Skip to content

Reference for ultralytics/nn/modules/block.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/block.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.nn.modules.block.DFL

DFL(c1: int = 16)

Bases: Module

Integral module of Distribution Focal Loss (DFL).

Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391

Parameters:

Name Type Description Default
c1 int

Number of input channels.

16
Source code in ultralytics/nn/modules/block.py
64
65
66
67
68
69
70
71
72
73
74
def __init__(self, c1: int = 16):
    """Initialize a convolutional layer with a given number of input channels.

    Args:
        c1 (int): Number of input channels.
    """
    super().__init__()
    self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
    x = torch.arange(c1, dtype=torch.float)
    self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
    self.c1 = c1

forward

forward(x: Tensor) -> torch.Tensor

Apply the DFL module to input tensor and return transformed output.

Source code in ultralytics/nn/modules/block.py
76
77
78
79
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply the DFL module to input tensor and return transformed output."""
    b, _, a = x.shape  # batch, channels, anchors
    return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)





ultralytics.nn.modules.block.Proto

Proto(c1: int, c_: int = 256, c2: int = 32)

Bases: Module

Ultralytics YOLO models mask Proto module for segmentation models.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c_ int

Intermediate channels.

256
c2 int

Output channels (number of protos).

32
Source code in ultralytics/nn/modules/block.py
86
87
88
89
90
91
92
93
94
95
96
97
98
def __init__(self, c1: int, c_: int = 256, c2: int = 32):
    """Initialize the Ultralytics YOLO models mask Proto module with specified number of protos and masks.

    Args:
        c1 (int): Input channels.
        c_ (int): Intermediate channels.
        c2 (int): Output channels (number of protos).
    """
    super().__init__()
    self.cv1 = Conv(c1, c_, k=3)
    self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
    self.cv2 = Conv(c_, c_, k=3)
    self.cv3 = Conv(c_, c2)

forward

forward(x: Tensor) -> torch.Tensor

Perform a forward pass through layers using an upsampled input image.

Source code in ultralytics/nn/modules/block.py
100
101
102
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Perform a forward pass through layers using an upsampled input image."""
    return self.cv3(self.cv2(self.upsample(self.cv1(x))))





ultralytics.nn.modules.block.HGStem

HGStem(c1: int, cm: int, c2: int)

Bases: Module

StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Parameters:

Name Type Description Default
c1 int

Input channels.

required
cm int

Middle channels.

required
c2 int

Output channels.

required
Source code in ultralytics/nn/modules/block.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def __init__(self, c1: int, cm: int, c2: int):
    """Initialize the StemBlock of PPHGNetV2.

    Args:
        c1 (int): Input channels.
        cm (int): Middle channels.
        c2 (int): Output channels.
    """
    super().__init__()
    self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
    self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
    self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
    self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
    self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
    self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass of a PPHGNetV2 backbone layer.

Source code in ultralytics/nn/modules/block.py
127
128
129
130
131
132
133
134
135
136
137
138
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of a PPHGNetV2 backbone layer."""
    x = self.stem1(x)
    x = F.pad(x, [0, 1, 0, 1])
    x2 = self.stem2a(x)
    x2 = F.pad(x2, [0, 1, 0, 1])
    x2 = self.stem2b(x2)
    x1 = self.pool(x)
    x = torch.cat([x1, x2], dim=1)
    x = self.stem3(x)
    x = self.stem4(x)
    return x





ultralytics.nn.modules.block.HGBlock

HGBlock(
    c1: int,
    cm: int,
    c2: int,
    k: int = 3,
    n: int = 6,
    lightconv: bool = False,
    shortcut: bool = False,
    act: Module = nn.ReLU(),
)

Bases: Module

HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Parameters:

Name Type Description Default
c1 int

Input channels.

required
cm int

Middle channels.

required
c2 int

Output channels.

required
k int

Kernel size.

3
n int

Number of LightConv or Conv blocks.

6
lightconv bool

Whether to use LightConv.

False
shortcut bool

Whether to use shortcut connection.

False
act Module

Activation function.

ReLU()
Source code in ultralytics/nn/modules/block.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def __init__(
    self,
    c1: int,
    cm: int,
    c2: int,
    k: int = 3,
    n: int = 6,
    lightconv: bool = False,
    shortcut: bool = False,
    act: nn.Module = nn.ReLU(),
):
    """Initialize HGBlock with specified parameters.

    Args:
        c1 (int): Input channels.
        cm (int): Middle channels.
        c2 (int): Output channels.
        k (int): Kernel size.
        n (int): Number of LightConv or Conv blocks.
        lightconv (bool): Whether to use LightConv.
        shortcut (bool): Whether to use shortcut connection.
        act (nn.Module): Activation function.
    """
    super().__init__()
    block = LightConv if lightconv else Conv
    self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
    self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
    self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
    self.add = shortcut and c1 == c2

forward

forward(x: Tensor) -> torch.Tensor

Forward pass of a PPHGNetV2 backbone layer.

Source code in ultralytics/nn/modules/block.py
177
178
179
180
181
182
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of a PPHGNetV2 backbone layer."""
    y = [x]
    y.extend(m(y[-1]) for m in self.m)
    y = self.ec(self.sc(torch.cat(y, 1)))
    return y + x if self.add else y





ultralytics.nn.modules.block.SPP

SPP(c1: int, c2: int, k: tuple[int, ...] = (5, 9, 13))

Bases: Module

Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
k tuple

Kernel sizes for max pooling.

(5, 9, 13)
Source code in ultralytics/nn/modules/block.py
188
189
190
191
192
193
194
195
196
197
198
199
200
def __init__(self, c1: int, c2: int, k: tuple[int, ...] = (5, 9, 13)):
    """Initialize the SPP layer with input/output channels and pooling kernel sizes.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        k (tuple): Kernel sizes for max pooling.
    """
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
    self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

forward

forward(x: Tensor) -> torch.Tensor

Forward pass of the SPP layer, performing spatial pyramid pooling.

Source code in ultralytics/nn/modules/block.py
202
203
204
205
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of the SPP layer, performing spatial pyramid pooling."""
    x = self.cv1(x)
    return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))





ultralytics.nn.modules.block.SPPF

SPPF(c1: int, c2: int, k: int = 5)

Bases: Module

Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
k int

Kernel size.

5
Notes

This module is equivalent to SPP(k=(5, 9, 13)).

Source code in ultralytics/nn/modules/block.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def __init__(self, c1: int, c2: int, k: int = 5):
    """Initialize the SPPF layer with given input/output channels and kernel size.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        k (int): Kernel size.

    Notes:
        This module is equivalent to SPP(k=(5, 9, 13)).
    """
    super().__init__()
    c_ = c1 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c_ * 4, c2, 1, 1)
    self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

forward

forward(x: Tensor) -> torch.Tensor

Apply sequential pooling operations to input and return concatenated feature maps.

Source code in ultralytics/nn/modules/block.py
228
229
230
231
232
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply sequential pooling operations to input and return concatenated feature maps."""
    y = [self.cv1(x)]
    y.extend(self.m(y[-1]) for _ in range(3))
    return self.cv2(torch.cat(y, 1))





ultralytics.nn.modules.block.C1

C1(c1: int, c2: int, n: int = 1)

Bases: Module

CSP Bottleneck with 1 convolution.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of convolutions.

1
Source code in ultralytics/nn/modules/block.py
238
239
240
241
242
243
244
245
246
247
248
def __init__(self, c1: int, c2: int, n: int = 1):
    """Initialize the CSP Bottleneck with 1 convolution.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of convolutions.
    """
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

forward

forward(x: Tensor) -> torch.Tensor

Apply convolution and residual connection to input tensor.

Source code in ultralytics/nn/modules/block.py
250
251
252
253
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply convolution and residual connection to input tensor."""
    y = self.cv1(x)
    return self.m(y) + y





ultralytics.nn.modules.block.C2

C2(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: Module

CSP Bottleneck with 2 convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize a CSP Bottleneck with 2 convolutions.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
    # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
    self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through the CSP bottleneck with 2 convolutions.

