Reference for ultralytics/nn/autobackend.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/autobackend.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
class ultralytics.nn.autobackend.AutoBackend
def __init__(
self,
model: str | torch.nn.Module = "yolo11n.pt",
device: torch.device = torch.device("cpu"),
dnn: bool = False,
data: str | Path | None = None,
fp16: bool = False,
fuse: bool = True,
verbose: bool = True,
)
Bases: nn.Module
Handle dynamic backend selection for running inference using Ultralytics YOLO models.
The AutoBackend class is designed to provide an abstraction layer for various inference engines. It supports a wide range of formats, each with specific naming conventions as outlined below:
Supported Formats and Naming Conventions: | Format | File Suffix | | --------------------- | ----------------- | | PyTorch | .pt | | TorchScript | .torchscript | | ONNX Runtime | .onnx | | ONNX OpenCV DNN | .onnx (dnn=True) | | OpenVINO | openvino_model/ | | CoreML | .mlpackage | | TensorRT | .engine | | TensorFlow SavedModel | _saved_model/ | | TensorFlow GraphDef | .pb | | TensorFlow Lite | .tflite | | TensorFlow Edge TPU | _edgetpu.tflite | | PaddlePaddle | _paddle_model/ | | MNN | .mnn | | NCNN | _ncnn_model/ | | IMX | _imx_model/ | | RKNN | _rknn_model/ | | Triton Inference | triton://model | | ExecuTorch | *.pte |
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | str | torch.nn.Module | Path to the model weights file or a module instance. | "yolo11n.pt" |
device | torch.device | Device to run the model on. | torch.device("cpu") |
dnn | bool | Use OpenCV DNN module for ONNX inference. | False |
data | str | Path, optional | Path to the additional data.yaml file containing class names. | None |
fp16 | bool | Enable half-precision inference. Supported only on specific backends. | False |
fuse | bool | Fuse Conv2D + BatchNorm layers for optimization. | True |
verbose | bool | Enable verbose logging. | True |
Attributes
| Name | Type | Description |
|---|---|---|
model | torch.nn.Module | The loaded YOLO model. |
device | torch.device | The device (CPU or GPU) on which the model is loaded. |
task | str | The type of task the model performs (detect, segment, classify, pose). |
names | dict | A dictionary of class names that the model can detect. |
stride | int | The model stride, typically 32 for YOLO models. |
fp16 | bool | Whether the model uses half-precision (FP16) inference. |
nhwc | bool | Whether the model expects NHWC input format instead of NCHW. |
pt | bool | Whether the model is a PyTorch model. |
jit | bool | Whether the model is a TorchScript model. |
onnx | bool | Whether the model is an ONNX model. |
xml | bool | Whether the model is an OpenVINO model. |
engine | bool | Whether the model is a TensorRT engine. |
coreml | bool | Whether the model is a CoreML model. |
saved_model | bool | Whether the model is a TensorFlow SavedModel. |
pb | bool | Whether the model is a TensorFlow GraphDef. |
tflite | bool | Whether the model is a TensorFlow Lite model. |
edgetpu | bool | Whether the model is a TensorFlow Edge TPU model. |
tfjs | bool | Whether the model is a TensorFlow.js model. |
paddle | bool | Whether the model is a PaddlePaddle model. |
mnn | bool | Whether the model is an MNN model. |
ncnn | bool | Whether the model is an NCNN model. |
imx | bool | Whether the model is an IMX model. |
rknn | bool | Whether the model is an RKNN model. |
triton | bool | Whether the model is a Triton Inference Server model. |
pte | bool | Whether the model is a PyTorch ExecuTorch model. |
Methods
| Name | Description |
|---|---|
_model_type | Take a path to a model file and return the model type. |
forward | Run inference on an AutoBackend model. |
from_numpy | Convert a numpy array to a tensor. |
warmup | Warm up the model by running one forward pass with a dummy input. |
Examples
>>> model = AutoBackend(model="yolo11n.pt", device="cuda")
>>> results = model(img)
Source code in ultralytics/nn/autobackend.py
View on GitHubclass AutoBackend(nn.Module):
"""Handle dynamic backend selection for running inference using Ultralytics YOLO models.
