Skip to content

Reference for ultralytics/nn/modules/block.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/block.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.nn.modules.block.DFL

DFL(c1=16)

Bases: Module

Integral module of Distribution Focal Loss (DFL).

Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1=16):
    """Initialize a convolutional layer with a given number of input channels."""
    super().__init__()
    self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
    x = torch.arange(c1, dtype=torch.float)
    self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
    self.c1 = c1

forward

forward(x)

Applies a transformer layer on input tensor 'x' and returns a tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies a transformer layer on input tensor 'x' and returns a tensor."""
    b, _, a = x.shape  # batch, channels, anchors
    return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)





ultralytics.nn.modules.block.Proto

Proto(c1, c_=256, c2=32)

Bases: Module

YOLOv8 mask Proto module for segmentation models.

Input arguments are ch_in, number of protos, number of masks.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c_=256, c2=32):
    """
    Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

    Input arguments are ch_in, number of protos, number of masks.
    """
    super().__init__()
    self.cv1 = Conv(c1, c_, k=3)
    self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
    self.cv2 = Conv(c_, c_, k=3)
    self.cv3 = Conv(c_, c2)

forward

forward(x)

Performs a forward pass through layers using an upsampled input image.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Performs a forward pass through layers using an upsampled input image."""
    return self.cv3(self.cv2(self.upsample(self.cv1(x))))





ultralytics.nn.modules.block.HGStem

HGStem(c1, cm, c2)

Bases: Module

StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, cm, c2):
    """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
    super().__init__()
    self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
    self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
    self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
    self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
    self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
    self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

forward

forward(x)

Forward pass of a PPHGNetV2 backbone layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of a PPHGNetV2 backbone layer."""
    x = self.stem1(x)
    x = F.pad(x, [0, 1, 0, 1])
    x2 = self.stem2a(x)
    x2 = F.pad(x2, [0, 1, 0, 1])
    x2 = self.stem2b(x2)
    x1 = self.pool(x)
    x = torch.cat([x1, x2], dim=1)
    x = self.stem3(x)
    x = self.stem4(x)
    return x





ultralytics.nn.modules.block.HGBlock

HGBlock(c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU())

Bases: Module

HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
    """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
    super().__init__()
    block = LightConv if lightconv else Conv
    self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
    self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
    self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
    self.add = shortcut and c1 == c2

forward

forward(x)

Forward pass of a PPHGNetV2 backbone layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of a PPHGNetV2 backbone layer."""
    y = [x]
    y.extend(m(y[-1]) for m in self.m)
    y = self.ec(self.sc(torch.cat(y, 1)))
    return y + x if self.add else y





ultralytics.nn.modules.block.SPP

SPP(c1, c2, k=(5, 9, 13))

Bases: Module

Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=(5, 9, 13)):
    """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
    self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

forward

forward(x)

Forward pass of the SPP layer, performing spatial pyramid pooling.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of the SPP layer, performing spatial pyramid pooling."""
    x = self.cv1(x)
    return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))





ultralytics.nn.modules.block.SPPF

SPPF(c1, c2, k=5)

Bases: Module

Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.

This module is equivalent to SPP(k=(5, 9, 13)).

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=5):
    """
    Initializes the SPPF layer with given input/output channels and kernel size.

    This module is equivalent to SPP(k=(5, 9, 13)).
    """
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * 4, c2, 1, 1)
    self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

forward

forward(x)

Forward pass through Ghost Convolution block.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through Ghost Convolution block."""
    y = [self.cv1(x)]
    y.extend(self.m(y[-1]) for _ in range(3))
    return self.cv2(torch.cat(y, 1))





ultralytics.nn.modules.block.C1

C1(c1, c2, n=1)

Bases: Module

CSP Bottleneck with 1 convolution.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1):
    """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

forward

forward(x)

Applies cross-convolutions to input in the C3 module.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies cross-convolutions to input in the C3 module."""
    y = self.cv1(x)
    return self.m(y) + y





ultralytics.nn.modules.block.C2

C2(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: Module

CSP Bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes a CSP Bottleneck with 2 convolutions and optional shortcut connection."""
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
    # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
    self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

forward

forward(x)

Forward pass through the CSP bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    a, b = self.cv1(x).chunk(2, 1)
    return self.cv2(torch.cat((self.m(a), b), 1))





ultralytics.nn.modules.block.C2f

C2f(c1, c2, n=1, shortcut=False, g=1, e=0.5)

Bases: Module

Faster Implementation of CSP Bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

forward

forward(x)

Forward pass through C2f layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))

forward_split

forward_split(x)

Forward pass using split() instead of chunk().

