Reference for ultralytics/models/yolo/segment/val.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/val.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.segment.val.SegmentationValidator
Bases: DetectionValidator
A class extending the DetectionValidator class for validation based on a segmentation model.
This validator handles the evaluation of segmentation models, processing both bounding box and mask predictions to compute metrics such as mAP for both detection and segmentation tasks.
Attributes:
Name | Type | Description |
---|---|---|
plot_masks |
list
|
List to store masks for plotting. |
process |
callable
|
Function to process masks based on save_json and save_txt flags. |
args |
namespace
|
Arguments for the validator. |
metrics |
SegmentMetrics
|
Metrics calculator for segmentation tasks. |
stats |
dict
|
Dictionary to store statistics during validation. |
Examples:
>>> from ultralytics.models.yolo.segment import SegmentationValidator
>>> args = dict(model="yolo11n-seg.pt", data="coco8-seg.yaml")
>>> validator = SegmentationValidator(args=args)
>>> validator()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataloader
|
DataLoader
|
Dataloader to use for validation. |
None
|
save_dir
|
Path
|
Directory to save results. |
None
|
pbar
|
Any
|
Progress bar for displaying progress. |
None
|
args
|
namespace
|
Arguments for the validator. |
None
|
_callbacks
|
list
|
List of callback functions. |
None
|
Source code in ultralytics/models/yolo/segment/val.py
eval_json
Return COCO-style object detection evaluation metrics.
Source code in ultralytics/models/yolo/segment/val.py
finalize_metrics
Set speed and confusion matrix for evaluation metrics.
get_desc
Return a formatted description of evaluation metrics.
Source code in ultralytics/models/yolo/segment/val.py
init_metrics
Initialize metrics and select mask processing function based on save_json flag.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
Model to validate. |
required |
Source code in ultralytics/models/yolo/segment/val.py
plot_predictions
Plot batch predictions with masks and bounding boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch data containing images. |
required |
preds
|
list
|
Predictions from the model. |
required |
ni
|
int
|
Batch index. |
required |
Source code in ultralytics/models/yolo/segment/val.py
plot_val_samples
Plot validation samples with bounding box labels and masks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch data containing images and targets. |
required |
ni
|
int
|
Batch index. |
required |
Source code in ultralytics/models/yolo/segment/val.py
postprocess
Post-process YOLO predictions and return output detections with proto.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
list
|
Raw predictions from the model. |
required |
Returns:
Name | Type | Description |
---|---|---|
p |
Tensor
|
Processed detection predictions. |
proto |
Tensor
|
Prototype masks for segmentation. |
Source code in ultralytics/models/yolo/segment/val.py
pred_to_json
Save one JSON result for COCO evaluation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predn
|
Tensor
|
Predictions in the format [x1, y1, x2, y2, conf, cls]. |
required |
filename
|
str
|
Image filename. |
required |
pred_masks
|
ndarray
|
Predicted masks. |
required |
Examples:
>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
Source code in ultralytics/models/yolo/segment/val.py
preprocess
Preprocess batch by converting masks to float and sending to device.
save_one_txt
Save YOLO detections to a txt file in normalized coordinates in a specific format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predn
|
Tensor
|
Predictions in the format [x1, y1, x2, y2, conf, cls]. |
required |
pred_masks
|
Tensor
|
Predicted masks. |
required |
save_conf
|
bool
|
Whether to save confidence scores. |
required |
shape
|
tuple
|
Original image shape. |
required |
file
|
Path
|
File path to save the detections. |
required |
Source code in ultralytics/models/yolo/segment/val.py
update_metrics
Update metrics with the current batch predictions and targets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
list
|
Predictions from the model. |
required |
batch
|
dict
|
Batch data containing images and targets. |
required |
Source code in ultralytics/models/yolo/segment/val.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|