| Name | Type | Description |
|---|---|---|
depth | int | Number of layers in the transformer. |
embedding_dim | int | Channel dimension for input embeddings. |
num_heads | int | Number of heads for multihead attention. |
mlp_dim | int | Internal channel dimension for the MLP block. |
layers | nn.ModuleList | List of TwoWayAttentionBlock layers composing the transformer. |
final_attn_token_to_image | Attention | Final attention layer from queries to image. |
norm_final_attn | nn.LayerNorm | Layer normalization applied to final queries. |
Methods
| Name | Description |
|---|---|
forward | Process image and point embeddings through the Two-Way Transformer. |
Examples
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> image_embedding = torch.randn(1, 256, 32, 32)
>>> image_pe = torch.randn(1, 256, 32, 32)
>>> point_embedding = torch.randn(1, 100, 256)
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
>>> print(output_queries.shape, output_image.shape)
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHubclass TwoWayTransformer(nn.Module):
"""A Two-Way Transformer module for simultaneous attention to image and query points.
This class implements a specialized transformer decoder that attends to an input image using queries with supplied
positional embeddings. It's useful for tasks like object detection, image segmentation, and point cloud processing.
Attributes:
depth (int): Number of layers in the transformer.
embedding_dim (int): Channel dimension for input embeddings.
num_heads (int): Number of heads for multihead attention.
mlp_dim (int): Internal channel dimension for the MLP block.
layers (nn.ModuleList): List of TwoWayAttentionBlock layers composing the transformer.
final_attn_token_to_image (Attention): Final attention layer from queries to image.
norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.
Methods:
forward: Process image and point embeddings through the transformer.
Examples:
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
>>> image_embedding = torch.randn(1, 256, 32, 32)
>>> image_pe = torch.randn(1, 256, 32, 32)
>>> point_embedding = torch.randn(1, 100, 256)
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
>>> print(output_queries.shape, output_image.shape)
"""
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""Initialize a Two-Way Transformer for simultaneous attention to image and query points.
Args:
depth (int): Number of layers in the transformer.
embedding_dim (int): Channel dimension for input embeddings.
num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
mlp_dim (int): Internal channel dimension for the MLP block.
activation (Type[nn.Module], optional): Activation function to use in the MLP block.
attention_downsample_rate (int, optional): Downsampling rate for attention mechanism.
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
method ultralytics.models.sam.modules.transformer.TwoWayTransformer.forward
def forward(
self,
image_embedding: torch.Tensor,
image_pe: torch.Tensor,
point_embedding: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]
Process image and point embeddings through the Two-Way Transformer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
image_embedding | torch.Tensor | Image to attend to, with shape (B, embedding_dim, H, W). | required |
image_pe | torch.Tensor | Positional encoding to add to the image, with same shape as image_embedding. | required |
point_embedding | torch.Tensor | Embedding to add to query points, with shape (B, N_points, embedding_dim). | required |
Returns
| Type | Description |
|---|---|
queries (torch.Tensor) | Processed point embeddings with shape (B, N_points, embedding_dim). |
keys (torch.Tensor) | Processed image embeddings with shape (B, H*W, embedding_dim). |
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHubdef forward(
self,
image_embedding: torch.Tensor,
image_pe: torch.Tensor,
point_embedding: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Process image and point embeddings through the Two-Way Transformer.
Args:
image_embedding (torch.Tensor): Image to attend to, with shape (B, embedding_dim, H, W).
image_pe (torch.Tensor): Positional encoding to add to the image, with same shape as image_embedding.
point_embedding (torch.Tensor): Embedding to add to query points, with shape (B, N_points, embedding_dim).
Returns:
queries (torch.Tensor): Processed point embeddings with shape (B, N_points, embedding_dim).
keys (torch.Tensor): Processed image embeddings with shape (B, H*W, embedding_dim).
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class ultralytics.models.sam.modules.transformer.TwoWayAttentionBlock
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None
Bases: nn.Module
A two-way attention block for simultaneous attention to image and query points.
This class implements a specialized transformer block with four main layers: self-attention on sparse inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs.
This block implements a specialized transformer layer with four main components: self-attention on sparse inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs.
