Skip to content

Reference for ultralytics/nn/modules/block.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/block.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.nn.modules.block.DFL

DFL(self, c1: int = 16)

Bases: nn.Module

Integral module of Distribution Focal Loss (DFL).

Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391

Args

NameTypeDescriptionDefault
c1intNumber of input channels.16

Methods

NameDescription
forwardApply the DFL module to input tensor and return transformed output.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class DFL(nn.Module):
    """Integral module of Distribution Focal Loss (DFL).

    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """

    def __init__(self, c1: int = 16):
        """Initialize a convolutional layer with a given number of input channels.

        Args:
            c1 (int): Number of input channels.
        """
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1


method ultralytics.nn.modules.block.DFL.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply the DFL module to input tensor and return transformed output.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply the DFL module to input tensor and return transformed output."""
    b, _, a = x.shape  # batch, channels, anchors
    return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)





class ultralytics.nn.modules.block.Proto

Proto(self, c1: int, c_: int = 256, c2: int = 32)

Bases: nn.Module

Ultralytics YOLO models mask Proto module for segmentation models.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c_intIntermediate channels.256
c2intOutput channels (number of protos).32

Methods

NameDescription
forwardPerform a forward pass through layers using an upsampled input image.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class Proto(nn.Module):
    """Ultralytics YOLO models mask Proto module for segmentation models."""

    def __init__(self, c1: int, c_: int = 256, c2: int = 32):
        """Initialize the Ultralytics YOLO models mask Proto module with specified number of protos and masks.

        Args:
            c1 (int): Input channels.
            c_ (int): Intermediate channels.
            c2 (int): Output channels (number of protos).
        """
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)


method ultralytics.nn.modules.block.Proto.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Perform a forward pass through layers using an upsampled input image.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Perform a forward pass through layers using an upsampled input image."""
    return self.cv3(self.cv2(self.upsample(self.cv1(x))))





class ultralytics.nn.modules.block.HGStem

HGStem(self, c1: int, cm: int, c2: int)

Bases: nn.Module

StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Args

NameTypeDescriptionDefault
c1intInput channels.required
cmintMiddle channels.required
c2intOutput channels.required

Methods

NameDescription
forwardForward pass of a PPHGNetV2 backbone layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class HGStem(nn.Module):
    """StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1: int, cm: int, c2: int):
        """Initialize the StemBlock of PPHGNetV2.

        Args:
            c1 (int): Input channels.
            cm (int): Middle channels.
            c2 (int): Output channels.
        """
        super().__init__()
        self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
        self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
        self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
        self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
        self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
        self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)


method ultralytics.nn.modules.block.HGStem.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass of a PPHGNetV2 backbone layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of a PPHGNetV2 backbone layer."""
    x = self.stem1(x)
    x = F.pad(x, [0, 1, 0, 1])
    x2 = self.stem2a(x)
    x2 = F.pad(x2, [0, 1, 0, 1])
    x2 = self.stem2b(x2)
    x1 = self.pool(x)
    x = torch.cat([x1, x2], dim=1)
    x = self.stem3(x)
    x = self.stem4(x)
    return x





class ultralytics.nn.modules.block.HGBlock

def __init__(
    self,
    c1: int,
    cm: int,
    c2: int,
    k: int = 3,
    n: int = 6,
    lightconv: bool = False,
    shortcut: bool = False,
    act: nn.Module = nn.ReLU(),
)

Bases: nn.Module

HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

Args

NameTypeDescriptionDefault
c1intInput channels.required
cmintMiddle channels.required
c2intOutput channels.required
kintKernel size.3
nintNumber of LightConv or Conv blocks.6
lightconvboolWhether to use LightConv.False
shortcutboolWhether to use shortcut connection.False
actnn.ModuleActivation function.nn.ReLU()

Methods

NameDescription
forwardForward pass of a PPHGNetV2 backbone layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class HGBlock(nn.Module):
    """HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(
        self,
        c1: int,
        cm: int,
        c2: int,
        k: int = 3,
        n: int = 6,
        lightconv: bool = False,
        shortcut: bool = False,
        act: nn.Module = nn.ReLU(),
    ):
        """Initialize HGBlock with specified parameters.

