Skip to content

Reference for ultralytics/models/yolo/model.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/model.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.models.yolo.model.YOLO

YOLO(self, model: str | Path = "yolo11n.pt", task: str | None = None, verbose: bool = False)

Bases: Model

YOLO (You Only Look Once) object detection model.

This class provides a unified interface for YOLO models, automatically switching to specialized model types (YOLOWorld or YOLOE) based on the model filename. It supports various computer vision tasks including object detection, segmentation, classification, pose estimation, and oriented bounding box detection.

This constructor initializes a YOLO model, automatically switching to specialized model types (YOLOWorld or YOLOE) based on the model filename.

Args

NameTypeDescriptionDefault
modelstr | PathModel name or path to model file, i.e. 'yolo11n.pt', 'yolo11n.yaml'."yolo11n.pt"
taskstr, optionalYOLO task specification, i.e. 'detect', 'segment', 'classify', 'pose', 'obb'. Defaults to auto-detection based on model.None
verboseboolDisplay model info on load.False

Attributes

NameTypeDescription
modelThe loaded YOLO model instance.
taskThe task type (detect, segment, classify, pose, obb).
overridesConfiguration overrides for the model.

Methods

NameDescription
task_mapMap head to model, trainer, validator, and predictor classes.

Examples

Load a pretrained YOLO11n detection model
>>> model = YOLO("yolo11n.pt")

Load a pretrained YOLO11n segmentation model
>>> model = YOLO("yolo11n-seg.pt")

Initialize from a YAML configuration
>>> model = YOLO("yolo11n.yaml")
Source code in ultralytics/models/yolo/model.pyView on GitHub
class YOLO(Model):
    """YOLO (You Only Look Once) object detection model.

    This class provides a unified interface for YOLO models, automatically switching to specialized model types
    (YOLOWorld or YOLOE) based on the model filename. It supports various computer vision tasks including object
    detection, segmentation, classification, pose estimation, and oriented bounding box detection.

    Attributes:
        model: The loaded YOLO model instance.
        task: The task type (detect, segment, classify, pose, obb).
        overrides: Configuration overrides for the model.

    Methods:
        __init__: Initialize a YOLO model with automatic type detection.
        task_map: Map tasks to their corresponding model, trainer, validator, and predictor classes.

    Examples:
        Load a pretrained YOLO11n detection model
        >>> model = YOLO("yolo11n.pt")

        Load a pretrained YOLO11n segmentation model
        >>> model = YOLO("yolo11n-seg.pt")

        Initialize from a YAML configuration
        >>> model = YOLO("yolo11n.yaml")
    """

    def __init__(self, model: str | Path = "yolo11n.pt", task: str | None = None, verbose: bool = False):
        """Initialize a YOLO model.

        This constructor initializes a YOLO model, automatically switching to specialized model types (YOLOWorld or
        YOLOE) based on the model filename.

        Args:
            model (str | Path): Model name or path to model file, i.e. 'yolo11n.pt', 'yolo11n.yaml'.
            task (str, optional): YOLO task specification, i.e. 'detect', 'segment', 'classify', 'pose', 'obb'. Defaults
                to auto-detection based on model.
            verbose (bool): Display model info on load.
        """
        path = Path(model if isinstance(model, (str, Path)) else "")
        if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}:  # if YOLOWorld PyTorch model
            new_instance = YOLOWorld(path, verbose=verbose)
            self.__class__ = type(new_instance)
            self.__dict__ = new_instance.__dict__
        elif "yoloe" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}:  # if YOLOE PyTorch model
            new_instance = YOLOE(path, task=task, verbose=verbose)
            self.__class__ = type(new_instance)
            self.__dict__ = new_instance.__dict__
        else:
            # Continue with default YOLO initialization
            super().__init__(model=model, task=task, verbose=verbose)
            if hasattr(self.model, "model") and "RTDETR" in self.model.model[-1]._get_name():  # if RTDETR head
                from ultralytics import RTDETR

                new_instance = RTDETR(self)
                self.__class__ = type(new_instance)
                self.__dict__ = new_instance.__dict__


property ultralytics.models.yolo.model.YOLO.task_map

def task_map(self) -> dict[str, dict[str, Any]]

Map head to model, trainer, validator, and predictor classes.