Source code in ultralytics/nn/modules/block.py
def forward_split(self, x):
    """Forward pass using split() instead of chunk()."""
    y = self.cv1(x).split((self.c, self.c), 1)
    y = [y[0], y[1]]
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))





ultralytics.nn.modules.block.C3

C3(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: Module

CSP Bottleneck with 3 convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

forward

forward(x)

Forward pass through the CSP bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))





ultralytics.nn.modules.block.C3x

C3x(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: C3

C3 module with cross-convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize C3TR instance and set default parameters."""
    super().__init__(c1, c2, n, shortcut, g, e)
    self.c_ = int(c2 * e)
    self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))





ultralytics.nn.modules.block.RepC3

RepC3(c1, c2, n=3, e=1.0)

Bases: Module

Rep C3.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=3, e=1.0):
    """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
    self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

forward

forward(x)

Forward pass of RT-DETR neck layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass of RT-DETR neck layer."""
    return self.cv3(self.m(self.cv1(x)) + self.cv2(x))





ultralytics.nn.modules.block.C3TR

C3TR(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: C3

C3 module with TransformerBlock().

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize C3Ghost module with GhostBottleneck()."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)
    self.m = TransformerBlock(c_, c_, 4, n)





ultralytics.nn.modules.block.C3Ghost

C3Ghost(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: C3

C3 module with GhostBottleneck().

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))





ultralytics.nn.modules.block.GhostBottleneck

GhostBottleneck(c1, c2, k=3, s=1)

Bases: Module

Ghost Bottleneck https://github.com/huawei-noah/ghostnet.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k=3, s=1):
    """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
    super().__init__()
    c_ = c2 // 2
    self.conv = nn.Sequential(
        GhostConv(c1, c_, 1, 1),  # pw
        DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
        GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
    )
    self.shortcut = (
        nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
    )

forward

forward(x)

Applies skip connection and concatenation to input tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies skip connection and concatenation to input tensor."""
    return self.conv(x) + self.shortcut(x)





ultralytics.nn.modules.block.Bottleneck

Bottleneck(c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5)

Bases: Module

Standard bottleneck.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
    """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, k[0], 1)
    self.cv2 = Conv(c_, c2, k[1], 1, g=g)
    self.add = shortcut and c1 == c2

forward

forward(x)

Applies the YOLO FPN to input data.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies the YOLO FPN to input data."""
    return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))





ultralytics.nn.modules.block.BottleneckCSP

BottleneckCSP(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: Module

CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
    self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
    self.cv4 = Conv(2 * c_, c2, 1, 1)
    self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
    self.act = nn.SiLU()
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

forward

forward(x)

Applies a CSP bottleneck with 3 convolutions.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies a CSP bottleneck with 3 convolutions."""
    y1 = self.cv3(self.m(self.cv1(x)))
    y2 = self.cv2(x)
    return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))





ultralytics.nn.modules.block.ResNetBlock

ResNetBlock(c1, c2, s=1, e=4)

Bases: Module

ResNet block with standard convolution layers.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, s=1, e=4):
    """Initialize convolution with given parameters."""
    super().__init__()
    c3 = e * c2
    self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
    self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
    self.cv3 = Conv(c2, c3, k=1, act=False)
    self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

forward

forward(x)

Forward pass through the ResNet block.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the ResNet block."""
    return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))





ultralytics.nn.modules.block.ResNetLayer

ResNetLayer(c1, c2, s=1, is_first=False, n=1, e=4)

Bases: Module

ResNet layer with multiple ResNet blocks.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
    """Initializes the ResNetLayer given arguments."""
    super().__init__()
    self.is_first = is_first

    if self.is_first:
        self.layer = nn.Sequential(
            Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
    else:
        blocks = [ResNetBlock(c1, c2, s, e=e)]
        blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
        self.layer = nn.Sequential(*blocks)

forward

forward(x)

Forward pass through the ResNet layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the ResNet layer."""
    return self.layer(x)





ultralytics.nn.modules.block.MaxSigmoidAttnBlock

MaxSigmoidAttnBlock(c1, c2, nh=1, ec=128, gc=512, scale=False)

Bases: Module

Max Sigmoid attention block.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
    """Initializes MaxSigmoidAttnBlock with specified arguments."""
    super().__init__()
    self.nh = nh
    self.hc = c2 // nh
    self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
    self.gl = nn.Linear(gc, ec)
    self.bias = nn.Parameter(torch.zeros(nh))
    self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
    self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0

forward

forward(x, guide)

Forward process.