The AutoBackend class is designed to provide an abstraction layer for various inference engines. It supports a wide
range of formats, each with specific naming conventions as outlined below:
Supported Formats and Naming Conventions:
| Format | File Suffix |
| --------------------- | ----------------- |
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx (dnn=True) |
| OpenVINO | *openvino_model/ |
| CoreML | *.mlpackage |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model/ |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model/ |
| MNN | *.mnn |
| NCNN | *_ncnn_model/ |
| IMX | *_imx_model/ |
| RKNN | *_rknn_model/ |
| Triton Inference | triton://model |
| ExecuTorch | *.pte |
Attributes:
model (torch.nn.Module): The loaded YOLO model.
device (torch.device): The device (CPU or GPU) on which the model is loaded.
task (str): The type of task the model performs (detect, segment, classify, pose).
names (dict): A dictionary of class names that the model can detect.
stride (int): The model stride, typically 32 for YOLO models.
fp16 (bool): Whether the model uses half-precision (FP16) inference.
nhwc (bool): Whether the model expects NHWC input format instead of NCHW.
pt (bool): Whether the model is a PyTorch model.
jit (bool): Whether the model is a TorchScript model.
onnx (bool): Whether the model is an ONNX model.
xml (bool): Whether the model is an OpenVINO model.
engine (bool): Whether the model is a TensorRT engine.
coreml (bool): Whether the model is a CoreML model.
saved_model (bool): Whether the model is a TensorFlow SavedModel.
pb (bool): Whether the model is a TensorFlow GraphDef.
tflite (bool): Whether the model is a TensorFlow Lite model.
edgetpu (bool): Whether the model is a TensorFlow Edge TPU model.
tfjs (bool): Whether the model is a TensorFlow.js model.
paddle (bool): Whether the model is a PaddlePaddle model.
mnn (bool): Whether the model is an MNN model.
ncnn (bool): Whether the model is an NCNN model.
imx (bool): Whether the model is an IMX model.
rknn (bool): Whether the model is an RKNN model.
triton (bool): Whether the model is a Triton Inference Server model.
pte (bool): Whether the model is a PyTorch ExecuTorch model.
Methods:
forward: Run inference on an input image.
from_numpy: Convert numpy array to tensor.
warmup: Warm up the model with a dummy input.
_model_type: Determine the model type from file path.
Examples:
>>> model = AutoBackend(model="yolo11n.pt", device="cuda")
>>> results = model(img)
"""
@torch.no_grad()
def __init__(
self,
model: str | torch.nn.Module = "yolo11n.pt",
device: torch.device = torch.device("cpu"),
dnn: bool = False,
data: str | Path | None = None,
fp16: bool = False,
fuse: bool = True,
verbose: bool = True,
):
"""Initialize the AutoBackend for inference.
Args:
model (str | torch.nn.Module): Path to the model weights file or a module instance.
device (torch.device): Device to run the model on.
dnn (bool): Use OpenCV DNN module for ONNX inference.
data (str | Path, optional): Path to the additional data.yaml file containing class names.
fp16 (bool): Enable half-precision inference. Supported only on specific backends.
fuse (bool): Fuse Conv2D + BatchNorm layers for optimization.
verbose (bool): Enable verbose logging.
"""
super().__init__()
nn_module = isinstance(model, torch.nn.Module)
(
pt,
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
mnn,
ncnn,
imx,
rknn,
pte,
triton,
) = self._model_type("" if nn_module else model)
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu or rknn # BHWC formats (vs torch BCWH)
stride, ch = 32, 3 # default stride and channels
end2end, dynamic = False, False
metadata, task = None, None
# Set device
cuda = isinstance(device, torch.device) and torch.cuda.is_available() and device.type != "cpu" # use CUDA
if cuda and not any([nn_module, pt, jit, engine, onnx, paddle]): # GPU dataloader formats
device = torch.device("cpu")
cuda = False
# Download if not local
w = attempt_download_asset(model) if pt else model # weights path
# PyTorch (in-memory or file)
if nn_module or pt:
if nn_module:
pt = True
if fuse:
if IS_JETSON and is_jetson(jetpack=5):
# Jetson Jetpack5 requires device before fuse https://github.com/ultralytics/ultralytics/pull/21028
model = model.to(device)
model = model.fuse(verbose=verbose)
model = model.to(device)
else: # pt file
from ultralytics.nn.tasks import load_checkpoint
model, _ = load_checkpoint(model, device=device, fuse=fuse) # load model, ckpt
# Common PyTorch model processing
if hasattr(model, "kpt_shape"):
kpt_shape = model.kpt_shape # pose-only
stride = max(int(model.stride.max()), 32) # model stride
names = model.module.names if hasattr(model, "module") else model.names # get class names
model.half() if fp16 else model.float()
ch = model.yaml.get("channels", 3)
for p in model.parameters():
p.requires_grad = False
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
# TorchScript
elif jit:
import torchvision # noqa - https://github.com/ultralytics/ultralytics/pull/19747
LOGGER.info(f"Loading {w} for TorchScript inference...")
