Reference for ultralytics/models/sam/sam3/vl_combiner.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/sam3/vl_combiner.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
class ultralytics.models.sam.sam3.vl_combiner.SAM3VLBackbone
def __init__(
self,
visual: Sam3DualViTDetNeck,
text,
compile_visual: bool = False,
act_ckpt_whole_vision_backbone: bool = False,
act_ckpt_whole_language_backbone: bool = False,
scalp=0,
)
Bases: nn.Module
This backbone combines a vision backbone and a language backbone without fusion. As such it is more of a
convenience wrapper to handle the two backbones together.
It adds support for activation checkpointing and compilation.
:param visual: The vision backbone to use :param text: The text encoder to use
Args
| Name | Type | Description | Default |
|---|---|---|---|
visual | Sam3DualViTDetNeck | required | |
text | required | ||
compile_visual | bool | False | |
act_ckpt_whole_vision_backbone | bool | False | |
act_ckpt_whole_language_backbone | bool | False | |
scalp | 0 |
Methods
| Name | Description |
|---|---|
forward | Forward pass of the backbone combiner. |
forward_image | Forward pass of the vision backbone and get both SAM3 and SAM2 features. |
forward_image_sam2 | Forward pass of the vision backbone to get SAM2 features only. |
forward_text | Forward pass of the text encoder. |
set_imgsz | Set the image size for the vision backbone. |
Source code in ultralytics/models/sam/sam3/vl_combiner.py
View on GitHubclass SAM3VLBackbone(nn.Module):
"""This backbone combines a vision backbone and a language backbone without fusion. As such it is more of a
convenience wrapper to handle the two backbones together.
It adds support for activation checkpointing and compilation.
"""
def __init__(
self,
visual: Sam3DualViTDetNeck,
text,
compile_visual: bool = False,
act_ckpt_whole_vision_backbone: bool = False,
act_ckpt_whole_language_backbone: bool = False,
scalp=0,
):
"""Initialize the backbone combiner.
:param visual: The vision backbone to use
:param text: The text encoder to use
"""
super().__init__()
self.vision_backbone: Sam3DualViTDetNeck = torch.compile(visual) if compile_visual else visual
self.language_backbone = text
self.scalp = scalp
# allow running activation checkpointing on the entire vision and language backbones
self.act_ckpt_whole_vision_backbone = act_ckpt_whole_vision_backbone
self.act_ckpt_whole_language_backbone = act_ckpt_whole_language_backbone
method ultralytics.models.sam.sam3.vl_combiner.SAM3VLBackbone.forward
def forward(
self,
samples: torch.Tensor,
captions: list[str],
input_boxes: torch.Tensor = None,
additional_text: list[str] | None = None,
)
Forward pass of the backbone combiner.
:param samples: The input images :param captions: The input captions :param input_boxes: If the text contains place-holders for boxes, this parameter contains the tensor containing their spatial features :param additional_text: This can be used to encode some additional text (different from the captions) in the same forward of the backbone :return: Output dictionary with the following keys: - vision_features: The output of the vision backbone - language_features: The output of the language backbone - language_mask: The attention mask of the language backbone - vision_pos_enc: The positional encoding of the vision backbone - (optional) additional_text_features: The output of the language backbone for the additional text - (optional) additional_text_mask: The attention mask of the language backbone for the additional text
Args
| Name | Type | Description | Default |
|---|---|---|---|
samples | torch.Tensor | required | |
captions | list[str] | required | |
input_boxes | torch.Tensor | None | |
additional_text | list[str] | None | None |
Source code in ultralytics/models/sam/sam3/vl_combiner.py
View on GitHubdef forward(
self,
samples: torch.Tensor,
captions: list[str],
input_boxes: torch.Tensor = None,
additional_text: list[str] | None = None,
):
"""Forward pass of the backbone combiner.
:param samples: The input images
:param captions: The input captions
:param input_boxes: If the text contains place-holders for boxes, this
parameter contains the tensor containing their spatial features
:param additional_text: This can be used to encode some additional text
(different from the captions) in the same forward of the backbone
:return: Output dictionary with the following keys:
- vision_features: The output of the vision backbone
- language_features: The output of the language backbone
- language_mask: The attention mask of the language backbone
- vision_pos_enc: The positional encoding of the vision backbone
- (optional) additional_text_features: The output of the language
backbone for the additional text
- (optional) additional_text_mask: The attention mask of the
language backbone for the additional text
"""
output = self.forward_image(samples)
output.update(self.forward_text(captions, input_boxes, additional_text))
return output
method ultralytics.models.sam.sam3.vl_combiner.SAM3VLBackbone.forward_image
def forward_image(self, samples: torch.Tensor)
Forward pass of the vision backbone and get both SAM3 and SAM2 features.