Source code in ultralytics/nn/modules/block.py
def forward(self, x, guide):
    """Forward process."""
    bs, _, h, w = x.shape

    guide = self.gl(guide)
    guide = guide.view(bs, -1, self.nh, self.hc)
    embed = self.ec(x) if self.ec is not None else x
    embed = embed.view(bs, self.nh, self.hc, h, w)

    aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
    aw = aw.max(dim=-1)[0]
    aw = aw / (self.hc**0.5)
    aw = aw + self.bias[None, :, None, None]
    aw = aw.sigmoid() * self.scale

    x = self.proj_conv(x)
    x = x.view(bs, self.nh, -1, h, w)
    x = x * aw.unsqueeze(2)
    return x.view(bs, -1, h, w)





ultralytics.nn.modules.block.C2fAttn

C2fAttn(c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5)

Bases: Module

C2f module with an additional attn module.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
    """Initializes C2f module with attention mechanism for enhanced feature extraction and processing."""
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((3 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
    self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)

forward

forward(x, guide)

Forward pass through C2f layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x, guide):
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))

forward_split

forward_split(x, guide)

Forward pass using split() instead of chunk().

Source code in ultralytics/nn/modules/block.py
def forward_split(self, x, guide):
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))





ultralytics.nn.modules.block.ImagePoolingAttn

ImagePoolingAttn(ec=256, ch=(), ct=512, nh=8, k=3, scale=False)

Bases: Module

ImagePoolingAttn: Enhance the text embeddings with image-aware information.

Source code in ultralytics/nn/modules/block.py
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
    """Initializes ImagePoolingAttn with specified arguments."""
    super().__init__()

    nf = len(ch)
    self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
    self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
    self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
    self.proj = nn.Linear(ec, ct)
    self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
    self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
    self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
    self.ec = ec
    self.nh = nh
    self.nf = nf
    self.hc = ec // nh
    self.k = k

forward

forward(x, text)

Executes attention mechanism on input tensor x and guide tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x, text):
    """Executes attention mechanism on input tensor x and guide tensor."""
    bs = x[0].shape[0]
    assert len(x) == self.nf
    num_patches = self.k**2
    x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
    x = torch.cat(x, dim=-1).transpose(1, 2)
    q = self.query(text)
    k = self.key(x)
    v = self.value(x)

    # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
    q = q.reshape(bs, -1, self.nh, self.hc)
    k = k.reshape(bs, -1, self.nh, self.hc)
    v = v.reshape(bs, -1, self.nh, self.hc)

    aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
    aw = aw / (self.hc**0.5)
    aw = F.softmax(aw, dim=-1)

    x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
    x = self.proj(x.reshape(bs, -1, self.ec))
    return x * self.scale + text





ultralytics.nn.modules.block.ContrastiveHead

ContrastiveHead()

Bases: Module

Implements contrastive learning head for region-text similarity in vision-language models.

Source code in ultralytics/nn/modules/block.py
def __init__(self):
    """Initializes ContrastiveHead with specified region-text similarity parameters."""
    super().__init__()
    # NOTE: use -10.0 to keep the init cls loss consistency with other losses
    self.bias = nn.Parameter(torch.tensor([-10.0]))
    self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())

forward

forward(x, w)

Forward function of contrastive learning.

Source code in ultralytics/nn/modules/block.py
def forward(self, x, w):
    """Forward function of contrastive learning."""
    x = F.normalize(x, dim=1, p=2)
    w = F.normalize(w, dim=-1, p=2)
    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias





ultralytics.nn.modules.block.BNContrastiveHead

BNContrastiveHead(embed_dims: int)

Bases: Module

Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.