        Args:
            c1 (int): Input channels.
            cm (int): Middle channels.
            c2 (int): Output channels.
            k (int): Kernel size.
            n (int): Number of LightConv or Conv blocks.
            lightconv (bool): Whether to use LightConv.
            shortcut (bool): Whether to use shortcut connection.
            act (nn.Module): Activation function.
        """
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2


method ultralytics.nn.modules.block.HGBlock.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass of a PPHGNetV2 backbone layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of a PPHGNetV2 backbone layer."""
    y = [x]
    y.extend(m(y[-1]) for m in self.m)
    y = self.ec(self.sc(torch.cat(y, 1)))
    return y + x if self.add else y





class ultralytics.nn.modules.block.SPP

SPP(self, c1: int, c2: int, k: tuple[int, ...] = (5, 9, 13))

Bases: nn.Module

Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
ktupleKernel sizes for max pooling.(5, 9, 13)

Methods

NameDescription
forwardForward pass of the SPP layer, performing spatial pyramid pooling.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class SPP(nn.Module):
    """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""

    def __init__(self, c1: int, c2: int, k: tuple[int, ...] = (5, 9, 13)):
        """Initialize the SPP layer with input/output channels and pooling kernel sizes.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            k (tuple): Kernel sizes for max pooling.
        """
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])


method ultralytics.nn.modules.block.SPP.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass of the SPP layer, performing spatial pyramid pooling.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of the SPP layer, performing spatial pyramid pooling."""
    x = self.cv1(x)
    return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))





class ultralytics.nn.modules.block.SPPF

SPPF(self, c1: int, c2: int, k: int = 5)

Bases: nn.Module

Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
kintKernel size.5

Methods

NameDescription
forwardApply sequential pooling operations to input and return concatenated feature maps.

Notes

This module is equivalent to SPP(k=(5, 9, 13)).

Source code in ultralytics/nn/modules/block.pyView on GitHub
class SPPF(nn.Module):
    """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""

    def __init__(self, c1: int, c2: int, k: int = 5):
        """Initialize the SPPF layer with given input/output channels and kernel size.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            k (int): Kernel size.

        Notes:
            This module is equivalent to SPP(k=(5, 9, 13)).
        """
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)


method ultralytics.nn.modules.block.SPPF.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply sequential pooling operations to input and return concatenated feature maps.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply sequential pooling operations to input and return concatenated feature maps."""
    y = [self.cv1(x)]
    y.extend(self.m(y[-1]) for _ in range(3))
    return self.cv2(torch.cat(y, 1))





class ultralytics.nn.modules.block.C1

C1(self, c1: int, c2: int, n: int = 1)

Bases: nn.Module

CSP Bottleneck with 1 convolution.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of convolutions.1

Methods

NameDescription
forwardApply convolution and residual connection to input tensor.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C1(nn.Module):
    """CSP Bottleneck with 1 convolution."""

    def __init__(self, c1: int, c2: int, n: int = 1):
        """Initialize the CSP Bottleneck with 1 convolution.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of convolutions.
        """
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))


method ultralytics.nn.modules.block.C1.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply convolution and residual connection to input tensor.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply convolution and residual connection to input tensor."""
    y = self.cv1(x)
    return self.m(y) + y





class ultralytics.nn.modules.block.C2

C2(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: nn.Module

CSP Bottleneck with 2 convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5

Methods

NameDescription
forwardForward pass through the CSP bottleneck with 2 convolutions.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C2(nn.Module):
    """CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize a CSP Bottleneck with 2 convolutions.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
        # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
        self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))


method ultralytics.nn.modules.block.C2.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through the CSP bottleneck with 2 convolutions.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the CSP bottleneck with 2 convolutions."""
    a, b = self.cv1(x).chunk(2, 1)
    return self.cv2(torch.cat((self.m(a), b), 1))





class ultralytics.nn.modules.block.C2f

C2f(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5)