Source code in ultralytics/models/yolo/model.pyView on GitHub
@property
def task_map(self) -> dict[str, dict[str, Any]]:
    """Map head to model, trainer, validator, and predictor classes."""
    return {
        "classify": {
            "model": ClassificationModel,
            "trainer": yolo.classify.ClassificationTrainer,
            "validator": yolo.classify.ClassificationValidator,
            "predictor": yolo.classify.ClassificationPredictor,
        },
        "detect": {
            "model": DetectionModel,
            "trainer": yolo.detect.DetectionTrainer,
            "validator": yolo.detect.DetectionValidator,
            "predictor": yolo.detect.DetectionPredictor,
        },
        "segment": {
            "model": SegmentationModel,
            "trainer": yolo.segment.SegmentationTrainer,
            "validator": yolo.segment.SegmentationValidator,
            "predictor": yolo.segment.SegmentationPredictor,
        },
        "pose": {
            "model": PoseModel,
            "trainer": yolo.pose.PoseTrainer,
            "validator": yolo.pose.PoseValidator,
            "predictor": yolo.pose.PosePredictor,
        },
        "obb": {
            "model": OBBModel,
            "trainer": yolo.obb.OBBTrainer,
            "validator": yolo.obb.OBBValidator,
            "predictor": yolo.obb.OBBPredictor,
        },
    }





class ultralytics.models.yolo.model.YOLOWorld

YOLOWorld(self, model: str | Path = "yolov8s-world.pt", verbose: bool = False) -> None

Bases: Model

YOLO-World object detection model.

YOLO-World is an open-vocabulary object detection model that can detect objects based on text descriptions without requiring training on specific classes. It extends the YOLO architecture to support real-time open-vocabulary detection.

Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns default COCO class names.

Args

NameTypeDescriptionDefault
modelstr | PathPath to the pre-trained model file. Supports .pt and .yaml formats."yolov8s-world.pt"
verboseboolIf True, prints additional information during initialization.False

Attributes

NameTypeDescription
modelThe loaded YOLO-World model instance.
taskAlways set to 'detect' for object detection.
overridesConfiguration overrides for the model.

Methods

NameDescription
task_mapMap head to model, validator, and predictor classes.
set_classesSet the model's class names for detection.

Examples

Load a YOLOv8-World model
>>> model = YOLOWorld("yolov8s-world.pt")

Set custom classes for detection
>>> model.set_classes(["person", "car", "bicycle"])
Source code in ultralytics/models/yolo/model.pyView on GitHub
class YOLOWorld(Model):
    """YOLO-World object detection model.

    YOLO-World is an open-vocabulary object detection model that can detect objects based on text descriptions without
    requiring training on specific classes. It extends the YOLO architecture to support real-time open-vocabulary
    detection.

    Attributes:
        model: The loaded YOLO-World model instance.
        task: Always set to 'detect' for object detection.
        overrides: Configuration overrides for the model.

    Methods:
        __init__: Initialize YOLOv8-World model with a pre-trained model file.
        task_map: Map tasks to their corresponding model, trainer, validator, and predictor classes.
        set_classes: Set the model's class names for detection.

    Examples:
        Load a YOLOv8-World model
        >>> model = YOLOWorld("yolov8s-world.pt")

        Set custom classes for detection
        >>> model.set_classes(["person", "car", "bicycle"])
    """

    def __init__(self, model: str | Path = "yolov8s-world.pt", verbose: bool = False) -> None:
        """Initialize YOLOv8-World model with a pre-trained model file.

        Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns default COCO
        class names.

        Args:
            model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.
            verbose (bool): If True, prints additional information during initialization.
        """
        super().__init__(model=model, task="detect", verbose=verbose)

        # Assign default COCO class names when there are no custom names
        if not hasattr(self.model, "names"):
            self.model.names = YAML.load(ROOT / "cfg/datasets/coco8.yaml").get("names")


property ultralytics.models.yolo.model.YOLOWorld.task_map

def task_map(self) -> dict[str, dict[str, Any]]

Map head to model, validator, and predictor classes.