Parameters:

Name Type Description Default
embed_dims int

Embed dimensions of text and image features.

required
Source code in ultralytics/nn/modules/block.py
def __init__(self, embed_dims: int):
    """Initialize ContrastiveHead with region-text similarity parameters."""
    super().__init__()
    self.norm = nn.BatchNorm2d(embed_dims)
    # NOTE: use -10.0 to keep the init cls loss consistency with other losses
    self.bias = nn.Parameter(torch.tensor([-10.0]))
    # use -1.0 is more stable
    self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))

forward

forward(x, w)

Forward function of contrastive learning.

Source code in ultralytics/nn/modules/block.py
def forward(self, x, w):
    """Forward function of contrastive learning."""
    x = self.norm(x)
    w = F.normalize(w, dim=-1, p=2)
    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias





ultralytics.nn.modules.block.RepBottleneck

RepBottleneck(c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5)

Bases: Bottleneck

Rep bottleneck.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
    """Initializes a RepBottleneck module with customizable in/out channels, shortcuts, groups and expansion."""
    super().__init__(c1, c2, shortcut, g, k, e)
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = RepConv(c1, c_, k[0], 1)





ultralytics.nn.modules.block.RepCSP

RepCSP(c1, c2, n=1, shortcut=True, g=1, e=0.5)

Bases: C3

Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
    """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))





ultralytics.nn.modules.block.RepNCSPELAN4

RepNCSPELAN4(c1, c2, c3, c4, n=1)

Bases: Module

CSP-ELAN.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, c3, c4, n=1):
    """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
    super().__init__()
    self.c = c3 // 2
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
    self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
    self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

forward

forward(x)

Forward pass through RepNCSPELAN4 layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through RepNCSPELAN4 layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))

forward_split

forward_split(x)

Forward pass using split() instead of chunk().

Source code in ultralytics/nn/modules/block.py
def forward_split(self, x):
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))





ultralytics.nn.modules.block.ELAN1

ELAN1(c1, c2, c3, c4)

Bases: RepNCSPELAN4

ELAN1 module with 4 convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, c3, c4):
    """Initializes ELAN1 layer with specified channel sizes."""
    super().__init__(c1, c2, c3, c4)
    self.c = c3 // 2
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = Conv(c3 // 2, c4, 3, 1)
    self.cv3 = Conv(c4, c4, 3, 1)
    self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)





ultralytics.nn.modules.block.AConv

AConv(c1, c2)

Bases: Module

AConv.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2):
    """Initializes AConv module with convolution layers."""
    super().__init__()
    self.cv1 = Conv(c1, c2, 3, 2, 1)

forward

forward(x)

Forward pass through AConv layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through AConv layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    return self.cv1(x)





ultralytics.nn.modules.block.ADown

ADown(c1, c2)

Bases: Module

ADown.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2):
    """Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
    super().__init__()
    self.c = c2 // 2
    self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
    self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)

forward

forward(x)

Forward pass through ADown layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through ADown layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    x1, x2 = x.chunk(2, 1)
    x1 = self.cv1(x1)
    x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
    x2 = self.cv2(x2)
    return torch.cat((x1, x2), 1)





ultralytics.nn.modules.block.SPPELAN

SPPELAN(c1, c2, c3, k=5)

Bases: Module

SPP-ELAN.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, c3, k=5):
    """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
    super().__init__()
    self.c = c3
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv5 = Conv(4 * c3, c2, 1, 1)

forward

forward(x)

Forward pass through SPPELAN layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through SPPELAN layer."""
    y = [self.cv1(x)]
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
    return self.cv5(torch.cat(y, 1))





ultralytics.nn.modules.block.CBLinear

CBLinear(c1, c2s, k=1, s=1, p=None, g=1)

Bases: Module

CBLinear.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
    """Initializes the CBLinear module, passing inputs unchanged."""
    super().__init__()
    self.c2s = c2s
    self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)

forward

forward(x)

Forward pass through CBLinear layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through CBLinear layer."""
    return self.conv(x).split(self.c2s, dim=1)





ultralytics.nn.modules.block.CBFuse

CBFuse(idx)

Bases: Module

CBFuse.