Source code in ultralytics/nn/modules/block.py
277
278
279
280
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    a, b = self.cv1(x).chunk(2, 1)
    return self.cv2(torch.cat((self.m(a), b), 1))





ultralytics.nn.modules.block.C2f

C2f(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = False,
    g: int = 1,
    e: float = 0.5,
)

Bases: Module

Faster Implementation of CSP Bottleneck with 2 convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

False
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
    """Initialize a CSP bottleneck with 2 convolutions.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through C2f layer.

Source code in ultralytics/nn/modules/block.py
303
304
305
306
307
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))

forward_split

forward_split(x: Tensor) -> torch.Tensor

Forward pass using split() instead of chunk().

Source code in ultralytics/nn/modules/block.py
309
310
311
312
313
314
def forward_split(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass using split() instead of chunk()."""
    y = self.cv1(x).split((self.c, self.c), 1)
    y = [y[0], y[1]]
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))





ultralytics.nn.modules.block.C3

C3(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: Module

CSP Bottleneck with 3 convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize the CSP Bottleneck with 3 convolutions.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through the CSP bottleneck with 3 convolutions.

Source code in ultralytics/nn/modules/block.py
338
339
340
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the CSP bottleneck with 3 convolutions."""
    return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))





ultralytics.nn.modules.block.C3x

C3x(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: C3

C3 module with cross-convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize C3 module with cross-convolutions.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    self.c_ = int(c2 * e)
    self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))





ultralytics.nn.modules.block.RepC3

RepC3(c1: int, c2: int, n: int = 3, e: float = 1.0)

Bases: Module

Rep C3.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of RepConv blocks.

3
e float

Expansion ratio.

1.0
Source code in ultralytics/nn/modules/block.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def __init__(self, c1: int, c2: int, n: int = 3, e: float = 1.0):
    """Initialize CSP Bottleneck with a single convolution.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of RepConv blocks.
        e (float): Expansion ratio.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
    self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

forward

forward(x: Tensor) -> torch.Tensor

Forward pass of RepC3 module.

Source code in ultralytics/nn/modules/block.py
381
382
383
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of RepC3 module."""
    return self.cv3(self.m(self.cv1(x)) + self.cv2(x))





ultralytics.nn.modules.block.C3TR

C3TR(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: C3

C3 module with TransformerBlock().

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Transformer blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize C3 module with TransformerBlock.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Transformer blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)
    self.m = TransformerBlock(c_, c_, 4, n)





ultralytics.nn.modules.block.C3Ghost

C3Ghost(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: C3

C3 module with GhostBottleneck().

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Ghost bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize C3 module with GhostBottleneck.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Ghost bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))





ultralytics.nn.modules.block.GhostBottleneck

GhostBottleneck(c1: int, c2: int, k: int = 3, s: int = 1)

Bases: Module

Ghost Bottleneck https://github.com/huawei-noah/Efficient-AI-Backbones.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
k int

Kernel size.

3
s int

Stride.

1
Source code in ultralytics/nn/modules/block.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def __init__(self, c1: int, c2: int, k: int = 3, s: int = 1):
    """Initialize Ghost Bottleneck module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        k (int): Kernel size.
        s (int): Stride.
    """
    super().__init__()
    c_ = c2 // 2
    self.conv = nn.Sequential(
        GhostConv(c1, c_, 1, 1),  # pw
        DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
        GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
    )
    self.shortcut = (
        nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
    )

forward

forward(x: Tensor) -> torch.Tensor

Apply skip connection and concatenation to input tensor.

Source code in ultralytics/nn/modules/block.py
447
448
449
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply skip connection and concatenation to input tensor."""
    return self.conv(x) + self.shortcut(x)





ultralytics.nn.modules.block.Bottleneck

Bottleneck(
    c1: int,
    c2: int,
    shortcut: bool = True,
    g: int = 1,
    k: tuple[int, int] = (3, 3),
    e: float = 0.5,
)

Bases: Module

Standard bottleneck.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
shortcut bool

Whether to use shortcut connection.

True
g int

Groups for convolutions.

1
k tuple

Kernel sizes for convolutions.

(3, 3)
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def __init__(
    self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5
):
    """Initialize a standard bottleneck module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        shortcut (bool): Whether to use shortcut connection.
        g (int): Groups for convolutions.
        k (tuple): Kernel sizes for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, k[0], 1)
    self.cv2 = Conv(c_, c2, k[1], 1, g=g)
    self.add = shortcut and c1 == c2

forward

forward(x: Tensor) -> torch.Tensor

Apply bottleneck with optional shortcut connection.

Source code in ultralytics/nn/modules/block.py
474
475
476
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply bottleneck with optional shortcut connection."""
    return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))





ultralytics.nn.modules.block.BottleneckCSP

BottleneckCSP(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: Module

CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize CSP Bottleneck.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
    self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
    self.cv4 = Conv(2 * c_, c2, 1, 1)
    self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
    self.act = nn.SiLU()
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

forward

forward(x: Tensor) -> torch.Tensor

Apply CSP bottleneck with 3 convolutions.

Source code in ultralytics/nn/modules/block.py
503
504
505
506
507
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply CSP bottleneck with 3 convolutions."""
    y1 = self.cv3(self.m(self.cv1(x)))
    y2 = self.cv2(x)
    return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))





ultralytics.nn.modules.block.ResNetBlock

ResNetBlock(c1: int, c2: int, s: int = 1, e: int = 4)

Bases: Module

ResNet block with standard convolution layers.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
s int

Stride.

1
e int

Expansion ratio.

4
Source code in ultralytics/nn/modules/block.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def __init__(self, c1: int, c2: int, s: int = 1, e: int = 4):
    """Initialize ResNet block.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        s (int): Stride.
        e (int): Expansion ratio.
    """
    super().__init__()
    c3 = e * c2
    self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
    self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
    self.cv3 = Conv(c2, c3, k=1, act=False)
    self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through the ResNet block.

Source code in ultralytics/nn/modules/block.py
529
530
531
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the ResNet block."""
    return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))





ultralytics.nn.modules.block.ResNetLayer

ResNetLayer(
    c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4
)

Bases: Module

ResNet layer with multiple ResNet blocks.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
s int

Stride.

1
is_first bool

Whether this is the first layer.

False
n int

Number of ResNet blocks.

1
e int

Expansion ratio.

4
Source code in ultralytics/nn/modules/block.py
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
def __init__(self, c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4):
    """Initialize ResNet layer.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        s (int): Stride.
        is_first (bool): Whether this is the first layer.
        n (int): Number of ResNet blocks.
        e (int): Expansion ratio.
    """
    super().__init__()
    self.is_first = is_first

    if self.is_first:
        self.layer = nn.Sequential(
            Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
    else:
        blocks = [ResNetBlock(c1, c2, s, e=e)]
        blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
        self.layer = nn.Sequential(*blocks)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through the ResNet layer.

Source code in ultralytics/nn/modules/block.py
560
561
562
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the ResNet layer."""
    return self.layer(x)





ultralytics.nn.modules.block.MaxSigmoidAttnBlock

MaxSigmoidAttnBlock(
    c1: int,
    c2: int,
    nh: int = 1,
    ec: int = 128,
    gc: int = 512,
    scale: bool = False,
)

Bases: Module

Max Sigmoid attention block.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
nh int

Number of heads.

1
ec int

Embedding channels.

128
gc int

Guide channels.

512
scale bool

Whether to use learnable scale parameter.

False
Source code in ultralytics/nn/modules/block.py
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def __init__(self, c1: int, c2: int, nh: int = 1, ec: int = 128, gc: int = 512, scale: bool = False):
    """Initialize MaxSigmoidAttnBlock.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        nh (int): Number of heads.
        ec (int): Embedding channels.
        gc (int): Guide channels.
        scale (bool): Whether to use learnable scale parameter.
    """
    super().__init__()
    self.nh = nh
    self.hc = c2 // nh
    self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
    self.gl = nn.Linear(gc, ec)
    self.bias = nn.Parameter(torch.zeros(nh))
    self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
    self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0

forward

forward(x: Tensor, guide: Tensor) -> torch.Tensor

Forward pass of MaxSigmoidAttnBlock.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required
guide Tensor

Guide tensor.

required

Returns:

Type Description
Tensor

Output tensor after attention.