Source code in ultralytics/models/yolo/model.pyView on GitHub
@property
def task_map(self) -> dict[str, dict[str, Any]]:
    """Map head to model, validator, and predictor classes."""
    return {
        "detect": {
            "model": WorldModel,
            "validator": yolo.detect.DetectionValidator,
            "predictor": yolo.detect.DetectionPredictor,
            "trainer": yolo.world.WorldTrainer,
        }
    }


method ultralytics.models.yolo.model.YOLOWorld.set_classes

def set_classes(self, classes: list[str]) -> None

Set the model's class names for detection.

Args

NameTypeDescriptionDefault
classeslist[str]A list of categories i.e. ["person"].required
Source code in ultralytics/models/yolo/model.pyView on GitHub
def set_classes(self, classes: list[str]) -> None:
    """Set the model's class names for detection.

    Args:
        classes (list[str]): A list of categories i.e. ["person"].
    """
    self.model.set_classes(classes)
    # Remove background if it's given
    background = " "
    if background in classes:
        classes.remove(background)
    self.model.names = classes

    # Reset method class names
    if self.predictor:
        self.predictor.model.names = classes





class ultralytics.models.yolo.model.YOLOE

YOLOE(self, model: str | Path = "yoloe-11s-seg.pt", task: str | None = None, verbose: bool = False) -> None

Bases: Model

YOLOE object detection and segmentation model.

YOLOE is an enhanced YOLO model that supports both object detection and instance segmentation tasks with improved performance and additional features like visual and text positional embeddings.

Args

NameTypeDescriptionDefault
modelstr | PathPath to the pre-trained model file. Supports .pt and .yaml formats."yoloe-11s-seg.pt"
taskstr, optionalTask type for the model. Auto-detected if None.None
verboseboolIf True, prints additional information during initialization.False

Attributes

NameTypeDescription
modelThe loaded YOLOE model instance.
taskThe task type (detect or segment).
overridesConfiguration overrides for the model.

Methods

NameDescription
task_mapMap head to model, validator, and predictor classes.
get_text_peGet text positional embeddings for the given texts.
get_visual_peGet visual positional embeddings for the given image and visual features.
get_vocabGet vocabulary for the given class names.
predictRun prediction on images, videos, directories, streams, etc.
set_classesSet the model's class names and embeddings for detection.
set_vocabSet vocabulary and class names for the YOLOE model.
valValidate the model using text or visual prompts.

Examples

Load a YOLOE detection model
>>> model = YOLOE("yoloe-11s-seg.pt")

Set vocabulary and class names
>>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])

Predict with visual prompts
>>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
>>> results = model.predict("image.jpg", visual_prompts=prompts)
Source code in ultralytics/models/yolo/model.pyView on GitHub
class YOLOE(Model):
    """YOLOE object detection and segmentation model.

    YOLOE is an enhanced YOLO model that supports both object detection and instance segmentation tasks with improved
    performance and additional features like visual and text positional embeddings.

    Attributes:
        model: The loaded YOLOE model instance.
        task: The task type (detect or segment).
        overrides: Configuration overrides for the model.

    Methods:
        __init__: Initialize YOLOE model with a pre-trained model file.
        task_map: Map tasks to their corresponding model, trainer, validator, and predictor classes.
        get_text_pe: Get text positional embeddings for the given texts.
        get_visual_pe: Get visual positional embeddings for the given image and visual features.
        set_vocab: Set vocabulary and class names for the YOLOE model.
        get_vocab: Get vocabulary for the given class names.
        set_classes: Set the model's class names and embeddings for detection.
        val: Validate the model using text or visual prompts.
        predict: Run prediction on images, videos, directories, streams, etc.

    Examples:
        Load a YOLOE detection model
        >>> model = YOLOE("yoloe-11s-seg.pt")

        Set vocabulary and class names
        >>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])

        Predict with visual prompts
        >>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
        >>> results = model.predict("image.jpg", visual_prompts=prompts)
    """

    def __init__(self, model: str | Path = "yoloe-11s-seg.pt", task: str | None = None, verbose: bool = False) -> None:
        """Initialize YOLOE model with a pre-trained model file.