extra_files = {"config.txt": ""} # model metadata
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
model.half() if fp16 else model.float()
if extra_files["config.txt"]: # load metadata dict
metadata = json.loads(extra_files["config.txt"], object_hook=lambda x: dict(x.items()))
# ONNX OpenCV DNN
elif dnn:
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
check_requirements("opencv-python>=4.5.4")
net = cv2.dnn.readNetFromONNX(w)
# ONNX Runtime and IMX
elif onnx or imx:
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
import onnxruntime
providers = ["CPUExecutionProvider"]
if cuda:
if "CUDAExecutionProvider" in onnxruntime.get_available_providers():
providers.insert(0, ("CUDAExecutionProvider", {"device_id": device.index}))
else: # Only log warning if CUDA was requested but unavailable
LOGGER.warning("Failed to start ONNX Runtime with CUDA. Using CPU...")
device = torch.device("cpu")
cuda = False
LOGGER.info(f"Using ONNX Runtime {onnxruntime.__version__} {providers[0]}")
if onnx:
session = onnxruntime.InferenceSession(w, providers=providers)
else:
check_requirements(
("model-compression-toolkit>=2.4.1", "sony-custom-layers[torch]>=0.3.0", "onnxruntime-extensions")
)
w = next(Path(w).glob("*.onnx"))
LOGGER.info(f"Loading {w} for ONNX IMX inference...")
import mct_quantizers as mctq
from sony_custom_layers.pytorch.nms import nms_ort # noqa
session_options = mctq.get_ort_session_options()
session_options.enable_mem_reuse = False # fix the shape mismatch from onnxruntime
session = onnxruntime.InferenceSession(w, session_options, providers=["CPUExecutionProvider"])
output_names = [x.name for x in session.get_outputs()]
metadata = session.get_modelmeta().custom_metadata_map
dynamic = isinstance(session.get_outputs()[0].shape[0], str)
fp16 = "float16" in session.get_inputs()[0].type
if not dynamic:
io = session.io_binding()
bindings = []
for output in session.get_outputs():
out_fp16 = "float16" in output.type
y_tensor = torch.empty(output.shape, dtype=torch.float16 if out_fp16 else torch.float32).to(device)
io.bind_output(
name=output.name,
device_type=device.type,
device_id=device.index if cuda else 0,
element_type=np.float16 if out_fp16 else np.float32,
shape=tuple(y_tensor.shape),
buffer_ptr=y_tensor.data_ptr(),
)
bindings.append(y_tensor)
# OpenVINO
elif xml:
LOGGER.info(f"Loading {w} for OpenVINO inference...")
check_requirements("openvino>=2024.0.0")
import openvino as ov
core = ov.Core()
device_name = "AUTO"
if isinstance(device, str) and device.startswith("intel"):
device_name = device.split(":")[1].upper() # Intel OpenVINO device
device = torch.device("cpu")
if device_name not in core.available_devices:
LOGGER.warning(f"OpenVINO device '{device_name}' not available. Using 'AUTO' instead.")
device_name = "AUTO"
w = Path(w)
if not w.is_file(): # if not *.xml
w = next(w.glob("*.xml")) # get *.xml file from *_openvino_model dir
ov_model = core.read_model(model=str(w), weights=w.with_suffix(".bin"))
if ov_model.get_parameters()[0].get_layout().empty:
ov_model.get_parameters()[0].set_layout(ov.Layout("NCHW"))
metadata = w.parent / "metadata.yaml"
if metadata.exists():
metadata = YAML.load(metadata)
batch = metadata["batch"]
dynamic = metadata.get("args", {}).get("dynamic", dynamic)
# OpenVINO inference modes are 'LATENCY', 'THROUGHPUT' (not recommended), or 'CUMULATIVE_THROUGHPUT'
inference_mode = "CUMULATIVE_THROUGHPUT" if batch > 1 and dynamic else "LATENCY"
ov_compiled_model = core.compile_model(
ov_model,
device_name=device_name,
config={"PERFORMANCE_HINT": inference_mode},
)
LOGGER.info(
f"Using OpenVINO {inference_mode} mode for batch={batch} inference on {', '.join(ov_compiled_model.get_property('EXECUTION_DEVICES'))}..."