Source code in ultralytics/nn/modules/block.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
    """Forward pass of MaxSigmoidAttnBlock.

    Args:
        x (torch.Tensor): Input tensor.
        guide (torch.Tensor): Guide tensor.

    Returns:
        (torch.Tensor): Output tensor after attention.
    """
    bs, _, h, w = x.shape

    guide = self.gl(guide)
    guide = guide.view(bs, guide.shape[1], self.nh, self.hc)
    embed = self.ec(x) if self.ec is not None else x
    embed = embed.view(bs, self.nh, self.hc, h, w)

    aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
    aw = aw.max(dim=-1)[0]
    aw = aw / (self.hc**0.5)
    aw = aw + self.bias[None, :, None, None]
    aw = aw.sigmoid() * self.scale

    x = self.proj_conv(x)
    x = x.view(bs, self.nh, -1, h, w)
    x = x * aw.unsqueeze(2)
    return x.view(bs, -1, h, w)





ultralytics.nn.modules.block.C2fAttn

C2fAttn(
    c1: int,
    c2: int,
    n: int = 1,
    ec: int = 128,
    nh: int = 1,
    gc: int = 512,
    shortcut: bool = False,
    g: int = 1,
    e: float = 0.5,
)

Bases: Module

C2f module with an additional attn module.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
ec int

Embedding channels for attention.

128
nh int

Number of heads for attention.

1
gc int

Guide channels for attention.

512
shortcut bool

Whether to use shortcut connections.

False
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def __init__(
    self,
    c1: int,
    c2: int,
    n: int = 1,
    ec: int = 128,
    nh: int = 1,
    gc: int = 512,
    shortcut: bool = False,
    g: int = 1,
    e: float = 0.5,
):
    """Initialize C2f module with attention mechanism.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        ec (int): Embedding channels for attention.
        nh (int): Number of heads for attention.
        gc (int): Guide channels for attention.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    self.c = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv((3 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
    self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)

forward

forward(x: Tensor, guide: Tensor) -> torch.Tensor

Forward pass through C2f layer with attention.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required
guide Tensor

Guide tensor for attention.

required

Returns:

Type Description
Tensor

Output tensor after processing.

Source code in ultralytics/nn/modules/block.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
    """Forward pass through C2f layer with attention.

    Args:
        x (torch.Tensor): Input tensor.
        guide (torch.Tensor): Guide tensor for attention.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))

forward_split

forward_split(x: Tensor, guide: Tensor) -> torch.Tensor

Forward pass using split() instead of chunk().

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required
guide Tensor

Guide tensor for attention.

required

Returns:

Type Description
Tensor

Output tensor after processing.

Source code in ultralytics/nn/modules/block.py
667
668
669
670
671
672
673
674
675
676
677
678
679
680
def forward_split(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
    """Forward pass using split() instead of chunk().

    Args:
        x (torch.Tensor): Input tensor.
        guide (torch.Tensor): Guide tensor for attention.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))





ultralytics.nn.modules.block.ImagePoolingAttn

ImagePoolingAttn(
    ec: int = 256,
    ch: tuple[int, ...] = (),
    ct: int = 512,
    nh: int = 8,
    k: int = 3,
    scale: bool = False,
)

Bases: Module

ImagePoolingAttn: Enhance the text embeddings with image-aware information.

Parameters:

Name Type Description Default
ec int

Embedding channels.

256
ch tuple

Channel dimensions for feature maps.

()
ct int

Channel dimension for text embeddings.

512
nh int

Number of attention heads.

8
k int

Kernel size for pooling.

3
scale bool

Whether to use learnable scale parameter.

False
Source code in ultralytics/nn/modules/block.py
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
def __init__(
    self, ec: int = 256, ch: tuple[int, ...] = (), ct: int = 512, nh: int = 8, k: int = 3, scale: bool = False
):
    """Initialize ImagePoolingAttn module.

    Args:
        ec (int): Embedding channels.
        ch (tuple): Channel dimensions for feature maps.
        ct (int): Channel dimension for text embeddings.
        nh (int): Number of attention heads.
        k (int): Kernel size for pooling.
        scale (bool): Whether to use learnable scale parameter.
    """
    super().__init__()

    nf = len(ch)
    self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
    self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
    self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
    self.proj = nn.Linear(ec, ct)
    self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
    self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
    self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
    self.ec = ec
    self.nh = nh
    self.nf = nf
    self.hc = ec // nh
    self.k = k

forward

forward(x: list[Tensor], text: Tensor) -> torch.Tensor

Forward pass of ImagePoolingAttn.

Parameters:

Name Type Description Default
x list[Tensor]

List of input feature maps.

required
text Tensor

Text embeddings.

required

Returns:

Type Description
Tensor

Enhanced text embeddings.

Source code in ultralytics/nn/modules/block.py
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> torch.Tensor:
    """Forward pass of ImagePoolingAttn.

    Args:
        x (list[torch.Tensor]): List of input feature maps.
        text (torch.Tensor): Text embeddings.

    Returns:
        (torch.Tensor): Enhanced text embeddings.
    """
    bs = x[0].shape[0]
    assert len(x) == self.nf
    num_patches = self.k**2
    x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
    x = torch.cat(x, dim=-1).transpose(1, 2)
    q = self.query(text)
    k = self.key(x)
    v = self.value(x)

    # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
    q = q.reshape(bs, -1, self.nh, self.hc)
    k = k.reshape(bs, -1, self.nh, self.hc)
    v = v.reshape(bs, -1, self.nh, self.hc)

    aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
    aw = aw / (self.hc**0.5)
    aw = F.softmax(aw, dim=-1)

    x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
    x = self.proj(x.reshape(bs, -1, self.ec))
    return x * self.scale + text





ultralytics.nn.modules.block.ContrastiveHead

ContrastiveHead()

Bases: Module

Implements contrastive learning head for region-text similarity in vision-language models.

Source code in ultralytics/nn/modules/block.py
751
752
753
754
755
756
def __init__(self):
    """Initialize ContrastiveHead with region-text similarity parameters."""
    super().__init__()
    # NOTE: use -10.0 to keep the init cls loss consistency with other losses
    self.bias = nn.Parameter(torch.tensor([-10.0]))
    self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())

forward

forward(x: Tensor, w: Tensor) -> torch.Tensor

Forward function of contrastive learning.

Parameters:

Name Type Description Default
x Tensor

Image features.

required
w Tensor

Text features.

required

Returns:

Type Description
Tensor

Similarity scores.

Source code in ultralytics/nn/modules/block.py
758
759
760
761
762
763
764
765
766
767
768
769
770
771
def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
    """Forward function of contrastive learning.

    Args:
        x (torch.Tensor): Image features.
        w (torch.Tensor): Text features.

    Returns:
        (torch.Tensor): Similarity scores.
    """
    x = F.normalize(x, dim=1, p=2)
    w = F.normalize(w, dim=-1, p=2)
    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias





ultralytics.nn.modules.block.BNContrastiveHead

BNContrastiveHead(embed_dims: int)

Bases: Module

Batch Norm Contrastive Head using batch norm instead of l2-normalization.

Parameters:

Name Type Description Default
embed_dims int

Embed dimensions of text and image features.

required

Parameters:

Name Type Description Default
embed_dims int

Embedding dimensions for features.

required
Source code in ultralytics/nn/modules/block.py
781
782
783
784
785
786
787
788
789
790
791
792
def __init__(self, embed_dims: int):
    """Initialize BNContrastiveHead.

    Args:
        embed_dims (int): Embedding dimensions for features.
    """
    super().__init__()
    self.norm = nn.BatchNorm2d(embed_dims)
    # NOTE: use -10.0 to keep the init cls loss consistency with other losses
    self.bias = nn.Parameter(torch.tensor([-10.0]))
    # use -1.0 is more stable
    self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))

forward

forward(x: Tensor, w: Tensor) -> torch.Tensor

Forward function of contrastive learning with batch normalization.

Parameters:

Name Type Description Default
x Tensor

Image features.

required
w Tensor

Text features.

required

Returns:

Type Description
Tensor

Similarity scores.