        Args:
            model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.
            task (str, optional): Task type for the model. Auto-detected if None.
            verbose (bool): If True, prints additional information during initialization.
        """
        super().__init__(model=model, task=task, verbose=verbose)


property ultralytics.models.yolo.model.YOLOE.task_map

def task_map(self) -> dict[str, dict[str, Any]]

Map head to model, validator, and predictor classes.

Source code in ultralytics/models/yolo/model.pyView on GitHub
@property
def task_map(self) -> dict[str, dict[str, Any]]:
    """Map head to model, validator, and predictor classes."""
    return {
        "detect": {
            "model": YOLOEModel,
            "validator": yolo.yoloe.YOLOEDetectValidator,
            "predictor": yolo.detect.DetectionPredictor,
            "trainer": yolo.yoloe.YOLOETrainer,
        },
        "segment": {
            "model": YOLOESegModel,
            "validator": yolo.yoloe.YOLOESegValidator,
            "predictor": yolo.segment.SegmentationPredictor,
            "trainer": yolo.yoloe.YOLOESegTrainer,
        },
    }


method ultralytics.models.yolo.model.YOLOE.get_text_pe

def get_text_pe(self, texts)

Get text positional embeddings for the given texts.

Args

NameTypeDescriptionDefault
textsrequired
Source code in ultralytics/models/yolo/model.pyView on GitHub
def get_text_pe(self, texts):
    """Get text positional embeddings for the given texts."""
    assert isinstance(self.model, YOLOEModel)
    return self.model.get_text_pe(texts)


method ultralytics.models.yolo.model.YOLOE.get_visual_pe

def get_visual_pe(self, img, visual)

Get visual positional embeddings for the given image and visual features.

This method extracts positional embeddings from visual features based on the input image. It requires that the model is an instance of YOLOEModel.

Args

NameTypeDescriptionDefault
imgtorch.TensorInput image tensor.required
visualtorch.TensorVisual features extracted from the image.required

Returns

TypeDescription
torch.TensorVisual positional embeddings.

Examples

>>> model = YOLOE("yoloe-11s-seg.pt")
>>> img = torch.rand(1, 3, 640, 640)
>>> visual_features = torch.rand(1, 1, 80, 80)
>>> pe = model.get_visual_pe(img, visual_features)
Source code in ultralytics/models/yolo/model.pyView on GitHub
def get_visual_pe(self, img, visual):
    """Get visual positional embeddings for the given image and visual features.

    This method extracts positional embeddings from visual features based on the input image. It requires that the
    model is an instance of YOLOEModel.

    Args:
        img (torch.Tensor): Input image tensor.
        visual (torch.Tensor): Visual features extracted from the image.

    Returns:
        (torch.Tensor): Visual positional embeddings.

    Examples:
        >>> model = YOLOE("yoloe-11s-seg.pt")
        >>> img = torch.rand(1, 3, 640, 640)
        >>> visual_features = torch.rand(1, 1, 80, 80)
        >>> pe = model.get_visual_pe(img, visual_features)
    """
    assert isinstance(self.model, YOLOEModel)
    return self.model.get_visual_pe(img, visual)


method ultralytics.models.yolo.model.YOLOE.get_vocab

def get_vocab(self, names)

Get vocabulary for the given class names.

Args

NameTypeDescriptionDefault
namesrequired
Source code in ultralytics/models/yolo/model.pyView on GitHub
def get_vocab(self, names):
    """Get vocabulary for the given class names."""
    assert isinstance(self.model, YOLOEModel)
    return self.model.get_vocab(names)


method ultralytics.models.yolo.model.YOLOE.predict

def predict(
    self,
    source=None,
    stream: bool = False,
    visual_prompts: dict[str, list] = {},
    refer_image=None,
    predictor=yolo.yoloe.YOLOEVPDetectPredictor,
    **kwargs,
)

Run prediction on images, videos, directories, streams, etc.

Args

NameTypeDescriptionDefault
sourcestr | int | PIL.Image | np.ndarray, optionalSource for prediction. Accepts image paths, directory paths, URL/YouTube streams, PIL images, numpy arrays, or webcam indices.None
streamboolWhether to stream the prediction results. If True, results are yielded as a generator as they are computed.False
visual_promptsdict[str, list]Dictionary containing visual prompts for the model. Must include 'bboxes' and 'cls' keys when non-empty.{}
refer_imagestr | PIL.Image | np.ndarray, optionalReference image for visual prompts.None
predictorcallable, optionalCustom predictor function. If None, a predictor is automatically loaded based on the task.yolo.yoloe.YOLOEVPDetectPredictor
**kwargsAnyAdditional keyword arguments passed to the predictor.required

Returns

TypeDescription
list | generatorList of Results objects or generator of Results objects if stream=True.