Bases: nn.Module

Faster Implementation of CSP Bottleneck with 2 convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.False
gintGroups for convolutions.1
efloatExpansion ratio.0.5

Methods

NameDescription
forwardForward pass through C2f layer.
forward_splitForward pass using split() instead of chunk().
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
        """Initialize a CSP bottleneck with 2 convolutions.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))


method ultralytics.nn.modules.block.C2f.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through C2f layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through C2f layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))


method ultralytics.nn.modules.block.C2f.forward_split

def forward_split(self, x: torch.Tensor) -> torch.Tensor

Forward pass using split() instead of chunk().

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward_split(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass using split() instead of chunk()."""
    y = self.cv1(x).split((self.c, self.c), 1)
    y = [y[0], y[1]]
    y.extend(m(y[-1]) for m in self.m)
    return self.cv2(torch.cat(y, 1))





class ultralytics.nn.modules.block.C3

C3(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: nn.Module

CSP Bottleneck with 3 convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5

Methods

NameDescription
forwardForward pass through the CSP bottleneck with 3 convolutions.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize the CSP Bottleneck with 3 convolutions.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))


method ultralytics.nn.modules.block.C3.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through the CSP bottleneck with 3 convolutions.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the CSP bottleneck with 3 convolutions."""
    return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))





class ultralytics.nn.modules.block.C3x

C3x(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: C3

C3 module with cross-convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3x(C3):
    """C3 module with cross-convolutions."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize C3 module with cross-convolutions.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        self.c_ = int(c2 * e)
        self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))





class ultralytics.nn.modules.block.RepC3

RepC3(self, c1: int, c2: int, n: int = 3, e: float = 1.0)

Bases: nn.Module

Rep C3.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of RepConv blocks.3
efloatExpansion ratio.1.0

Methods

NameDescription
forwardForward pass of RepC3 module.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class RepC3(nn.Module):
    """Rep C3."""

    def __init__(self, c1: int, c2: int, n: int = 3, e: float = 1.0):
        """Initialize CSP Bottleneck with a single convolution.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of RepConv blocks.
            e (float): Expansion ratio.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
        self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()


method ultralytics.nn.modules.block.RepC3.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass of RepC3 module.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of RepC3 module."""
    return self.cv3(self.m(self.cv1(x)) + self.cv2(x))





class ultralytics.nn.modules.block.C3TR

C3TR(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: C3

C3 module with TransformerBlock().

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Transformer blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3TR(C3):
    """C3 module with TransformerBlock()."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize C3 module with TransformerBlock.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Transformer blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)





class ultralytics.nn.modules.block.C3Ghost

C3Ghost(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: C3

C3 module with GhostBottleneck().

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Ghost bottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3Ghost(C3):
    """C3 module with GhostBottleneck()."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize C3 module with GhostBottleneck.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Ghost bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))





class ultralytics.nn.modules.block.GhostBottleneck

GhostBottleneck(self, c1: int, c2: int, k: int = 3, s: int = 1)

Bases: nn.Module

Ghost Bottleneck https://github.com/huawei-noah/Efficient-AI-Backbones.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
kintKernel size.3
sintStride.1

Methods

NameDescription
forwardApply skip connection and concatenation to input tensor.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class GhostBottleneck(nn.Module):
    """Ghost Bottleneck https://github.com/huawei-noah/Efficient-AI-Backbones."""

    def __init__(self, c1: int, c2: int, k: int = 3, s: int = 1):
        """Initialize Ghost Bottleneck module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            k (int): Kernel size.
            s (int): Stride.
        """
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(
            GhostConv(c1, c_, 1, 1),  # pw
            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
            GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
        )
        self.shortcut = (
            nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
        )


method ultralytics.nn.modules.block.GhostBottleneck.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply skip connection and concatenation to input tensor.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply skip connection and concatenation to input tensor."""
    return self.conv(x) + self.shortcut(x)





class ultralytics.nn.modules.block.Bottleneck

Bottleneck(self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5)