Source code in ultralytics/nn/modules/block.py
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
    """Forward function of contrastive learning with batch normalization.

    Args:
        x (torch.Tensor): Image features.
        w (torch.Tensor): Text features.

    Returns:
        (torch.Tensor): Similarity scores.
    """
    x = self.norm(x)
    w = F.normalize(w, dim=-1, p=2)

    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias

forward_fuse

forward_fuse(x: Tensor, w: Tensor) -> torch.Tensor

Passes input out unchanged.

Source code in ultralytics/nn/modules/block.py
801
802
803
def forward_fuse(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
    """Passes input out unchanged."""
    return x

fuse

fuse()

Fuse the batch normalization layer in the BNContrastiveHead module.

Source code in ultralytics/nn/modules/block.py
794
795
796
797
798
799
def fuse(self):
    """Fuse the batch normalization layer in the BNContrastiveHead module."""
    del self.norm
    del self.bias
    del self.logit_scale
    self.forward = self.forward_fuse





ultralytics.nn.modules.block.RepBottleneck

RepBottleneck(
    c1: int,
    c2: int,
    shortcut: bool = True,
    g: int = 1,
    k: tuple[int, int] = (3, 3),
    e: float = 0.5,
)

Bases: Bottleneck

Rep bottleneck.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
shortcut bool

Whether to use shortcut connection.

True
g int

Groups for convolutions.

1
k tuple

Kernel sizes for convolutions.

(3, 3)
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
def __init__(
    self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5
):
    """Initialize RepBottleneck.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        shortcut (bool): Whether to use shortcut connection.
        g (int): Groups for convolutions.
        k (tuple): Kernel sizes for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__(c1, c2, shortcut, g, k, e)
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = RepConv(c1, c_, k[0], 1)





ultralytics.nn.modules.block.RepCSP

RepCSP(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
)

Bases: C3

Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of RepBottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
846
847
848
849
850
851
852
853
854
855
856
857
858
859
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
    """Initialize RepCSP layer.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of RepBottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))





ultralytics.nn.modules.block.RepNCSPELAN4

RepNCSPELAN4(c1: int, c2: int, c3: int, c4: int, n: int = 1)

Bases: Module

CSP-ELAN.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
c3 int

Intermediate channels.

required
c4 int

Intermediate channels for RepCSP.

required
n int

Number of RepCSP blocks.

1
Source code in ultralytics/nn/modules/block.py
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
def __init__(self, c1: int, c2: int, c3: int, c4: int, n: int = 1):
    """Initialize CSP-ELAN layer.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        c3 (int): Intermediate channels.
        c4 (int): Intermediate channels for RepCSP.
        n (int): Number of RepCSP blocks.
    """
    super().__init__()
    self.c = c3 // 2
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
    self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
    self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through RepNCSPELAN4 layer.

Source code in ultralytics/nn/modules/block.py
882
883
884
885
886
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through RepNCSPELAN4 layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))

forward_split

forward_split(x: Tensor) -> torch.Tensor

Forward pass using split() instead of chunk().

Source code in ultralytics/nn/modules/block.py
888
889
890
891
892
def forward_split(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))





ultralytics.nn.modules.block.ELAN1

ELAN1(c1: int, c2: int, c3: int, c4: int)

Bases: RepNCSPELAN4

ELAN1 module with 4 convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
c3 int

Intermediate channels.

required
c4 int

Intermediate channels for convolutions.

required
Source code in ultralytics/nn/modules/block.py
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
def __init__(self, c1: int, c2: int, c3: int, c4: int):
    """Initialize ELAN1 layer.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        c3 (int): Intermediate channels.
        c4 (int): Intermediate channels for convolutions.
    """
    super().__init__(c1, c2, c3, c4)
    self.c = c3 // 2
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = Conv(c3 // 2, c4, 3, 1)
    self.cv3 = Conv(c4, c4, 3, 1)
    self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)





ultralytics.nn.modules.block.AConv

AConv(c1: int, c2: int)

Bases: Module

AConv.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
Source code in ultralytics/nn/modules/block.py
918
919
920
921
922
923
924
925
926
def __init__(self, c1: int, c2: int):
    """Initialize AConv module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
    """
    super().__init__()
    self.cv1 = Conv(c1, c2, 3, 2, 1)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through AConv layer.

Source code in ultralytics/nn/modules/block.py
928
929
930
931
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through AConv layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    return self.cv1(x)





ultralytics.nn.modules.block.ADown

ADown(c1: int, c2: int)

Bases: Module

ADown.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
Source code in ultralytics/nn/modules/block.py
937
938
939
940
941
942
943
944
945
946
947
def __init__(self, c1: int, c2: int):
    """Initialize ADown module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
    """
    super().__init__()
    self.c = c2 // 2
    self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
    self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through ADown layer.

Source code in ultralytics/nn/modules/block.py
949
950
951
952
953
954
955
956
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through ADown layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    x1, x2 = x.chunk(2, 1)
    x1 = self.cv1(x1)
    x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
    x2 = self.cv2(x2)
    return torch.cat((x1, x2), 1)





ultralytics.nn.modules.block.SPPELAN

SPPELAN(c1: int, c2: int, c3: int, k: int = 5)

Bases: Module

SPP-ELAN.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
c3 int

Intermediate channels.

required
k int

Kernel size for max pooling.

5
Source code in ultralytics/nn/modules/block.py
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
def __init__(self, c1: int, c2: int, c3: int, k: int = 5):
    """Initialize SPP-ELAN block.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        c3 (int): Intermediate channels.
        k (int): Kernel size for max pooling.
    """
    super().__init__()
    self.c = c3
    self.cv1 = Conv(c1, c3, 1, 1)
    self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    self.cv5 = Conv(4 * c3, c2, 1, 1)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through SPPELAN layer.

Source code in ultralytics/nn/modules/block.py
979
980
981
982
983
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through SPPELAN layer."""
    y = [self.cv1(x)]
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
    return self.cv5(torch.cat(y, 1))





ultralytics.nn.modules.block.CBLinear

CBLinear(
    c1: int,
    c2s: list[int],
    k: int = 1,
    s: int = 1,
    p: int | None = None,
    g: int = 1,
)

Bases: Module

CBLinear.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2s list[int]

List of output channel sizes.

required
k int

Kernel size.

1
s int

Stride.

1
p int | None

Padding.

None
g int

Groups.

1
Source code in ultralytics/nn/modules/block.py
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
def __init__(self, c1: int, c2s: list[int], k: int = 1, s: int = 1, p: int | None = None, g: int = 1):
    """Initialize CBLinear module.

    Args:
        c1 (int): Input channels.
        c2s (list[int]): List of output channel sizes.
        k (int): Kernel size.
        s (int): Stride.
        p (int | None): Padding.
        g (int): Groups.
    """
    super().__init__()
    self.c2s = c2s
    self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)

forward

forward(x: Tensor) -> list[torch.Tensor]

Forward pass through CBLinear layer.

Source code in ultralytics/nn/modules/block.py
1004
1005
1006
def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
    """Forward pass through CBLinear layer."""
    return self.conv(x).split(self.c2s, dim=1)





ultralytics.nn.modules.block.CBFuse

CBFuse(idx: list[int])

Bases: Module

CBFuse.

Parameters:

Name Type Description Default
idx list[int]

Indices for feature selection.

required
Source code in ultralytics/nn/modules/block.py
1012
1013
1014
1015
1016
1017
1018
1019
def __init__(self, idx: list[int]):
    """Initialize CBFuse module.

    Args:
        idx (list[int]): Indices for feature selection.
    """
    super().__init__()
    self.idx = idx

forward

forward(xs: list[Tensor]) -> torch.Tensor

Forward pass through CBFuse layer.

Parameters:

Name Type Description Default
xs list[Tensor]

List of input tensors.

required

Returns:

Type Description
Tensor

Fused output tensor.

Source code in ultralytics/nn/modules/block.py
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def forward(self, xs: list[torch.Tensor]) -> torch.Tensor:
    """Forward pass through CBFuse layer.

    Args:
        xs (list[torch.Tensor]): List of input tensors.