Examples

>>> model = YOLOE("yoloe-11s-seg.pt")
>>> results = model.predict("path/to/image.jpg")
>>> # With visual prompts
>>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
>>> results = model.predict("path/to/image.jpg", visual_prompts=prompts)
Source code in ultralytics/models/yolo/model.pyView on GitHub
def predict(
    self,
    source=None,
    stream: bool = False,
    visual_prompts: dict[str, list] = {},
    refer_image=None,
    predictor=yolo.yoloe.YOLOEVPDetectPredictor,
    **kwargs,
):
    """Run prediction on images, videos, directories, streams, etc.

    Args:
        source (str | int | PIL.Image | np.ndarray, optional): Source for prediction. Accepts image paths, directory
            paths, URL/YouTube streams, PIL images, numpy arrays, or webcam indices.
        stream (bool): Whether to stream the prediction results. If True, results are yielded as a generator as they
            are computed.
        visual_prompts (dict[str, list]): Dictionary containing visual prompts for the model. Must include 'bboxes'
            and 'cls' keys when non-empty.
        refer_image (str | PIL.Image | np.ndarray, optional): Reference image for visual prompts.
        predictor (callable, optional): Custom predictor function. If None, a predictor is automatically loaded
            based on the task.
        **kwargs (Any): Additional keyword arguments passed to the predictor.

    Returns:
        (list | generator): List of Results objects or generator of Results objects if stream=True.

    Examples:
        >>> model = YOLOE("yoloe-11s-seg.pt")
        >>> results = model.predict("path/to/image.jpg")
        >>> # With visual prompts
        >>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
        >>> results = model.predict("path/to/image.jpg", visual_prompts=prompts)
    """
    if len(visual_prompts):
        assert "bboxes" in visual_prompts and "cls" in visual_prompts, (
            f"Expected 'bboxes' and 'cls' in visual prompts, but got {visual_prompts.keys()}"
        )
        assert len(visual_prompts["bboxes"]) == len(visual_prompts["cls"]), (
            f"Expected equal number of bounding boxes and classes, but got {len(visual_prompts['bboxes'])} and "
            f"{len(visual_prompts['cls'])} respectively"
        )
        if type(self.predictor) is not predictor:
            self.predictor = predictor(
                overrides={
                    "task": self.model.task,
                    "mode": "predict",
                    "save": False,
                    "verbose": refer_image is None,
                    "batch": 1,
                    "device": kwargs.get("device", None),
                    "half": kwargs.get("half", False),
                    "imgsz": kwargs.get("imgsz", self.overrides["imgsz"]),
                },
                _callbacks=self.callbacks,
            )

        num_cls = (
            max(len(set(c)) for c in visual_prompts["cls"])
            if isinstance(source, list) and refer_image is None  # means multiple images
            else len(set(visual_prompts["cls"]))
        )
        self.model.model[-1].nc = num_cls
        self.model.names = [f"object{i}" for i in range(num_cls)]
        self.predictor.set_prompts(visual_prompts.copy())
        self.predictor.setup_model(model=self.model)

        if refer_image is None and source is not None:
            dataset = load_inference_source(source)
            if dataset.mode in {"video", "stream"}:
                # NOTE: set the first frame as refer image for videos/streams inference
                refer_image = next(iter(dataset))[1][0]
        if refer_image is not None:
            vpe = self.predictor.get_vpe(refer_image)
            self.model.set_classes(self.model.names, vpe)
            self.task = "segment" if isinstance(self.predictor, yolo.segment.SegmentationPredictor) else "detect"
            self.predictor = None  # reset predictor
    elif isinstance(self.predictor, yolo.yoloe.YOLOEVPDetectPredictor):
        self.predictor = None  # reset predictor if no visual prompts

    return super().predict(source, stream, **kwargs)


method ultralytics.models.yolo.model.YOLOE.set_classes

def set_classes(self, classes: list[str], embeddings: torch.Tensor | None = None) -> None

Set the model's class names and embeddings for detection.