Bases: nn.Module

Standard bottleneck.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
shortcutboolWhether to use shortcut connection.True
gintGroups for convolutions.1
ktupleKernel sizes for convolutions.(3, 3)
efloatExpansion ratio.0.5

Methods

NameDescription
forwardApply bottleneck with optional shortcut connection.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(
        self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5
    ):
        """Initialize a standard bottleneck module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            shortcut (bool): Whether to use shortcut connection.
            g (int): Groups for convolutions.
            k (tuple): Kernel sizes for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2


method ultralytics.nn.modules.block.Bottleneck.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply bottleneck with optional shortcut connection.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply bottleneck with optional shortcut connection."""
    return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))





class ultralytics.nn.modules.block.BottleneckCSP

BottleneckCSP(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: nn.Module

CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5

Methods

NameDescription
forwardApply CSP bottleneck with 3 convolutions.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class BottleneckCSP(nn.Module):
    """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize CSP Bottleneck.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))


method ultralytics.nn.modules.block.BottleneckCSP.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply CSP bottleneck with 3 convolutions.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply CSP bottleneck with 3 convolutions."""
    y1 = self.cv3(self.m(self.cv1(x)))
    y2 = self.cv2(x)
    return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))





class ultralytics.nn.modules.block.ResNetBlock

ResNetBlock(self, c1: int, c2: int, s: int = 1, e: int = 4)

Bases: nn.Module

ResNet block with standard convolution layers.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
sintStride.1
eintExpansion ratio.4

Methods

NameDescription
forwardForward pass through the ResNet block.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1: int, c2: int, s: int = 1, e: int = 4):
        """Initialize ResNet block.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            s (int): Stride.
            e (int): Expansion ratio.
        """
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()


method ultralytics.nn.modules.block.ResNetBlock.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through the ResNet block.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the ResNet block."""
    return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))





class ultralytics.nn.modules.block.ResNetLayer

ResNetLayer(self, c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4)

Bases: nn.Module

ResNet layer with multiple ResNet blocks.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
sintStride.1
is_firstboolWhether this is the first layer.False
nintNumber of ResNet blocks.1
eintExpansion ratio.4

Methods

NameDescription
forwardForward pass through the ResNet layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ResNetLayer(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4):
        """Initialize ResNet layer.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            s (int): Stride.
            is_first (bool): Whether this is the first layer.
            n (int): Number of ResNet blocks.
            e (int): Expansion ratio.
        """
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)


method ultralytics.nn.modules.block.ResNetLayer.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through the ResNet layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the ResNet layer."""
    return self.layer(x)





class ultralytics.nn.modules.block.MaxSigmoidAttnBlock

MaxSigmoidAttnBlock(self, c1: int, c2: int, nh: int = 1, ec: int = 128, gc: int = 512, scale: bool = False)

Bases: nn.Module

Max Sigmoid attention block.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nhintNumber of heads.1
ecintEmbedding channels.128
gcintGuide channels.512
scaleboolWhether to use learnable scale parameter.False

Methods

NameDescription
forwardForward pass of MaxSigmoidAttnBlock.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class MaxSigmoidAttnBlock(nn.Module):
    """Max Sigmoid attention block."""

    def __init__(self, c1: int, c2: int, nh: int = 1, ec: int = 128, gc: int = 512, scale: bool = False):
        """Initialize MaxSigmoidAttnBlock.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            nh (int): Number of heads.
            ec (int): Embedding channels.
            gc (int): Guide channels.
            scale (bool): Whether to use learnable scale parameter.
        """
        super().__init__()
        self.nh = nh
        self.hc = c2 // nh
        self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
        self.gl = nn.Linear(gc, ec)
        self.bias = nn.Parameter(torch.zeros(nh))
        self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
        self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0


method ultralytics.nn.modules.block.MaxSigmoidAttnBlock.forward

def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor

Forward pass of MaxSigmoidAttnBlock.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required
guidetorch.TensorGuide tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after attention.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
    """Forward pass of MaxSigmoidAttnBlock.