    Returns:
        (torch.Tensor): Fused output tensor.
    """
    target_size = xs[-1].shape[2:]
    res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
    return torch.sum(torch.stack(res + xs[-1:]), dim=0)





ultralytics.nn.modules.block.C3f

C3f(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = False,
    g: int = 1,
    e: float = 0.5,
)

Bases: Module

Faster Implementation of CSP Bottleneck with 2 convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

False
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
    """Initialize CSP bottleneck layer with two convolutions.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv(c1, c_, 1, 1)
    self.cv3 = Conv((2 + n) * c_, c2, 1)  # optional act=FReLU(c2)
    self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through C3f layer.

Source code in ultralytics/nn/modules/block.py
1056
1057
1058
1059
1060
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through C3f layer."""
    y = [self.cv2(x), self.cv1(x)]
    y.extend(m(y[-1]) for m in self.m)
    return self.cv3(torch.cat(y, 1))





ultralytics.nn.modules.block.C3k2

C3k2(
    c1: int,
    c2: int,
    n: int = 1,
    c3k: bool = False,
    e: float = 0.5,
    g: int = 1,
    shortcut: bool = True,
)

Bases: C2f

Faster Implementation of CSP Bottleneck with 2 convolutions.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of blocks.

1
c3k bool

Whether to use C3k blocks.

False
e float

Expansion ratio.

0.5
g int

Groups for convolutions.

1
shortcut bool

Whether to use shortcut connections.

True
Source code in ultralytics/nn/modules/block.py
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
def __init__(
    self, c1: int, c2: int, n: int = 1, c3k: bool = False, e: float = 0.5, g: int = 1, shortcut: bool = True
):
    """Initialize C3k2 module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of blocks.
        c3k (bool): Whether to use C3k blocks.
        e (float): Expansion ratio.
        g (int): Groups for convolutions.
        shortcut (bool): Whether to use shortcut connections.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    self.m = nn.ModuleList(
        C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
    )





ultralytics.nn.modules.block.C3k

C3k(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = True,
    g: int = 1,
    e: float = 0.5,
    k: int = 3,
)

Bases: C3

C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of Bottleneck blocks.

1
shortcut bool

Whether to use shortcut connections.

True
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
k int

Kernel size.

3
Source code in ultralytics/nn/modules/block.py
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5, k: int = 3):
    """Initialize C3k module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of Bottleneck blocks.
        shortcut (bool): Whether to use shortcut connections.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
        k (int): Kernel size.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    c_ = int(c2 * e)  # hidden channels
    # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
    self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))





ultralytics.nn.modules.block.RepVGGDW

RepVGGDW(ed: int)

Bases: Module

RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.

Parameters:

Name Type Description Default
ed int

Input and output channels.

required
Source code in ultralytics/nn/modules/block.py
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
def __init__(self, ed: int) -> None:
    """Initialize RepVGGDW module.

    Args:
        ed (int): Input and output channels.
    """
    super().__init__()
    self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
    self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
    self.dim = ed
    self.act = nn.SiLU()

forward

forward(x: Tensor) -> torch.Tensor

Perform a forward pass of the RepVGGDW block.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after applying the depth wise separable convolution.

Source code in ultralytics/nn/modules/block.py
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Perform a forward pass of the RepVGGDW block.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x) + self.conv1(x))

forward_fuse

forward_fuse(x: Tensor) -> torch.Tensor

Perform a forward pass of the RepVGGDW block without fusing the convolutions.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after applying the depth wise separable convolution.

Source code in ultralytics/nn/modules/block.py
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
def forward_fuse(self, x: torch.Tensor) -> torch.Tensor:
    """Perform a forward pass of the RepVGGDW block without fusing the convolutions.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x))

fuse

fuse()

Fuse the convolutional layers in the RepVGGDW block.

This method fuses the convolutional layers and updates the weights and biases accordingly.

Source code in ultralytics/nn/modules/block.py
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
@torch.no_grad()
def fuse(self):
    """Fuse the convolutional layers in the RepVGGDW block.

    This method fuses the convolutional layers and updates the weights and biases accordingly.
    """
    conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
    conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)

    conv_w = conv.weight
    conv_b = conv.bias
    conv1_w = conv1.weight
    conv1_b = conv1.bias

    conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])

    final_conv_w = conv_w + conv1_w
    final_conv_b = conv_b + conv1_b

    conv.weight.data.copy_(final_conv_w)
    conv.bias.data.copy_(final_conv_b)

    self.conv = conv
    del self.conv1





ultralytics.nn.modules.block.CIB

CIB(c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False)

Bases: Module

Conditional Identity Block (CIB) module.

Parameters:

Name Type Description Default
c1 int

Number of input channels.

required
c2 int

Number of output channels.

required
shortcut bool

Whether to add a shortcut connection. Defaults to True.

True
e float

Scaling factor for the hidden channels. Defaults to 0.5.

0.5
lk bool

Whether to use RepVGGDW for the third convolutional layer. Defaults to False.

False

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
shortcut bool

Whether to use shortcut connection.

True
e float

Expansion ratio.

0.5
lk bool

Whether to use RepVGGDW.

False
Source code in ultralytics/nn/modules/block.py
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
def __init__(self, c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False):
    """Initialize the CIB module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        shortcut (bool): Whether to use shortcut connection.
        e (float): Expansion ratio.
        lk (bool): Whether to use RepVGGDW.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    self.cv1 = nn.Sequential(
        Conv(c1, c1, 3, g=c1),
        Conv(c1, 2 * c_, 1),
        RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
        Conv(2 * c_, c2, 1),
        Conv(c2, c2, 3, g=c2),
    )

    self.add = shortcut and c1 == c2

forward

forward(x: Tensor) -> torch.Tensor

Forward pass of the CIB module.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor.

Source code in ultralytics/nn/modules/block.py
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of the CIB module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor.
    """
    return x + self.cv1(x) if self.add else self.cv1(x)





ultralytics.nn.modules.block.C2fCIB

C2fCIB(
    c1: int,
    c2: int,
    n: int = 1,
    shortcut: bool = False,
    lk: bool = False,
    g: int = 1,
    e: float = 0.5,
)

Bases: C2f

C2fCIB class represents a convolutional block with C2f and CIB modules.

Parameters:

Name Type Description Default
c1 int

Number of input channels.

required
c2 int

Number of output channels.

required
n int

Number of CIB modules to stack. Defaults to 1.

1
shortcut bool

Whether to use shortcut connection. Defaults to False.

False
lk bool

Whether to use local key connection. Defaults to False.

False
g int

Number of groups for grouped convolution. Defaults to 1.

1
e float

Expansion ratio for CIB modules. Defaults to 0.5.

0.5

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of CIB modules.

1
shortcut bool

Whether to use shortcut connection.

False
lk bool

Whether to use local key connection.

False
g int

Groups for convolutions.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
def __init__(
    self, c1: int, c2: int, n: int = 1, shortcut: bool = False, lk: bool = False, g: int = 1, e: float = 0.5
):
    """Initialize C2fCIB module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of CIB modules.
        shortcut (bool): Whether to use shortcut connection.
        lk (bool): Whether to use local key connection.
        g (int): Groups for convolutions.
        e (float): Expansion ratio.
    """
    super().__init__(c1, c2, n, shortcut, g, e)
    self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))





ultralytics.nn.modules.block.Attention

Attention(dim: int, num_heads: int = 8, attn_ratio: float = 0.5)

Bases: Module

Attention module that performs self-attention on the input tensor.

Parameters:

Name Type Description Default
dim int

The input tensor dimension.

required
num_heads int

The number of attention heads.

8
attn_ratio float

The ratio of the attention key dimension to the head dimension.

0.5

Attributes:

Name Type Description
num_heads int

The number of attention heads.

head_dim int

The dimension of each attention head.

key_dim int

The dimension of the attention key.

scale float

The scaling factor for the attention scores.

qkv Conv

Convolutional layer for computing the query, key, and value.

proj Conv

Convolutional layer for projecting the attended values.

pe Conv

Convolutional layer for positional encoding.

Parameters:

Name Type Description Default
dim int

Input dimension.

required
num_heads int

Number of attention heads.

8
attn_ratio float

Attention ratio for key dimension.