Source code in ultralytics/nn/modules/block.py
def __init__(self, idx):
    """Initializes CBFuse module with layer index for selective feature fusion."""
    super().__init__()
    self.idx = idx

forward

forward(xs)

Forward pass through CBFuse layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, xs):
    """Forward pass through CBFuse layer."""
    target_size = xs[-1].shape[2:]
    res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
    return torch.sum(torch.stack(res + xs[-1:]), dim=0)





ultralytics.nn.modules.block.C3f

C3f(c1, c2, n=1, shortcut=False, g=1, e=0.5)

Bases: Module

Faster Implementation of CSP Bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
    expansion.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.cv3 = Conv((2 + n) * c_, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

forward

forward(x)

Forward pass through C2f layer.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through C2f layer."""
    y = [self.cv2(x), self.cv1(x)]
    y.extend(m(y[-1]) for m in self.m)
    return self.cv3(torch.cat(y, 1))





ultralytics.nn.modules.block.C3k2

C3k2(c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True)

Bases: C2f

Faster Implementation of CSP Bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
    """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
    super().__init__(c1, c2, n, shortcut, g, e)
    self.m = nn.ModuleList(
        C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
    )





ultralytics.nn.modules.block.C3k

C3k(c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3)

Bases: C3

C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.

Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
    """Initializes the C3k module with specified channels, number of layers, and configurations."""
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))





ultralytics.nn.modules.block.RepVGGDW

RepVGGDW(ed)

Bases: Module

RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.

Source code in ultralytics/nn/modules/block.py
def __init__(self, ed) -> None:
    """Initializes RepVGGDW with depthwise separable convolutional layers for efficient processing."""
    super().__init__()
    self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
    self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
    self.dim = ed
    self.act = nn.SiLU()

forward

forward(x)

Performs a forward pass of the RepVGGDW block.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after applying the depth wise separable convolution.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Performs a forward pass of the RepVGGDW block.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x) + self.conv1(x))

forward_fuse

forward_fuse(x)

Performs a forward pass of the RepVGGDW block without fusing the convolutions.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after applying the depth wise separable convolution.

Source code in ultralytics/nn/modules/block.py
def forward_fuse(self, x):
    """
    Performs a forward pass of the RepVGGDW block without fusing the convolutions.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x))

fuse

fuse()

Fuses the convolutional layers in the RepVGGDW block.

This method fuses the convolutional layers and updates the weights and biases accordingly.

Source code in ultralytics/nn/modules/block.py
@torch.no_grad()
def fuse(self):
    """
    Fuses the convolutional layers in the RepVGGDW block.

    This method fuses the convolutional layers and updates the weights and biases accordingly.
    """
    conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
    conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)

    conv_w = conv.weight
    conv_b = conv.bias
    conv1_w = conv1.weight
    conv1_b = conv1.bias

    conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])

    final_conv_w = conv_w + conv1_w
    final_conv_b = conv_b + conv1_b

    conv.weight.data.copy_(final_conv_w)
    conv.bias.data.copy_(final_conv_b)

    self.conv = conv
    del self.conv1





ultralytics.nn.modules.block.CIB

CIB(c1, c2, shortcut=True, e=0.5, lk=False)

Bases: Module

Conditional Identity Block (CIB) module.

Parameters:

Name Type Description Default
c1 int

Number of input channels.

required
c2 int

Number of output channels.

required
shortcut bool

Whether to add a shortcut connection. Defaults to True.

True
e float

Scaling factor for the hidden channels. Defaults to 0.5.

0.5
lk bool

Whether to use RepVGGDW for the third convolutional layer. Defaults to False.

False
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
    """Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer."""
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = nn.Sequential(
        Conv(c1, c1, 3, g=c1),
        Conv(c1, 2 * c_, 1),
        RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
        Conv(2 * c_, c2, 1),
        Conv(c2, c2, 3, g=c2),
    )

    self.add = shortcut and c1 == c2

forward

forward(x)

Forward pass of the CIB module.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Forward pass of the CIB module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor.
    """
    return x + self.cv1(x) if self.add else self.cv1(x)





ultralytics.nn.modules.block.C2fCIB

C2fCIB(c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5)

Bases: C2f

C2fCIB class represents a convolutional block with C2f and CIB modules.

Parameters:

Name Type Description Default
c1 int

Number of input channels.

required
c2 int

Number of output channels.

required
n int

Number of CIB modules to stack. Defaults to 1.

1
shortcut bool

Whether to use shortcut connection. Defaults to False.

False
lk bool

Whether to use local key connection. Defaults to False.

False
g int

Number of groups for grouped convolution. Defaults to 1.