)
input_name = ov_compiled_model.input().get_any_name()
# TensorRT
elif engine:
LOGGER.info(f"Loading {w} for TensorRT inference...")
if IS_JETSON and check_version(PYTHON_VERSION, "<=3.8.10"):
# fix error: `np.bool` was a deprecated alias for the builtin `bool` for JetPack 4 and JetPack 5 with Python <= 3.8.10
check_requirements("numpy==1.23.5")
try: # https://developer.nvidia.com/nvidia-tensorrt-download
import tensorrt as trt
except ImportError:
if LINUX:
check_requirements("tensorrt>7.0.0,!=10.1.0")
import tensorrt as trt
check_version(trt.__version__, ">=7.0.0", hard=True)
check_version(trt.__version__, "!=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")
if device.type == "cpu":
device = torch.device("cuda:0")
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
logger = trt.Logger(trt.Logger.INFO)
# Read file
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
try:
meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
dla = metadata.get("dla", None)
if dla is not None:
runtime.DLA_core = int(dla)
except UnicodeDecodeError:
f.seek(0) # engine file may lack embedded Ultralytics metadata
model = runtime.deserialize_cuda_engine(f.read()) # read engine
# Model context
try:
context = model.create_execution_context()
except Exception as e: # model is None
LOGGER.error(f"TensorRT model exported with a different version than {trt.__version__}\n")
raise e
bindings = OrderedDict()
output_names = []
fp16 = False # default updated below
dynamic = False
is_trt10 = not hasattr(model, "num_bindings")
num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
for i in num:
if is_trt10:
name = model.get_tensor_name(i)
dtype = trt.nptype(model.get_tensor_dtype(name))
is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
if is_input:
if -1 in tuple(model.get_tensor_shape(name)):
dynamic = True
context.set_input_shape(name, tuple(model.get_tensor_profile_shape(name, 0)[2]))
if dtype == np.float16:
fp16 = True
else:
output_names.append(name)
shape = tuple(context.get_tensor_shape(name))
else: # TensorRT < 10.0
name = model.get_binding_name(i)
dtype = trt.nptype(model.get_binding_dtype(i))
is_input = model.binding_is_input(i)
if model.binding_is_input(i):
if -1 in tuple(model.get_binding_shape(i)): # dynamic
dynamic = True
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[1]))
if dtype == np.float16:
fp16 = True
else:
output_names.append(name)
shape = tuple(context.get_binding_shape(i))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
# CoreML
elif coreml:
check_requirements("coremltools>=8.0")
LOGGER.info(f"Loading {w} for CoreML inference...")
import coremltools as ct
model = ct.models.MLModel(w)
dynamic = model.get_spec().description.input[0].type.HasField("multiArrayType")
metadata = dict(model.user_defined_metadata)
# TF SavedModel
elif saved_model:
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
import tensorflow as tf
keras = False # assume TF1 saved_model
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
metadata = Path(w) / "metadata.yaml"
# TF GraphDef
elif pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
import tensorflow as tf
from ultralytics.utils.export.tensorflow import gd_outputs
def wrap_frozen_graph(gd, inputs, outputs):
"""Wrap frozen graphs for deployment."""
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
ge = x.graph.as_graph_element
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(w, "rb") as f:
gd.ParseFromString(f.read())
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
try: # find metadata in SavedModel alongside GraphDef
metadata = next(Path(w).resolve().parent.rglob(f"{Path(w).stem}_saved_model*/metadata.yaml"))
except StopIteration:
pass
# TFLite or TFLite Edge TPU
elif tflite or edgetpu: # https://ai.google.dev/edge/litert/microcontrollers/python
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
device = device[3:] if str(device).startswith("tpu") else ":0"
LOGGER.info(f"Loading {w} on device {device[1:]} for TensorFlow Lite Edge TPU inference...")
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
platform.system()
]
interpreter = Interpreter(
model_path=w,
experimental_delegates=[load_delegate(delegate, options={"device": device})],
)
device = "cpu" # Required, otherwise PyTorch will try to use the wrong device
else: # TFLite
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
interpreter = Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
# Load metadata
try:
with zipfile.ZipFile(w, "r") as zf:
name = zf.namelist()[0]
contents = zf.read(name).decode("utf-8")
if name == "metadata.json": # Custom Ultralytics metadata dict for Python>=3.12
metadata = json.loads(contents)
else:
metadata = ast.literal_eval(contents) # Default tflite-support metadata for Python<=3.11
except (zipfile.BadZipFile, SyntaxError, ValueError, json.JSONDecodeError):
pass
# TF.js
elif tfjs:
raise NotImplementedError("Ultralytics TF.js inference is not currently supported.")