Args
| Name | Type | Description | Default |
|---|---|---|---|
samples | torch.Tensor | required |
Source code in ultralytics/models/sam/sam3/vl_combiner.py
View on GitHubdef forward_image(self, samples: torch.Tensor):
"""Forward pass of the vision backbone and get both SAM3 and SAM2 features."""
# Forward through backbone
sam3_features, sam3_pos, sam2_features, sam2_pos = self.vision_backbone.forward(samples)
if self.scalp > 0:
# Discard the lowest resolution features
sam3_features, sam3_pos = (
sam3_features[: -self.scalp],
sam3_pos[: -self.scalp],
)
if sam2_features is not None and sam2_pos is not None:
sam2_features, sam2_pos = (
sam2_features[: -self.scalp],
sam2_pos[: -self.scalp],
)
sam2_output = None
if sam2_features is not None and sam2_pos is not None:
sam2_src = sam2_features[-1]
sam2_output = {
"vision_features": sam2_src,
"vision_pos_enc": sam2_pos,
"backbone_fpn": sam2_features,
}
sam3_src = sam3_features[-1]
return {
"vision_features": sam3_src,
"vision_pos_enc": sam3_pos,
"backbone_fpn": sam3_features,
"sam2_backbone_out": sam2_output,
}
method ultralytics.models.sam.sam3.vl_combiner.SAM3VLBackbone.forward_image_sam2
def forward_image_sam2(self, samples: torch.Tensor)
Forward pass of the vision backbone to get SAM2 features only.
Args
| Name | Type | Description | Default |
|---|---|---|---|
samples | torch.Tensor | required |
Source code in ultralytics/models/sam/sam3/vl_combiner.py
View on GitHubdef forward_image_sam2(self, samples: torch.Tensor):
"""Forward pass of the vision backbone to get SAM2 features only."""
xs = self.vision_backbone.trunk(samples)
sam2_features, sam2_pos = [], []
x = xs[-1] # simpleFPN
assert self.vision_backbone.sam2_convs is not None, "SAM2 neck is not available."
for i in range(len(self.vision_backbone.sam2_convs)):
sam2_x_out = self.vision_backbone.sam2_convs[i](x)
sam2_pos_out = self.vision_backbone.position_encoding(sam2_x_out).to(sam2_x_out.dtype)
sam2_features.append(sam2_x_out)
sam2_pos.append(sam2_pos_out)
if self.scalp > 0:
# Discard the lowest resolution features
sam2_features, sam2_pos = (
sam2_features[: -self.scalp],
sam2_pos[: -self.scalp],
)
return {
"vision_features": sam2_features[-1],
"vision_pos_enc": sam2_pos,
"backbone_fpn": sam2_features,
}
method ultralytics.models.sam.sam3.vl_combiner.SAM3VLBackbone.forward_text
def forward_text(self, captions, input_boxes = None, additional_text = None)
Forward pass of the text encoder.
Args
| Name | Type | Description | Default |
|---|---|---|---|
captions | required | ||
input_boxes | None | ||
additional_text | None |
Source code in ultralytics/models/sam/sam3/vl_combiner.py
View on GitHubdef forward_text(self, captions, input_boxes=None, additional_text=None):
"""Forward pass of the text encoder."""
output = {}
# Forward through text_encoder
text_to_encode = copy(captions)
if additional_text is not None:
# if there are additional_text, we piggy-back them into this forward.
# They'll be used later for output alignment
text_to_encode += additional_text
with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION]):
text_attention_mask, text_memory, text_embeds = self.language_backbone(text_to_encode, input_boxes)
if additional_text is not None:
output["additional_text_features"] = text_memory[:, -len(additional_text) :]
output["additional_text_mask"] = text_attention_mask[-len(additional_text) :]
text_memory = text_memory[:, : len(captions)]
text_attention_mask = text_attention_mask[: len(captions)]
text_embeds = text_embeds[:, : len(captions)]
output["language_features"] = text_memory
output["language_mask"] = text_attention_mask
output["language_embeds"] = text_embeds # Text embeddings before forward to the encoder
return output
method ultralytics.models.sam.sam3.vl_combiner.SAM3VLBackbone.set_imgsz
def set_imgsz(self, imgsz: list[int] = [1008, 1008])
Set the image size for the vision backbone.
Args
| Name | Type | Description | Default |
|---|---|---|---|
imgsz | list[int] | [1008, 1008] |
Source code in ultralytics/models/sam/sam3/vl_combiner.py
View on GitHubdef set_imgsz(self, imgsz: list[int] = [1008, 1008]):
"""Set the image size for the vision backbone."""
self.vision_backbone.set_imgsz(imgsz)