1
e float

Expansion ratio for CIB modules. Defaults to 0.5.

0.5
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
    """Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion."""
    super().__init__(c1, c2, n, shortcut, g, e)
    self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))





ultralytics.nn.modules.block.Attention

Attention(dim, num_heads=8, attn_ratio=0.5)

Bases: Module

Attention module that performs self-attention on the input tensor.

Parameters:

Name Type Description Default
dim int

The input tensor dimension.

required
num_heads int

The number of attention heads.

8
attn_ratio float

The ratio of the attention key dimension to the head dimension.

0.5

Attributes:

Name Type Description
num_heads int

The number of attention heads.

head_dim int

The dimension of each attention head.

key_dim int

The dimension of the attention key.

scale float

The scaling factor for the attention scores.

qkv Conv

Convolutional layer for computing the query, key, and value.

proj Conv

Convolutional layer for projecting the attended values.

pe Conv

Convolutional layer for positional encoding.

Source code in ultralytics/nn/modules/block.py
def __init__(self, dim, num_heads=8, attn_ratio=0.5):
    """Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
    super().__init__()
    self.num_heads = num_heads
    self.head_dim = dim // num_heads
    self.key_dim = int(self.head_dim * attn_ratio)
    self.scale = self.key_dim**-0.5
    nh_kd = self.key_dim * num_heads
    h = dim + nh_kd * 2
    self.qkv = Conv(dim, h, 1, act=False)
    self.proj = Conv(dim, dim, 1, act=False)
    self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

forward

forward(x)

Forward pass of the Attention module.

Parameters:

Name Type Description Default
x Tensor

The input tensor.

required

Returns:

Type Description
Tensor

The output tensor after self-attention.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """
    Forward pass of the Attention module.

    Args:
        x (torch.Tensor): The input tensor.

    Returns:
        (torch.Tensor): The output tensor after self-attention.
    """
    B, C, H, W = x.shape
    N = H * W
    qkv = self.qkv(x)
    q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
        [self.key_dim, self.key_dim, self.head_dim], dim=2
    )

    attn = (q.transpose(-2, -1) @ k) * self.scale
    attn = attn.softmax(dim=-1)
    x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
    x = self.proj(x)
    return x





ultralytics.nn.modules.block.PSABlock

PSABlock(c, attn_ratio=0.5, num_heads=4, shortcut=True)

Bases: Module

PSABlock class implementing a Position-Sensitive Attention block for neural networks.

This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers with optional shortcut connections.

Attributes:

Name Type Description
attn Attention

Multi-head attention module.

ffn Sequential

Feed-forward neural network module.

add bool

Flag indicating whether to add shortcut connections.

Methods:

Name Description
forward

Performs a forward pass through the PSABlock, applying attention and feed-forward layers.

Examples:

Create a PSABlock and perform a forward pass

>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)
Source code in ultralytics/nn/modules/block.py
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
    """Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
    super().__init__()

    self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
    self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
    self.add = shortcut

forward

forward(x)

Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
    x = x + self.attn(x) if self.add else self.attn(x)
    x = x + self.ffn(x) if self.add else self.ffn(x)
    return x





ultralytics.nn.modules.block.PSA

PSA(c1, c2, e=0.5)

Bases: Module

PSA class for implementing Position-Sensitive Attention in neural networks.

This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to input tensors, enhancing feature extraction and processing capabilities.

Attributes:

Name Type Description
c int

Number of hidden channels after applying the initial convolution.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

attn Attention

Attention module for position-sensitive attention.

ffn Sequential

Feed-forward network for further processing.

Methods:

Name Description
forward

Applies position-sensitive attention and feed-forward network to the input tensor.

Examples:

Create a PSA module and apply it to an input tensor

>>> psa = PSA(c1=128, c2=128, e=0.5)
>>> input_tensor = torch.randn(1, 128, 64, 64)
>>> output_tensor = psa.forward(input_tensor)
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, e=0.5):
    """Initializes the PSA module with input/output channels and attention mechanism for feature extraction."""
    super().__init__()
    assert c1 == c2
    self.c = int(c1 * e)
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c1, 1)

    self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
    self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))

forward

forward(x)

Executes forward pass in PSA module, applying attention and feed-forward layers to the input tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Executes forward pass in PSA module, applying attention and feed-forward layers to the input tensor."""
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = b + self.attn(b)
    b = b + self.ffn(b)
    return self.cv2(torch.cat((a, b), 1))





ultralytics.nn.modules.block.C2PSA

C2PSA(c1, c2, n=1, e=0.5)

Bases: Module

C2PSA module with attention mechanism for enhanced feature extraction and processing.