0.5
Source code in ultralytics/nn/modules/block.py
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
def __init__(self, dim: int, num_heads: int = 8, attn_ratio: float = 0.5):
    """Initialize multi-head attention module.

    Args:
        dim (int): Input dimension.
        num_heads (int): Number of attention heads.
        attn_ratio (float): Attention ratio for key dimension.
    """
    super().__init__()
    self.num_heads = num_heads
    self.head_dim = dim // num_heads
    self.key_dim = int(self.head_dim * attn_ratio)
    self.scale = self.key_dim**-0.5
    nh_kd = self.key_dim * num_heads
    h = dim + nh_kd * 2
    self.qkv = Conv(dim, h, 1, act=False)
    self.proj = Conv(dim, dim, 1, act=False)
    self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass of the Attention module.

Parameters:

Name Type Description Default
x Tensor

The input tensor.

required

Returns:

Type Description
Tensor

The output tensor after self-attention.

Source code in ultralytics/nn/modules/block.py
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of the Attention module.

    Args:
        x (torch.Tensor): The input tensor.

    Returns:
        (torch.Tensor): The output tensor after self-attention.
    """
    B, C, H, W = x.shape
    N = H * W
    qkv = self.qkv(x)
    q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
        [self.key_dim, self.key_dim, self.head_dim], dim=2
    )

    attn = (q.transpose(-2, -1) @ k) * self.scale
    attn = attn.softmax(dim=-1)
    x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
    x = self.proj(x)
    return x





ultralytics.nn.modules.block.PSABlock

PSABlock(
    c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True
)

Bases: Module

PSABlock class implementing a Position-Sensitive Attention block for neural networks.

This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers with optional shortcut connections.

Attributes:

Name Type Description
attn Attention

Multi-head attention module.

ffn Sequential

Feed-forward neural network module.

add bool

Flag indicating whether to add shortcut connections.

Methods:

Name Description
forward

Performs a forward pass through the PSABlock, applying attention and feed-forward layers.

Examples:

Create a PSABlock and perform a forward pass

>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)

Parameters:

Name Type Description Default
c int

Input and output channels.

required
attn_ratio float

Attention ratio for key dimension.

0.5
num_heads int

Number of attention heads.

4
shortcut bool

Whether to use shortcut connections.

True
Source code in ultralytics/nn/modules/block.py
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
def __init__(self, c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True) -> None:
    """Initialize the PSABlock.

    Args:
        c (int): Input and output channels.
        attn_ratio (float): Attention ratio for key dimension.
        num_heads (int): Number of attention heads.
        shortcut (bool): Whether to use shortcut connections.
    """
    super().__init__()

    self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
    self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
    self.add = shortcut

forward

forward(x: Tensor) -> torch.Tensor

Execute a forward pass through PSABlock.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after attention and feed-forward processing.

Source code in ultralytics/nn/modules/block.py
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Execute a forward pass through PSABlock.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after attention and feed-forward processing.
    """
    x = x + self.attn(x) if self.add else self.attn(x)
    x = x + self.ffn(x) if self.add else self.ffn(x)
    return x





ultralytics.nn.modules.block.PSA

PSA(c1: int, c2: int, e: float = 0.5)

Bases: Module

PSA class for implementing Position-Sensitive Attention in neural networks.

This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to input tensors, enhancing feature extraction and processing capabilities.

Attributes:

Name Type Description
c int

Number of hidden channels after applying the initial convolution.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

attn Attention

Attention module for position-sensitive attention.

ffn Sequential

Feed-forward network for further processing.

Methods:

Name Description
forward

Applies position-sensitive attention and feed-forward network to the input tensor.

Examples:

Create a PSA module and apply it to an input tensor

>>> psa = PSA(c1=128, c2=128, e=0.5)
>>> input_tensor = torch.randn(1, 128, 64, 64)
>>> output_tensor = psa.forward(input_tensor)

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
def __init__(self, c1: int, c2: int, e: float = 0.5):
    """Initialize PSA module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        e (float): Expansion ratio.
    """
    super().__init__()
    assert c1 == c2
    self.c = int(c1 * e)
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c1, 1)

    self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
    self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))

forward

forward(x: Tensor) -> torch.Tensor

Execute forward pass in PSA module.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after attention and feed-forward processing.

Source code in ultralytics/nn/modules/block.py
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Execute forward pass in PSA module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after attention and feed-forward processing.
    """
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = b + self.attn(b)
    b = b + self.ffn(b)
    return self.cv2(torch.cat((a, b), 1))





ultralytics.nn.modules.block.C2PSA

C2PSA(c1: int, c2: int, n: int = 1, e: float = 0.5)

Bases: Module

C2PSA module with attention mechanism for enhanced feature extraction and processing.

This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.

Attributes:

Name Type Description
c int

Number of hidden channels.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

m Sequential

Sequential container of PSABlock modules for attention and feed-forward operations.

Methods:

Name Description
forward

Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.

Examples:

>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)
Notes

This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of PSABlock modules.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
    """Initialize C2PSA module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of PSABlock modules.
        e (float): Expansion ratio.
    """
    super().__init__()
    assert c1 == c2
    self.c = int(c1 * e)
    self.cv1 = Conv(c1, 2 * self.c, 1, 1)
    self.cv2 = Conv(2 * self.c, c1, 1)

    self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))

forward

forward(x: Tensor) -> torch.Tensor

Process the input tensor through a series of PSA blocks.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after processing.

Source code in ultralytics/nn/modules/block.py
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Process the input tensor through a series of PSA blocks.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = self.m(b)
    return self.cv2(torch.cat((a, b), 1))





ultralytics.nn.modules.block.C2fPSA

C2fPSA(c1: int, c2: int, n: int = 1, e: float = 0.5)

Bases: C2f

C2fPSA module with enhanced feature extraction using PSA blocks.

This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.

Attributes:

Name Type Description
c int

Number of hidden channels.

cv1 Conv

1x1 convolution layer to reduce the number of input channels to 2*c.

cv2 Conv

1x1 convolution layer to reduce the number of output channels to c.

m ModuleList

List of PSA blocks for feature extraction.

Methods:

Name Description
forward

Performs a forward pass through the C2fPSA module.

forward_split

Performs a forward pass using split() instead of chunk().

Examples:

>>> import torch
>>> from ultralytics.models.common import C2fPSA
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
>>> x = torch.randn(1, 64, 128, 128)
>>> output = model(x)
>>> print(output.shape)

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
n int

Number of PSABlock modules.

1
e float

Expansion ratio.

0.5
Source code in ultralytics/nn/modules/block.py
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
    """Initialize C2fPSA module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        n (int): Number of PSABlock modules.
        e (float): Expansion ratio.
    """
    assert c1 == c2
    super().__init__(c1, c2, n=n, e=e)
    self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))





ultralytics.nn.modules.block.SCDown

SCDown(c1: int, c2: int, k: int, s: int)

Bases: Module

SCDown module for downsampling with separable convolutions.

This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.

Attributes:

Name Type Description
cv1 Conv

Pointwise convolution layer that reduces the number of channels.

cv2 Conv

Depthwise convolution layer that performs spatial downsampling.

Methods:

Name Description
forward

Applies the SCDown module to the input tensor.

Examples:

>>> import torch
>>> from ultralytics import SCDown
>>> model = SCDown(c1=64, c2=128, k=3, s=2)
>>> x = torch.randn(1, 64, 128, 128)
>>> y = model(x)
>>> print(y.shape)
torch.Size([1, 128, 64, 64])

Parameters:

Name Type Description Default
c1 int

Input channels.

required
c2 int

Output channels.

required
k int

Kernel size.

required
s int

Stride.

required
Source code in ultralytics/nn/modules/block.py
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
def __init__(self, c1: int, c2: int, k: int, s: int):
    """Initialize SCDown module.

    Args:
        c1 (int): Input channels.
        c2 (int): Output channels.
        k (int): Kernel size.
        s (int): Stride.
    """
    super().__init__()
    self.cv1 = Conv(c1, c2, 1, 1)
    self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

forward

forward(x: Tensor) -> torch.Tensor

Apply convolution and downsampling to the input tensor.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Downsampled output tensor.