Args

NameTypeDescriptionDefault
classeslist[str]A list of categories i.e. ["person"].required
embeddingstorch.TensorEmbeddings corresponding to the classes.None
Source code in ultralytics/models/yolo/model.pyView on GitHub
def set_classes(self, classes: list[str], embeddings: torch.Tensor | None = None) -> None:
    """Set the model's class names and embeddings for detection.

    Args:
        classes (list[str]): A list of categories i.e. ["person"].
        embeddings (torch.Tensor): Embeddings corresponding to the classes.
    """
    assert isinstance(self.model, YOLOEModel)
    if embeddings is None:
        embeddings = self.get_text_pe(classes)  # generate text embeddings if not provided
    self.model.set_classes(classes, embeddings)
    # Verify no background class is present
    assert " " not in classes
    self.model.names = classes

    # Reset method class names
    if self.predictor:
        self.predictor.model.names = classes


method ultralytics.models.yolo.model.YOLOE.set_vocab

def set_vocab(self, vocab: list[str], names: list[str]) -> None

Set vocabulary and class names for the YOLOE model.

This method configures the vocabulary and class names used by the model for text processing and classification tasks. The model must be an instance of YOLOEModel.

Args

NameTypeDescriptionDefault
vocablist[str]Vocabulary list containing tokens or words used by the model for text processing.required
nameslist[str]List of class names that the model can detect or classify.required

Examples

>>> model = YOLOE("yoloe-11s-seg.pt")
>>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])

Raises

TypeDescription
AssertionErrorIf the model is not an instance of YOLOEModel.
Source code in ultralytics/models/yolo/model.pyView on GitHub
def set_vocab(self, vocab: list[str], names: list[str]) -> None:
    """Set vocabulary and class names for the YOLOE model.

    This method configures the vocabulary and class names used by the model for text processing and classification
    tasks. The model must be an instance of YOLOEModel.

    Args:
        vocab (list[str]): Vocabulary list containing tokens or words used by the model for text processing.
        names (list[str]): List of class names that the model can detect or classify.

    Raises:
        AssertionError: If the model is not an instance of YOLOEModel.

    Examples:
        >>> model = YOLOE("yoloe-11s-seg.pt")
        >>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])
    """
    assert isinstance(self.model, YOLOEModel)
    self.model.set_vocab(vocab, names=names)


method ultralytics.models.yolo.model.YOLOE.val

def val(self, validator = None, load_vp: bool = False, refer_data: str | None = None, **kwargs)

Validate the model using text or visual prompts.

Args

NameTypeDescriptionDefault
validatorcallable, optionalA callable validator function. If None, a default validator is loaded.None
load_vpboolWhether to load visual prompts. If False, text prompts are used.False
refer_datastr, optionalPath to the reference data for visual prompts.None
**kwargsAnyAdditional keyword arguments to override default settings.required

Returns

TypeDescription
dictValidation statistics containing metrics computed during validation.
Source code in ultralytics/models/yolo/model.pyView on GitHub
def val(
    self,
    validator=None,
    load_vp: bool = False,
    refer_data: str | None = None,
    **kwargs,
):
    """Validate the model using text or visual prompts.

    Args:
        validator (callable, optional): A callable validator function. If None, a default validator is loaded.
        load_vp (bool): Whether to load visual prompts. If False, text prompts are used.
        refer_data (str, optional): Path to the reference data for visual prompts.
        **kwargs (Any): Additional keyword arguments to override default settings.

    Returns:
        (dict): Validation statistics containing metrics computed during validation.
    """
    custom = {"rect": not load_vp}  # method defaults
    args = {**self.overrides, **custom, **kwargs, "mode": "val"}  # highest priority args on the right

    validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
    validator(model=self.model, load_vp=load_vp, refer_data=refer_data)
    self.metrics = validator.metrics
    return validator.metrics





📅 Created 2 years ago ✏️ Updated 2 days ago
glenn-jocherRizwanMunawarjk4esergiuwaxmannBurhan-Q