This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.

Attributes:

Name Type Description
c int

Number of hidden channels.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

m Sequential

Sequential container of PSABlock modules for attention and feed-forward operations.

Methods:

Name Description
forward

Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.

Notes

This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.

Examples:

>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, e=0.5):
    """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
    super().__init__()
    assert c1 == c2
    self.c = int(c1 * e)
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c1, 1)

    self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))

forward

forward(x)

Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = self.m(b)
    return self.cv2(torch.cat((a, b), 1))





ultralytics.nn.modules.block.C2fPSA

C2fPSA(c1, c2, n=1, e=0.5)

Bases: C2f

C2fPSA module with enhanced feature extraction using PSA blocks.

This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.

Attributes:

Name Type Description
c int

Number of hidden channels.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

m ModuleList

List of PSA blocks for feature extraction.

Methods:

Name Description
forward

Performs a forward pass through the C2fPSA module.

forward_split

Performs a forward pass using split() instead of chunk().

Examples:

>>> import torch
>>> from ultralytics.models.common import C2fPSA
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
>>> x = torch.randn(1, 64, 128, 128)
>>> output = model(x)
>>> print(output.shape)
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, n=1, e=0.5):
    """Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction."""
    assert c1 == c2
    super().__init__(c1, c2, n=n, e=e)
    self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))





ultralytics.nn.modules.block.SCDown

SCDown(c1, c2, k, s)

Bases: Module

SCDown module for downsampling with separable convolutions.

This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.

Attributes:

Name Type Description
cv1 Conv

Pointwise convolution layer that reduces the number of channels.

cv2 Conv

Depthwise convolution layer that performs spatial downsampling.

Methods:

Name Description
forward

Applies the SCDown module to the input tensor.

Examples:

>>> import torch
>>> from ultralytics import SCDown
>>> model = SCDown(c1=64, c2=128, k=3, s=2)
>>> x = torch.randn(1, 64, 128, 128)
>>> y = model(x)
>>> print(y.shape)
torch.Size([1, 128, 64, 64])
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, k, s):
    """Initializes the SCDown module with specified input/output channels, kernel size, and stride."""
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

forward

forward(x)

Applies convolution and downsampling to the input tensor in the SCDown module.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Applies convolution and downsampling to the input tensor in the SCDown module."""
    return self.cv2(self.cv1(x))





ultralytics.nn.modules.block.TorchVision

TorchVision(
    c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False
)

Bases: Module

TorchVision module to allow loading any torchvision model.

This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers.

Attributes:

Name Type Description
m Module

The loaded torchvision model, possibly truncated and unwrapped.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2

Output channels.

required
model str

Name of the torchvision model to load.

required
weights str

Pre-trained weights to load. Default is "DEFAULT".

'DEFAULT'
unwrap bool

If True, unwraps the model to a sequential containing all but the last truncate layers. Default is True.

True
truncate int

Number of layers to truncate from the end if unwrap is True. Default is 2.

2
split bool

Returns output from intermediate child modules as list. Default is False.

False
Source code in ultralytics/nn/modules/block.py
def __init__(self, c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False):
    """Load the model and weights from torchvision."""
    import torchvision

    super().__init__()
    if hasattr(torchvision.models, "get_model"):
        self.m = torchvision.models.get_model(model, weights=weights)
    else:
        self.m = torchvision.models.__dict__[model](pretrained=bool(weights))
    if unwrap:
        layers = list(self.m.children())[:-truncate]
        if isinstance(layers[0], nn.Sequential):  # Second-level for some models like EfficientNet, Swin
            layers = [*list(layers[0].children()), *layers[1:]]
        self.m = nn.Sequential(*layers)
        self.split = split
    else:
        self.split = False
        self.m.head = self.m.heads = nn.Identity()

forward

forward(x)

Forward pass through the model.

Source code in ultralytics/nn/modules/block.py
def forward(self, x):
    """Forward pass through the model."""
    if self.split:
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
    else:
        y = self.m(x)
    return y



📅 Created 1 year ago ✏️ Updated 1 day ago