Source code in ultralytics/nn/modules/block.py
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply convolution and downsampling to the input tensor.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Downsampled output tensor.
    """
    return self.cv2(self.cv1(x))





ultralytics.nn.modules.block.TorchVision

TorchVision(
    model: str,
    weights: str = "DEFAULT",
    unwrap: bool = True,
    truncate: int = 2,
    split: bool = False,
)

Bases: Module

TorchVision module to allow loading any torchvision model.

This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers.

Parameters:

Name Type Description Default
model str

Name of the torchvision model to load.

required
weights str

Pre-trained weights to load. Default is "DEFAULT".

'DEFAULT'
unwrap bool

Unwraps the model to a sequential containing all but the last truncate layers.

True
truncate int

Number of layers to truncate from the end if unwrap is True. Default is 2.

2
split bool

Returns output from intermediate child modules as list. Default is False.

False

Attributes:

Name Type Description
m Module

The loaded torchvision model, possibly truncated and unwrapped.

Parameters:

Name Type Description Default
model str

Name of the torchvision model to load.

required
weights str

Pre-trained weights to load.

'DEFAULT'
unwrap bool

Whether to unwrap the model.

True
truncate int

Number of layers to truncate.

2
split bool

Whether to split the output.

False
Source code in ultralytics/nn/modules/block.py
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
def __init__(
    self, model: str, weights: str = "DEFAULT", unwrap: bool = True, truncate: int = 2, split: bool = False
):
    """Load the model and weights from torchvision.

    Args:
        model (str): Name of the torchvision model to load.
        weights (str): Pre-trained weights to load.
        unwrap (bool): Whether to unwrap the model.
        truncate (int): Number of layers to truncate.
        split (bool): Whether to split the output.
    """
    import torchvision  # scope for faster 'import ultralytics'

    super().__init__()
    if hasattr(torchvision.models, "get_model"):
        self.m = torchvision.models.get_model(model, weights=weights)
    else:
        self.m = torchvision.models.__dict__[model](pretrained=bool(weights))
    if unwrap:
        layers = list(self.m.children())
        if isinstance(layers[0], nn.Sequential):  # Second-level for some models like EfficientNet, Swin
            layers = [*list(layers[0].children()), *layers[1:]]
        self.m = nn.Sequential(*(layers[:-truncate] if truncate else layers))
        self.split = split
    else:
        self.split = False
        self.m.head = self.m.heads = nn.Identity()

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through the model.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor | list[Tensor]

Output tensor or list of tensors.

Source code in ultralytics/nn/modules/block.py
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the model.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor | list[torch.Tensor]): Output tensor or list of tensors.
    """
    if self.split:
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
    else:
        y = self.m(x)
    return y





ultralytics.nn.modules.block.AAttn

AAttn(dim: int, num_heads: int, area: int = 1)

Bases: Module

Area-attention module for YOLO models, providing efficient attention mechanisms.

This module implements an area-based attention mechanism that processes input features in a spatially-aware manner, making it particularly effective for object detection tasks.

Attributes:

Name Type Description
area int

Number of areas the feature map is divided.

num_heads int

Number of heads into which the attention mechanism is divided.

head_dim int

Dimension of each attention head.

qkv Conv

Convolution layer for computing query, key and value tensors.

proj Conv

Projection convolution layer.

pe Conv

Position encoding convolution layer.

Methods:

Name Description
forward

Applies area-attention to input tensor.

Examples:

>>> attn = AAttn(dim=256, num_heads=8, area=4)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = attn(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])

Parameters:

Name Type Description Default
dim int

Number of hidden channels.

required
num_heads int

Number of heads into which the attention mechanism is divided.

required
area int

Number of areas the feature map is divided.

1
Source code in ultralytics/nn/modules/block.py
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
def __init__(self, dim: int, num_heads: int, area: int = 1):
    """Initialize an Area-attention module for YOLO models.

    Args:
        dim (int): Number of hidden channels.
        num_heads (int): Number of heads into which the attention mechanism is divided.
        area (int): Number of areas the feature map is divided.
    """
    super().__init__()
    self.area = area

    self.num_heads = num_heads
    self.head_dim = head_dim = dim // num_heads
    all_head_dim = head_dim * self.num_heads

    self.qkv = Conv(dim, all_head_dim * 3, 1, act=False)
    self.proj = Conv(all_head_dim, dim, 1, act=False)
    self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)

forward

forward(x: Tensor) -> torch.Tensor

Process the input tensor through the area-attention.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after area-attention.

Source code in ultralytics/nn/modules/block.py
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Process the input tensor through the area-attention.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after area-attention.
    """
    B, C, H, W = x.shape
    N = H * W

    qkv = self.qkv(x).flatten(2).transpose(1, 2)
    if self.area > 1:
        qkv = qkv.reshape(B * self.area, N // self.area, C * 3)
        B, N, _ = qkv.shape
    q, k, v = (
        qkv.view(B, N, self.num_heads, self.head_dim * 3)
        .permute(0, 2, 3, 1)
        .split([self.head_dim, self.head_dim, self.head_dim], dim=2)
    )
    attn = (q.transpose(-2, -1) @ k) * (self.head_dim**-0.5)
    attn = attn.softmax(dim=-1)
    x = v @ attn.transpose(-2, -1)
    x = x.permute(0, 3, 1, 2)
    v = v.permute(0, 3, 1, 2)

    if self.area > 1:
        x = x.reshape(B // self.area, N * self.area, C)
        v = v.reshape(B // self.area, N * self.area, C)
        B, N, _ = x.shape

    x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
    v = v.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()

    x = x + self.pe(v)
    return self.proj(x)





ultralytics.nn.modules.block.ABlock

ABlock(dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1)

Bases: Module

Area-attention block module for efficient feature extraction in YOLO models.

This module implements an area-attention mechanism combined with a feed-forward network for processing feature maps. It uses a novel area-based attention approach that is more efficient than traditional self-attention while maintaining effectiveness.

Attributes:

Name Type Description
attn AAttn

Area-attention module for processing spatial features.

mlp Sequential

Multi-layer perceptron for feature transformation.

Methods:

Name Description
_init_weights

Initializes module weights using truncated normal distribution.

forward

Applies area-attention and feed-forward processing to input tensor.

Examples:

>>> block = ABlock(dim=256, num_heads=8, mlp_ratio=1.2, area=1)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])

Parameters:

Name Type Description Default
dim int

Number of input channels.

required
num_heads int

Number of heads into which the attention mechanism is divided.

required
mlp_ratio float

Expansion ratio for MLP hidden dimension.

1.2
area int

Number of areas the feature map is divided.

1
Source code in ultralytics/nn/modules/block.py
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
def __init__(self, dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1):
    """Initialize an Area-attention block module.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of heads into which the attention mechanism is divided.
        mlp_ratio (float): Expansion ratio for MLP hidden dimension.
        area (int): Number of areas the feature map is divided.
    """
    super().__init__()

    self.attn = AAttn(dim, num_heads=num_heads, area=area)
    mlp_hidden_dim = int(dim * mlp_ratio)
    self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))

    self.apply(self._init_weights)

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through ABlock.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after area-attention and feed-forward processing.

Source code in ultralytics/nn/modules/block.py
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through ABlock.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after area-attention and feed-forward processing.
    """
    x = x + self.attn(x)
    return x + self.mlp(x)





ultralytics.nn.modules.block.A2C2f

A2C2f(
    c1: int,
    c2: int,
    n: int = 1,
    a2: bool = True,
    area: int = 1,
    residual: bool = False,
    mlp_ratio: float = 2.0,
    e: float = 0.5,
    g: int = 1,
    shortcut: bool = True,
)

Bases: Module

Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms.

This module extends the C2f architecture by incorporating area-attention and ABlock layers for improved feature processing. It supports both area-attention and standard convolution modes.

Attributes:

Name Type Description
cv1 Conv

Initial 1x1 convolution layer that reduces input channels to hidden channels.

cv2 Conv

Final 1x1 convolution layer that processes concatenated features.

gamma Parameter | None

Learnable parameter for residual scaling when using area attention.

m ModuleList

List of either ABlock or C3k modules for feature processing.

Methods:

Name Description
forward

Processes input through area-attention or standard convolution pathway.