# PaddlePaddle
elif paddle:
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
check_requirements(
"paddlepaddle-gpu"
if torch.cuda.is_available()
else "paddlepaddle==3.0.0" # pin 3.0.0 for ARM64
if ARM64
else "paddlepaddle>=3.0.0"
)
import paddle.inference as pdi
w = Path(w)
model_file, params_file = None, None
if w.is_dir():
model_file = next(w.rglob("*.json"), None)
params_file = next(w.rglob("*.pdiparams"), None)
elif w.suffix == ".pdiparams":
model_file = w.with_name("model.json")
params_file = w
if not (model_file and params_file and model_file.is_file() and params_file.is_file()):
raise FileNotFoundError(f"Paddle model not found in {w}. Both .json and .pdiparams files are required.")
config = pdi.Config(str(model_file), str(params_file))
if cuda:
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
predictor = pdi.create_predictor(config)
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
output_names = predictor.get_output_names()
metadata = w / "metadata.yaml"
# MNN
elif mnn:
LOGGER.info(f"Loading {w} for MNN inference...")
check_requirements("MNN") # requires MNN
import os
import MNN
config = {"precision": "low", "backend": "CPU", "numThread": (os.cpu_count() + 1) // 2}
rt = MNN.nn.create_runtime_manager((config,))
net = MNN.nn.load_module_from_file(w, [], [], runtime_manager=rt, rearrange=True)
def torch_to_mnn(x):
return MNN.expr.const(x.data_ptr(), x.shape)
metadata = json.loads(net.get_info()["bizCode"])
# NCNN
elif ncnn:
LOGGER.info(f"Loading {w} for NCNN inference...")
check_requirements("git+https://github.com/Tencent/ncnn.git" if ARM64 else "ncnn", cmds="--no-deps")
import ncnn as pyncnn
net = pyncnn.Net()
net.opt.use_vulkan_compute = cuda
w = Path(w)
if not w.is_file(): # if not *.param
w = next(w.glob("*.param")) # get *.param file from *_ncnn_model dir
net.load_param(str(w))
net.load_model(str(w.with_suffix(".bin")))
metadata = w.parent / "metadata.yaml"
# NVIDIA Triton Inference Server
elif triton:
check_requirements("tritonclient[all]")
from ultralytics.utils.triton import TritonRemoteModel
model = TritonRemoteModel(w)
metadata = model.metadata
# RKNN
elif rknn:
if not is_rockchip():
raise OSError("RKNN inference is only supported on Rockchip devices.")
LOGGER.info(f"Loading {w} for RKNN inference...")
check_requirements("rknn-toolkit-lite2")
from rknnlite.api import RKNNLite
w = Path(w)
if not w.is_file(): # if not *.rknn
w = next(w.rglob("*.rknn")) # get *.rknn file from *_rknn_model dir
rknn_model = RKNNLite()
rknn_model.load_rknn(str(w))
rknn_model.init_runtime()
metadata = w.parent / "metadata.yaml"
# ExecuTorch
elif pte:
LOGGER.info(f"Loading {w} for ExecuTorch inference...")
# TorchAO release compatibility table bug https://github.com/pytorch/ao/issues/2919
check_requirements("setuptools<71.0.0") # Setuptools bug: https://github.com/pypa/setuptools/issues/4483
check_requirements(("executorch==1.0.0", "flatbuffers"))
from executorch.runtime import Runtime
w = Path(w)
if w.is_dir():
model_file = next(w.rglob("*.pte"))
metadata = w / "metadata.yaml"
else:
model_file = w
metadata = w.parent / "metadata.yaml"
program = Runtime.get().load_program(str(model_file))
model = program.load_method("forward")
# Any other format (unsupported)
else:
from ultralytics.engine.exporter import export_formats
raise TypeError(
f"model='{w}' is not a supported model format. Ultralytics supports: {export_formats()['Format']}\n"
f"See https://docs.ultralytics.com/modes/predict for help."
)
# Load external metadata YAML
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
metadata = YAML.load(metadata)
if metadata and isinstance(metadata, dict):
for k, v in metadata.items():
if k in {"stride", "batch", "channels"}:
metadata[k] = int(v)
elif k in {"imgsz", "names", "kpt_shape", "kpt_names", "args"} and isinstance(v, str):
metadata[k] = eval(v)
stride = metadata["stride"]
task = metadata["task"]
batch = metadata["batch"]
imgsz = metadata["imgsz"]
names = metadata["names"]
kpt_shape = metadata.get("kpt_shape")
kpt_names = metadata.get("kpt_names")
end2end = metadata.get("args", {}).get("nms", False)
dynamic = metadata.get("args", {}).get("dynamic", dynamic)
ch = metadata.get("channels", 3)
elif not (pt or triton or nn_module):
LOGGER.warning(f"Metadata not found for 'model={w}'")
# Check names
if "names" not in locals(): # names missing
names = default_class_names(data)
names = check_class_names(names)
self.__dict__.update(locals()) # assign all variables to self
method ultralytics.nn.autobackend.AutoBackend._model_type
def _model_type(p: str = "path/to/model.pt") -> list[bool]
Take a path to a model file and return the model type.