Args
| Name | Type | Description | Default |
|---|---|---|---|
embedding_dim | int | Channel dimension of the embeddings. | required |
num_heads | int | Number of attention heads in the attention layers. | required |
mlp_dim | int, optional | Hidden dimension of the MLP block. | 2048 |
activation | Type[nn.Module], optional | Activation function for the MLP block. | nn.ReLU |
attention_downsample_rate | int, optional | Downsampling rate for the attention mechanism. | 2 |
skip_first_layer_pe | bool, optional | Whether to skip positional encoding in the first layer. | False |
Attributes
| Name | Type | Description |
|---|---|---|
self_attn | Attention | Self-attention layer for queries. |
norm1 | nn.LayerNorm | Layer normalization after self-attention. |
cross_attn_token_to_image | Attention | Cross-attention layer from queries to keys. |
norm2 | nn.LayerNorm | Layer normalization after token-to-image attention. |
mlp | MLPBlock | MLP block for transforming query embeddings. |
norm3 | nn.LayerNorm | Layer normalization after MLP block. |
norm4 | nn.LayerNorm | Layer normalization after image-to-token attention. |
cross_attn_image_to_token | Attention | Cross-attention layer from keys to queries. |
skip_first_layer_pe | bool | Whether to skip positional encoding in the first layer. |
Methods
| Name | Description |
|---|---|
forward | Apply two-way attention to process query and key embeddings in a transformer block. |
Examples
>>> embedding_dim, num_heads = 256, 8
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
>>> queries = torch.randn(1, 100, embedding_dim)
>>> keys = torch.randn(1, 1000, embedding_dim)
>>> query_pe = torch.randn(1, 100, embedding_dim)
>>> key_pe = torch.randn(1, 1000, embedding_dim)
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHubclass TwoWayAttentionBlock(nn.Module):
"""A two-way attention block for simultaneous attention to image and query points.
This class implements a specialized transformer block with four main layers: self-attention on sparse inputs,
cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to
sparse inputs.
Attributes:
self_attn (Attention): Self-attention layer for queries.
norm1 (nn.LayerNorm): Layer normalization after self-attention.
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
norm2 (nn.LayerNorm): Layer normalization after token-to-image attention.
mlp (MLPBlock): MLP block for transforming query embeddings.
norm3 (nn.LayerNorm): Layer normalization after MLP block.
norm4 (nn.LayerNorm): Layer normalization after image-to-token attention.
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer.
Methods:
forward: Apply self-attention and cross-attention to queries and keys.
Examples:
>>> embedding_dim, num_heads = 256, 8
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
>>> queries = torch.randn(1, 100, embedding_dim)
>>> keys = torch.randn(1, 1000, embedding_dim)
>>> query_pe = torch.randn(1, 100, embedding_dim)
>>> key_pe = torch.randn(1, 1000, embedding_dim)
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""Initialize a TwoWayAttentionBlock for simultaneous attention to image and query points.
This block implements a specialized transformer layer with four main components: self-attention on sparse
inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of
dense inputs to sparse inputs.
Args:
embedding_dim (int): Channel dimension of the embeddings.
num_heads (int): Number of attention heads in the attention layers.
mlp_dim (int, optional): Hidden dimension of the MLP block.
activation (Type[nn.Module], optional): Activation function for the MLP block.
attention_downsample_rate (int, optional): Downsampling rate for the attention mechanism.
skip_first_layer_pe (bool, optional): Whether to skip positional encoding in the first layer.
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.skip_first_layer_pe = skip_first_layer_pe
method ultralytics.models.sam.modules.transformer.TwoWayAttentionBlock.forward
def forward(
self, queries: torch.Tensor, keys: torch.Tensor, query_pe: torch.Tensor, key_pe: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]
Apply two-way attention to process query and key embeddings in a transformer block.
Args
| Name | Type | Description | Default |
|---|---|---|---|
queries | torch.Tensor | Query embeddings with shape (B, N_queries, embedding_dim). | required |
keys | torch.Tensor | Key embeddings with shape (B, N_keys, embedding_dim). | required |
query_pe | torch.Tensor | Positional encodings for queries with same shape as queries. | required |
key_pe | torch.Tensor | Positional encodings for keys with same shape as keys. | required |
Returns
| Type | Description |
|---|---|
queries (torch.Tensor) | Processed query embeddings with shape (B, N_queries, embedding_dim). |
keys (torch.Tensor) | Processed key embeddings with shape (B, N_keys, embedding_dim). |
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHubdef forward(
self, queries: torch.Tensor, keys: torch.Tensor, query_pe: torch.Tensor, key_pe: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""Apply two-way attention to process query and key embeddings in a transformer block.
Args:
queries (torch.Tensor): Query embeddings with shape (B, N_queries, embedding_dim).
keys (torch.Tensor): Key embeddings with shape (B, N_keys, embedding_dim).
query_pe (torch.Tensor): Positional encodings for queries with same shape as queries.
key_pe (torch.Tensor): Positional encodings for keys with same shape as keys.
Returns:
queries (torch.Tensor): Processed query embeddings with shape (B, N_queries, embedding_dim).
keys (torch.Tensor): Processed key embeddings with shape (B, N_keys, embedding_dim).
"""
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class ultralytics.models.sam.modules.transformer.Attention
Attention(self, embedding_dim: int, num_heads: int, downsample_rate: int = 1, kv_in_dim: int | None = None) -> None
Bases: nn.Module
An attention layer with downscaling capability for embedding size after projection.
This class implements a multi-head attention mechanism with the option to downsample the internal dimension of queries, keys, and values.
