Reference for ultralytics/models/yolo/model.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/model.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.model.YOLO
YOLO(model='yolo11n.pt', task=None, verbose=False)
Bases: Model
YOLO (You Only Look Once) object detection model.
This constructor initializes a YOLO model, automatically switching to specialized model types (YOLOWorld or YOLOE) based on the model filename.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Model name or path to model file, i.e. 'yolo11n.pt', 'yolov8n.yaml'. |
'yolo11n.pt'
|
task
|
str | None
|
YOLO task specification, i.e. 'detect', 'segment', 'classify', 'pose', 'obb'. Defaults to auto-detection based on model. |
None
|
verbose
|
bool
|
Display model info on load. |
False
|
Examples:
>>> from ultralytics import YOLO
>>> model = YOLO("yolov8n.pt") # load a pretrained YOLOv8n detection model
>>> model = YOLO("yolov8n-seg.pt") # load a pretrained YOLOv8n segmentation model
>>> model = YOLO("yolo11n.pt") # load a pretrained YOLOv11n detection model
Source code in ultralytics/models/yolo/model.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
task_map
property
task_map
Map head to model, trainer, validator, and predictor classes.
ultralytics.models.yolo.model.YOLOWorld
YOLOWorld(model='yolov8s-world.pt', verbose=False)
Bases: Model
YOLO-World object detection model.
Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns default COCO class names.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Path to the pre-trained model file. Supports .pt and .yaml formats. |
'yolov8s-world.pt'
|
verbose
|
bool
|
If True, prints additional information during initialization. |
False
|
Source code in ultralytics/models/yolo/model.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
task_map
property
task_map
Map head to model, validator, and predictor classes.
set_classes
set_classes(classes)
Set the model's class names for detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classes
|
list[str]
|
A list of categories i.e. ["person"]. |
required |
Source code in ultralytics/models/yolo/model.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
ultralytics.models.yolo.model.YOLOE
YOLOE(model='yoloe-11s-seg.pt', task=None, verbose=False)
Bases: Model
YOLOE object detection and segmentation model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Path to the pre-trained model file. Supports .pt and .yaml formats. |
'yoloe-11s-seg.pt'
|
task
|
str
|
Task type for the model. Auto-detected if None. |
None
|
verbose
|
bool
|
If True, prints additional information during initialization. |
False
|
Source code in ultralytics/models/yolo/model.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
task_map
property
task_map
Map head to model, validator, and predictor classes.
get_text_pe
get_text_pe(texts)
Get text positional embeddings for the given texts.
Source code in ultralytics/models/yolo/model.py
180 181 182 183 |
|
get_visual_pe
get_visual_pe(img, visual)
Get visual positional embeddings for the given image and visual features.
This method extracts positional embeddings from visual features based on the input image. It requires that the model is an instance of YOLOEModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img
|
Tensor
|
Input image tensor. |
required |
visual
|
Tensor
|
Visual features extracted from the image. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Visual positional embeddings. |
Examples:
>>> model = YOLOE("yoloe-11s-seg.pt")
>>> img = torch.rand(1, 3, 640, 640)
>>> visual_features = model.model.backbone(img)
>>> pe = model.get_visual_pe(img, visual_features)
Source code in ultralytics/models/yolo/model.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
get_vocab
get_vocab(names)
Get vocabulary for the given class names.
Source code in ultralytics/models/yolo/model.py
229 230 231 232 |
|
predict
predict(
source=None,
stream: bool = False,
visual_prompts: dict = {},
refer_image=None,
predictor=None,
**kwargs
)
Run prediction on images, videos, directories, streams, etc.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
str | int | Image | ndarray
|
Source for prediction. Accepts image paths, directory paths, URL/YouTube streams, PIL images, numpy arrays, or webcam indices. |
None
|
stream
|
bool
|
Whether to stream the prediction results. If True, results are yielded as a generator as they are computed. |
False
|
visual_prompts
|
dict
|
Dictionary containing visual prompts for the model. Must include 'bboxes' and 'cls' keys when non-empty. |
{}
|
refer_image
|
str | Image | ndarray
|
Reference image for visual prompts. |
None
|
predictor
|
callable
|
Custom predictor function. If None, a predictor is automatically loaded based on the task. |
None
|
**kwargs
|
Any
|
Additional keyword arguments passed to the predictor. |
{}
|
Returns:
Type | Description |
---|---|
List | generator
|
List of Results objects or generator of Results objects if stream=True. |
Examples:
>>> model = YOLOE("yoloe-11s-seg.pt")
>>> results = model.predict("path/to/image.jpg")
>>> # With visual prompts
>>> prompts = {"bboxes": [[10, 20, 100, 200]], "cls": ["person"]}
>>> results = model.predict("path/to/image.jpg", visual_prompts=prompts)
Source code in ultralytics/models/yolo/model.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
set_classes
set_classes(classes, embeddings)
Set the model's class names and embeddings for detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classes
|
list[str]
|
A list of categories i.e. ["person"]. |
required |
embeddings
|
Tensor
|
Embeddings corresponding to the classes. |
required |
Source code in ultralytics/models/yolo/model.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
set_vocab
set_vocab(vocab, names)
Set vocabulary and class names for the YOLOE model.
This method configures the vocabulary and class names used by the model for text processing and classification tasks. The model must be an instance of YOLOEModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab
|
list
|
Vocabulary list containing tokens or words used by the model for text processing. |
required |
names
|
list
|
List of class names that the model can detect or classify. |
required |
Raises:
Type | Description |
---|---|
AssertionError
|
If the model is not an instance of YOLOEModel. |
Examples:
>>> model = YOLOE("yoloe-11s-seg.pt")
>>> model.set_vocab(["person", "car", "dog"], ["person", "car", "dog"])
Source code in ultralytics/models/yolo/model.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|
val
val(validator=None, load_vp=False, refer_data=None, **kwargs)
Validate the model using text or visual prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validator
|
callable
|
A callable validator function. If None, a default validator is loaded. |
None
|
load_vp
|
bool
|
Whether to load visual prompts. If False, text prompts are used. |
False
|
refer_data
|
str
|
Path to the reference data for visual prompts. |
None
|
**kwargs
|
Any
|
Additional keyword arguments to override default settings. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
Validation statistics containing metrics computed during validation. |
Source code in ultralytics/models/yolo/model.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|