Args
| Name | Type | Description | Default |
|---|---|---|---|
p | str | Path to the model file. | "path/to/model.pt" |
Returns
| Type | Description |
|---|---|
list[bool] | List of booleans indicating the model type. |
Examples
>>> model = AutoBackend(model="path/to/model.onnx")
>>> model_type = model._model_type() # returns "onnx"
Source code in ultralytics/nn/autobackend.py
View on GitHub@staticmethod
def _model_type(p: str = "path/to/model.pt") -> list[bool]:
"""Take a path to a model file and return the model type.
Args:
p (str): Path to the model file.
Returns:
(list[bool]): List of booleans indicating the model type.
Examples:
>>> model = AutoBackend(model="path/to/model.onnx")
>>> model_type = model._model_type() # returns "onnx"
"""
from ultralytics.engine.exporter import export_formats
sf = export_formats()["Suffix"] # export suffixes
if not is_url(p) and not isinstance(p, str):
check_suffix(p, sf) # checks
name = Path(p).name
types = [s in name for s in sf]
types[5] |= name.endswith(".mlmodel") # retain support for older Apple CoreML *.mlmodel formats
types[8] &= not types[9] # tflite &= not edgetpu
if any(types):
triton = False
else:
from urllib.parse import urlsplit
url = urlsplit(p)
triton = bool(url.netloc) and bool(url.path) and url.scheme in {"http", "grpc"}
return [*types, triton]
method ultralytics.nn.autobackend.AutoBackend.forward
def forward(
self,
im: torch.Tensor,
augment: bool = False,
visualize: bool = False,
embed: list | None = None,
**kwargs: Any,
) -> torch.Tensor | list[torch.Tensor]
Run inference on an AutoBackend model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
im | torch.Tensor | The image tensor to perform inference on. | required |
augment | bool | Whether to perform data augmentation during inference. | False |
visualize | bool | Whether to visualize the output predictions. | False |
embed | list, optional | A list of feature vectors/embeddings to return. | None |
**kwargs | Any | Additional keyword arguments for model configuration. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | list[torch.Tensor] | The raw output tensor(s) from the model. |
Source code in ultralytics/nn/autobackend.py
View on GitHubdef forward(
self,
im: torch.Tensor,
augment: bool = False,
visualize: bool = False,
embed: list | None = None,
**kwargs: Any,
) -> torch.Tensor | list[torch.Tensor]:
"""Run inference on an AutoBackend model.
Args:
im (torch.Tensor): The image tensor to perform inference on.
augment (bool): Whether to perform data augmentation during inference.
visualize (bool): Whether to visualize the output predictions.
embed (list, optional): A list of feature vectors/embeddings to return.
**kwargs (Any): Additional keyword arguments for model configuration.
Returns:
(torch.Tensor | list[torch.Tensor]): The raw output tensor(s) from the model.
"""
_b, _ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
# PyTorch
if self.pt or self.nn_module:
y = self.model(im, augment=augment, visualize=visualize, embed=embed, **kwargs)
# TorchScript
elif self.jit:
y = self.model(im)
# ONNX OpenCV DNN
elif self.dnn:
im = im.cpu().numpy() # torch to numpy
self.net.setInput(im)
y = self.net.forward()
# ONNX Runtime
elif self.onnx or self.imx:
if self.dynamic:
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
else:
if not self.cuda:
im = im.cpu()
self.io.bind_input(
name="images",
device_type=im.device.type,
device_id=im.device.index if im.device.type == "cuda" else 0,
element_type=np.float16 if self.fp16 else np.float32,
shape=tuple(im.shape),
buffer_ptr=im.data_ptr(),
)
self.session.run_with_iobinding(self.io)
y = self.bindings
if self.imx:
if self.task == "detect":
# boxes, conf, cls
y = np.concatenate([y[0], y[1][:, :, None], y[2][:, :, None]], axis=-1)
elif self.task == "pose":
# boxes, conf, kpts
y = np.concatenate([y[0], y[1][:, :, None], y[2][:, :, None], y[3]], axis=-1)
# OpenVINO
elif self.xml:
im = im.cpu().numpy() # FP32
if self.inference_mode in {"THROUGHPUT", "CUMULATIVE_THROUGHPUT"}: # optimized for larger batch-sizes
n = im.shape[0] # number of images in batch
results = [None] * n # preallocate list with None to match the number of images
def callback(request, userdata):
"""Place result in preallocated list using userdata index."""