Args
| Name | Type | Description | Default |
|---|---|---|---|
embedding_dim | int | Dimensionality of input embeddings. | required |
num_heads | int | Number of attention heads. | required |
downsample_rate | int, optional | Factor by which internal dimensions are downsampled. | 1 |
kv_in_dim | int | None, optional | Dimensionality of key and value inputs. If None, uses embedding_dim. | None |
Attributes
| Name | Type | Description |
|---|---|---|
embedding_dim | int | Dimensionality of input embeddings. |
kv_in_dim | int | Dimensionality of key and value inputs. |
internal_dim | int | Internal dimension after downsampling. |
num_heads | int | Number of attention heads. |
q_proj | nn.Linear | Linear projection for queries. |
k_proj | nn.Linear | Linear projection for keys. |
v_proj | nn.Linear | Linear projection for values. |
out_proj | nn.Linear | Linear projection for output. |
Methods
| Name | Description |
|---|---|
_recombine_heads | Recombine separated attention heads into a single tensor. |
_separate_heads | Separate the input tensor into the specified number of attention heads. |
forward | Apply multi-head attention to query, key, and value tensors with optional downsampling. |
Examples
>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
>>> q = torch.randn(1, 100, 256)
>>> k = v = torch.randn(1, 50, 256)
>>> output = attn(q, k, v)
>>> print(output.shape)
torch.Size([1, 100, 256])
Raises
| Type | Description |
|---|---|
AssertionError | If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate). |
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHubclass Attention(nn.Module):
"""An attention layer with downscaling capability for embedding size after projection.
This class implements a multi-head attention mechanism with the option to downsample the internal dimension of
queries, keys, and values.
Attributes:
embedding_dim (int): Dimensionality of input embeddings.
kv_in_dim (int): Dimensionality of key and value inputs.
internal_dim (int): Internal dimension after downsampling.
num_heads (int): Number of attention heads.
q_proj (nn.Linear): Linear projection for queries.
k_proj (nn.Linear): Linear projection for keys.
v_proj (nn.Linear): Linear projection for values.
out_proj (nn.Linear): Linear projection for output.
Methods:
_separate_heads: Separate input tensor into attention heads.
_recombine_heads: Recombine separated attention heads.
forward: Compute attention output for given query, key, and value tensors.
Examples:
>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
>>> q = torch.randn(1, 100, 256)
>>> k = v = torch.randn(1, 50, 256)
>>> output = attn(q, k, v)
>>> print(output.shape)
torch.Size([1, 100, 256])
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
kv_in_dim: int | None = None,
) -> None:
"""Initialize the Attention module with specified dimensions and settings.
Args:
embedding_dim (int): Dimensionality of input embeddings.
num_heads (int): Number of attention heads.
downsample_rate (int, optional): Factor by which internal dimensions are downsampled.
kv_in_dim (int | None, optional): Dimensionality of key and value inputs. If None, uses embedding_dim.
Raises:
AssertionError: If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate).
"""
super().__init__()
self.embedding_dim = embedding_dim
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
method ultralytics.models.sam.modules.transformer.Attention._recombine_heads
def _recombine_heads(x: Tensor) -> Tensor
Recombine separated attention heads into a single tensor.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | Tensor | required |
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHub@staticmethod
def _recombine_heads(x: Tensor) -> Tensor:
"""Recombine separated attention heads into a single tensor."""
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
method ultralytics.models.sam.modules.transformer.Attention._separate_heads
def _separate_heads(x: torch.Tensor, num_heads: int) -> torch.Tensor
Separate the input tensor into the specified number of attention heads.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | required | |
num_heads | int | required |
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHub@staticmethod
def _separate_heads(x: torch.Tensor, num_heads: int) -> torch.Tensor:
"""Separate the input tensor into the specified number of attention heads."""
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
method ultralytics.models.sam.modules.transformer.Attention.forward
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor
Apply multi-head attention to query, key, and value tensors with optional downsampling.
Args
| Name | Type | Description | Default |
|---|---|---|---|
q | torch.Tensor | Query tensor with shape (B, N_q, embedding_dim). | required |
k | torch.Tensor | Key tensor with shape (B, N_k, embedding_dim). | required |
v | torch.Tensor | Value tensor with shape (B, N_k, embedding_dim). | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after attention with shape (B, N_q, embedding_dim). |
Source code in ultralytics/models/sam/modules/transformer.py
View on GitHubdef forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
"""Apply multi-head attention to query, key, and value tensors with optional downsampling.
Args:
q (torch.Tensor): Query tensor with shape (B, N_q, embedding_dim).
k (torch.Tensor): Key tensor with shape (B, N_k, embedding_dim).
v (torch.Tensor): Value tensor with shape (B, N_k, embedding_dim).
Returns:
(torch.Tensor): Output tensor after attention with shape (B, N_q, embedding_dim).
"""
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
return self.out_proj(out)