Examples:

>>> m = A2C2f(512, 512, n=1, a2=True, area=1)
>>> x = torch.randn(1, 512, 32, 32)
>>> output = m(x)
>>> print(output.shape)
torch.Size([1, 512, 32, 32])

Parameters:

Name Type Description Default
c1 int

Number of input channels.

required
c2 int

Number of output channels.

required
n int

Number of ABlock or C3k modules to stack.

1
a2 bool

Whether to use area attention blocks. If False, uses C3k blocks instead.

True
area int

Number of areas the feature map is divided.

1
residual bool

Whether to use residual connections with learnable gamma parameter.

False
mlp_ratio float

Expansion ratio for MLP hidden dimension.

2.0
e float

Channel expansion ratio for hidden channels.

0.5
g int

Number of groups for grouped convolutions.

1
shortcut bool

Whether to use shortcut connections in C3k blocks.

True
Source code in ultralytics/nn/modules/block.py
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
def __init__(
    self,
    c1: int,
    c2: int,
    n: int = 1,
    a2: bool = True,
    area: int = 1,
    residual: bool = False,
    mlp_ratio: float = 2.0,
    e: float = 0.5,
    g: int = 1,
    shortcut: bool = True,
):
    """Initialize Area-Attention C2f module.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        n (int): Number of ABlock or C3k modules to stack.
        a2 (bool): Whether to use area attention blocks. If False, uses C3k blocks instead.
        area (int): Number of areas the feature map is divided.
        residual (bool): Whether to use residual connections with learnable gamma parameter.
        mlp_ratio (float): Expansion ratio for MLP hidden dimension.
        e (float): Channel expansion ratio for hidden channels.
        g (int): Number of groups for grouped convolutions.
        shortcut (bool): Whether to use shortcut connections in C3k blocks.
    """
    super().__init__()
    c_ = int(c2 * e)  # hidden channels
    assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."

    self.cv1 = Conv(c1, c_, 1, 1)
    self.cv2 = Conv((1 + n) * c_, c2, 1)

    self.gamma = nn.Parameter(0.01 * torch.ones(c2), requires_grad=True) if a2 and residual else None
    self.m = nn.ModuleList(
        nn.Sequential(*(ABlock(c_, c_ // 32, mlp_ratio, area) for _ in range(2)))
        if a2
        else C3k(c_, c_, 2, shortcut, g)
        for _ in range(n)
    )

forward

forward(x: Tensor) -> torch.Tensor

Forward pass through A2C2f layer.

Parameters:

Name Type Description Default
x Tensor

Input tensor.

required

Returns:

Type Description
Tensor

Output tensor after processing.

Source code in ultralytics/nn/modules/block.py
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through A2C2f layer.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    y = [self.cv1(x)]
    y.extend(m(y[-1]) for m in self.m)
    y = self.cv2(torch.cat(y, 1))
    if self.gamma is not None:
        return x + self.gamma.view(-1, self.gamma.shape[0], 1, 1) * y
    return y





ultralytics.nn.modules.block.SwiGLUFFN

SwiGLUFFN(gc: int, ec: int, e: int = 4)

Bases: Module

SwiGLU Feed-Forward Network for transformer-based architectures.

Parameters:

Name Type Description Default
gc int

Guide channels.

required
ec int

Embedding channels.

required
e int

Expansion factor.

4
Source code in ultralytics/nn/modules/block.py
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
def __init__(self, gc: int, ec: int, e: int = 4) -> None:
    """Initialize SwiGLU FFN with input dimension, output dimension, and expansion factor.

    Args:
        gc (int): Guide channels.
        ec (int): Embedding channels.
        e (int): Expansion factor.
    """
    super().__init__()
    self.w12 = nn.Linear(gc, e * ec)
    self.w3 = nn.Linear(e * ec // 2, ec)

forward

forward(x: Tensor) -> torch.Tensor

Apply SwiGLU transformation to input features.

Source code in ultralytics/nn/modules/block.py
1860
1861
1862
1863
1864
1865
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply SwiGLU transformation to input features."""
    x12 = self.w12(x)
    x1, x2 = x12.chunk(2, dim=-1)
    hidden = F.silu(x1) * x2
    return self.w3(hidden)





ultralytics.nn.modules.block.Residual

Residual(m: Module)

Bases: Module

Residual connection wrapper for neural network modules.

Parameters:

Name Type Description Default
m Module

Module to wrap with residual connection.

required
Source code in ultralytics/nn/modules/block.py
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
def __init__(self, m: nn.Module) -> None:
    """Initialize residual module with the wrapped module.

    Args:
        m (nn.Module): Module to wrap with residual connection.
    """
    super().__init__()
    self.m = m
    nn.init.zeros_(self.m.w3.bias)
    # For models with l scale, please change the initialization to
    # nn.init.constant_(self.m.w3.weight, 1e-6)
    nn.init.zeros_(self.m.w3.weight)

forward

forward(x: Tensor) -> torch.Tensor

Apply residual connection to input features.

Source code in ultralytics/nn/modules/block.py
1884
1885
1886
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply residual connection to input features."""
    return x + self.m(x)





ultralytics.nn.modules.block.SAVPE

SAVPE(ch: list[int], c3: int, embed: int)

Bases: Module

Spatial-Aware Visual Prompt Embedding module for feature enhancement.

Parameters:

Name Type Description Default
ch list[int]

List of input channel dimensions.

required
c3 int

Intermediate channels.

required
embed int

Embedding dimension.

required
Source code in ultralytics/nn/modules/block.py
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
def __init__(self, ch: list[int], c3: int, embed: int):
    """Initialize SAVPE module with channels, intermediate channels, and embedding dimension.

    Args:
        ch (list[int]): List of input channel dimensions.
        c3 (int): Intermediate channels.
        embed (int): Embedding dimension.
    """
    super().__init__()
    self.cv1 = nn.ModuleList(
        nn.Sequential(
            Conv(x, c3, 3), Conv(c3, c3, 3), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity()
        )
        for i, x in enumerate(ch)
    )

    self.cv2 = nn.ModuleList(
        nn.Sequential(Conv(x, c3, 1), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity())
        for i, x in enumerate(ch)
    )

    self.c = 16
    self.cv3 = nn.Conv2d(3 * c3, embed, 1)
    self.cv4 = nn.Conv2d(3 * c3, self.c, 3, padding=1)
    self.cv5 = nn.Conv2d(1, self.c, 3, padding=1)
    self.cv6 = nn.Sequential(Conv(2 * self.c, self.c, 3), nn.Conv2d(self.c, self.c, 3, padding=1))

forward

forward(x: list[Tensor], vp: Tensor) -> torch.Tensor

Process input features and visual prompts to generate enhanced embeddings.

Source code in ultralytics/nn/modules/block.py
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
def forward(self, x: list[torch.Tensor], vp: torch.Tensor) -> torch.Tensor:
    """Process input features and visual prompts to generate enhanced embeddings."""
    y = [self.cv2[i](xi) for i, xi in enumerate(x)]
    y = self.cv4(torch.cat(y, dim=1))

    x = [self.cv1[i](xi) for i, xi in enumerate(x)]
    x = self.cv3(torch.cat(x, dim=1))

    B, C, H, W = x.shape

    Q = vp.shape[1]

    x = x.view(B, C, -1)

    y = y.reshape(B, 1, self.c, H, W).expand(-1, Q, -1, -1, -1).reshape(B * Q, self.c, H, W)
    vp = vp.reshape(B, Q, 1, H, W).reshape(B * Q, 1, H, W)

    y = self.cv6(torch.cat((y, self.cv5(vp)), dim=1))

    y = y.reshape(B, Q, self.c, -1)
    vp = vp.reshape(B, Q, 1, -1)

    score = y * vp + torch.logical_not(vp) * torch.finfo(y.dtype).min
    score = F.softmax(score, dim=-1).to(y.dtype)
    aggregated = score.transpose(-2, -3) @ x.reshape(B, self.c, C // self.c, -1).transpose(-1, -2)

    return F.normalize(aggregated.transpose(-2, -3).reshape(B, Q, -1), dim=-1, p=2)





📅 Created 1 year ago ✏️ Updated 7 months ago