results[userdata] = request.results
# Create AsyncInferQueue, set the callback and start asynchronous inference for each input image
async_queue = self.ov.AsyncInferQueue(self.ov_compiled_model)
async_queue.set_callback(callback)
for i in range(n):
# Start async inference with userdata=i to specify the position in results list
async_queue.start_async(inputs={self.input_name: im[i : i + 1]}, userdata=i) # keep image as BCHW
async_queue.wait_all() # wait for all inference requests to complete
y = [list(r.values()) for r in results]
y = [np.concatenate(x) for x in zip(*y)]
else: # inference_mode = "LATENCY", optimized for fastest first result at batch-size 1
y = list(self.ov_compiled_model(im).values())
# TensorRT
elif self.engine:
if self.dynamic and im.shape != self.bindings["images"].shape:
if self.is_trt10:
self.context.set_input_shape("images", im.shape)
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
for name in self.output_names:
self.bindings[name].data.resize_(tuple(self.context.get_tensor_shape(name)))
else:
i = self.model.get_binding_index("images")
self.context.set_binding_shape(i, im.shape)
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings["images"].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs["images"] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
# CoreML
elif self.coreml:
im = im.cpu().numpy()
if self.dynamic:
im = im.transpose(0, 3, 1, 2)
else:
im = Image.fromarray((im[0] * 255).astype("uint8"))
# im = im.resize((192, 320), Image.BILINEAR)
y = self.model.predict({"image": im}) # coordinates are xywh normalized
if "confidence" in y: # NMS included
from ultralytics.utils.ops import xywh2xyxy
box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]]) # xyxy pixels
cls = y["confidence"].argmax(1, keepdims=True)
y = np.concatenate((box, np.take_along_axis(y["confidence"], cls, axis=1), cls), 1)[None]
else:
y = list(y.values())
if len(y) == 2 and len(y[1].shape) != 4: # segmentation model
y = list(reversed(y)) # reversed for segmentation models (pred, proto)
# PaddlePaddle
elif self.paddle:
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
# MNN
elif self.mnn:
input_var = self.torch_to_mnn(im)
output_var = self.net.onForward([input_var])
y = [x.read() for x in output_var]
# NCNN
elif self.ncnn:
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
with self.net.create_extractor() as ex:
ex.input(self.net.input_names()[0], mat_in)
# WARNING: 'output_names' sorted as a temporary fix for https://github.com/pnnx/pnnx/issues/130
y = [np.array(ex.extract(x)[1])[None] for x in sorted(self.net.output_names())]
# NVIDIA Triton Inference Server
elif self.triton:
im = im.cpu().numpy() # torch to numpy
y = self.model(im)
# RKNN
elif self.rknn:
im = (im.cpu().numpy() * 255).astype("uint8")
im = im if isinstance(im, (list, tuple)) else [im]
y = self.rknn_model.inference(inputs=im)
# ExecuTorch
elif self.pte:
y = self.model.execute([im])
# TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
else:
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model.serving_default(im)
if not isinstance(y, list):
y = [y]
elif self.pb: # GraphDef
y = self.frozen_func(x=self.tf.constant(im))
else: # Lite or Edge TPU
details = self.input_details[0]
is_int = details["dtype"] in {np.int8, np.int16} # is TFLite quantized int8 or int16 model
if is_int:
scale, zero_point = details["quantization"]
im = (im / scale + zero_point).astype(details["dtype"]) # de-scale
self.interpreter.set_tensor(details["index"], im)
self.interpreter.invoke()
y = []
for output in self.output_details:
x = self.interpreter.get_tensor(output["index"])
if is_int:
scale, zero_point = output["quantization"]
x = (x.astype(np.float32) - zero_point) * scale # re-scale
if x.ndim == 3: # if task is not classification, excluding masks (ndim=4) as well
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
if x.shape[-1] == 6 or self.end2end: # end-to-end model
x[:, :, [0, 2]] *= w
x[:, :, [1, 3]] *= h
if self.task == "pose":
x[:, :, 6::3] *= w
x[:, :, 7::3] *= h
else:
x[:, [0, 2]] *= w
x[:, [1, 3]] *= h
if self.task == "pose":
x[:, 5::3] *= w
x[:, 6::3] *= h
y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(y) == 2: # segment with (det, proto) output order reversed
if len(y[1].shape) != 4:
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
if y[1].shape[-1] == 6: # end-to-end model
y = [y[1]]
else:
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
# for x in y:
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
if isinstance(y, (list, tuple)):
if len(self.names) == 999 and (self.task == "segment" or len(y) == 2): # segments and names not defined
nc = y[0].shape[1] - y[1].shape[1] - 4 # y = (1, 32, 160, 160), (1, 116, 8400)
self.names = {i: f"class{i}" for i in range(nc)}
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
else:
return self.from_numpy(y)
method ultralytics.nn.autobackend.AutoBackend.from_numpy
def from_numpy(self, x: np.ndarray) -> torch.Tensor
Convert a numpy array to a tensor.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | np.ndarray | The array to be converted. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | The converted tensor |
Source code in ultralytics/nn/autobackend.py
View on GitHubdef from_numpy(self, x: np.ndarray) -> torch.Tensor:
"""Convert a numpy array to a tensor.
Args:
x (np.ndarray): The array to be converted.
Returns:
(torch.Tensor): The converted tensor
"""
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
method ultralytics.nn.autobackend.AutoBackend.warmup
def warmup(self, imgsz: tuple[int, int, int, int] = (1, 3, 640, 640)) -> None
Warm up the model by running one forward pass with a dummy input.
Args
| Name | Type | Description | Default |
|---|---|---|---|
imgsz | tuple | The shape of the dummy input tensor in the format (batch_size, channels, height, width) | (1, 3, 640, 640) |
Source code in ultralytics/nn/autobackend.py
View on GitHubdef warmup(self, imgsz: tuple[int, int, int, int] = (1, 3, 640, 640)) -> None:
"""Warm up the model by running one forward pass with a dummy input.
Args:
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
"""
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
for _ in range(2 if self.jit else 1):
self.forward(im) # warmup model
warmup_boxes = torch.rand(1, 84, 16, device=self.device) # 16 boxes works best empirically
warmup_boxes[:, :4] *= imgsz[-1]
non_max_suppression(warmup_boxes) # warmup NMS
function ultralytics.nn.autobackend.check_class_names
def check_class_names(names: list | dict) -> dict[int, str]
Check class names and convert to dict format if needed.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | list | dict | Class names as list or dict format. | required |
Returns
| Type | Description |
|---|---|
dict | Class names in dict format with integer keys and string values. |
Raises
| Type | Description |
|---|---|
KeyError | If class indices are invalid for the dataset size. |
Source code in ultralytics/nn/autobackend.py
View on GitHubdef check_class_names(names: list | dict) -> dict[int, str]:
"""Check class names and convert to dict format if needed.
Args:
names (list | dict): Class names as list or dict format.
Returns:
(dict): Class names in dict format with integer keys and string values.
Raises:
KeyError: If class indices are invalid for the dataset size.
"""
if isinstance(names, list): # names is a list
names = dict(enumerate(names)) # convert to dict
if isinstance(names, dict):
# Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True'
names = {int(k): str(v) for k, v in names.items()}
n = len(names)
if max(names.keys()) >= n:
raise KeyError(
f"{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices "
f"{min(names.keys())}-{max(names.keys())} defined in your dataset YAML."
)
if isinstance(names[0], str) and names[0].startswith("n0"): # imagenet class codes, i.e. 'n01440764'
names_map = YAML.load(ROOT / "cfg/datasets/ImageNet.yaml")["map"] # human-readable names
names = {k: names_map[v] for k, v in names.items()}
return names
function ultralytics.nn.autobackend.default_class_names
def default_class_names(data: str | Path | None = None) -> dict[int, str]
Apply default class names to an input YAML file or return numerical class names.
Args
| Name | Type | Description | Default |
|---|---|---|---|
data | str | Path, optional | Path to YAML file containing class names. | None |
Returns
| Type | Description |
|---|---|
dict | Dictionary mapping class indices to class names. |
Source code in ultralytics/nn/autobackend.py
View on GitHubdef default_class_names(data: str | Path | None = None) -> dict[int, str]:
"""Apply default class names to an input YAML file or return numerical class names.
Args:
data (str | Path, optional): Path to YAML file containing class names.
Returns:
(dict): Dictionary mapping class indices to class names.
"""
if data:
try:
return YAML.load(check_yaml(data))["names"]
except Exception:
pass
return {i: f"class{i}" for i in range(999)} # return default if above errors