    Args:
        x (torch.Tensor): Input tensor.
        guide (torch.Tensor): Guide tensor.

    Returns:
        (torch.Tensor): Output tensor after attention.
    """
    bs, _, h, w = x.shape

    guide = self.gl(guide)
    guide = guide.view(bs, guide.shape[1], self.nh, self.hc)
    embed = self.ec(x) if self.ec is not None else x
    embed = embed.view(bs, self.nh, self.hc, h, w)

    aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
    aw = aw.max(dim=-1)[0]
    aw = aw / (self.hc**0.5)
    aw = aw + self.bias[None, :, None, None]
    aw = aw.sigmoid() * self.scale

    x = self.proj_conv(x)
    x = x.view(bs, self.nh, -1, h, w)
    x = x * aw.unsqueeze(2)
    return x.view(bs, -1, h, w)





class ultralytics.nn.modules.block.C2fAttn

def __init__(
    self,
    c1: int,
    c2: int,
    n: int = 1,
    ec: int = 128,
    nh: int = 1,
    gc: int = 512,
    shortcut: bool = False,
    g: int = 1,
    e: float = 0.5,
)

Bases: nn.Module

C2f module with an additional attn module.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
ecintEmbedding channels for attention.128
nhintNumber of heads for attention.1
gcintGuide channels for attention.512
shortcutboolWhether to use shortcut connections.False
gintGroups for convolutions.1
efloatExpansion ratio.0.5

Methods

NameDescription
forwardForward pass through C2f layer with attention.
forward_splitForward pass using split() instead of chunk().
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C2fAttn(nn.Module):
    """C2f module with an additional attn module."""

    def __init__(
        self,
        c1: int,
        c2: int,
        n: int = 1,
        ec: int = 128,
        nh: int = 1,
        gc: int = 512,
        shortcut: bool = False,
        g: int = 1,
        e: float = 0.5,
    ):
        """Initialize C2f module with attention mechanism.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            ec (int): Embedding channels for attention.
            nh (int): Number of heads for attention.
            gc (int): Guide channels for attention.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((3 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
        self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)


method ultralytics.nn.modules.block.C2fAttn.forward

def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor

Forward pass through C2f layer with attention.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required
guidetorch.TensorGuide tensor for attention.required

Returns

TypeDescription
torch.TensorOutput tensor after processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
    """Forward pass through C2f layer with attention.

    Args:
        x (torch.Tensor): Input tensor.
        guide (torch.Tensor): Guide tensor for attention.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    y = list(self.cv1(x).chunk(2, 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))


method ultralytics.nn.modules.block.C2fAttn.forward_split

def forward_split(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor

Forward pass using split() instead of chunk().

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required
guidetorch.TensorGuide tensor for attention.required

Returns

TypeDescription
torch.TensorOutput tensor after processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward_split(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
    """Forward pass using split() instead of chunk().

    Args:
        x (torch.Tensor): Input tensor.
        guide (torch.Tensor): Guide tensor for attention.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in self.m)
    y.append(self.attn(y[-1], guide))
    return self.cv2(torch.cat(y, 1))





class ultralytics.nn.modules.block.ImagePoolingAttn

def __init__(
    self, ec: int = 256, ch: tuple[int, ...] = (), ct: int = 512, nh: int = 8, k: int = 3, scale: bool = False
)

Bases: nn.Module

ImagePoolingAttn: Enhance the text embeddings with image-aware information.

Args

NameTypeDescriptionDefault
ecintEmbedding channels.256
chtupleChannel dimensions for feature maps.()
ctintChannel dimension for text embeddings.512
nhintNumber of attention heads.8
kintKernel size for pooling.3
scaleboolWhether to use learnable scale parameter.False

Methods

NameDescription
forwardForward pass of ImagePoolingAttn.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ImagePoolingAttn(nn.Module):
    """ImagePoolingAttn: Enhance the text embeddings with image-aware information."""

    def __init__(
        self, ec: int = 256, ch: tuple[int, ...] = (), ct: int = 512, nh: int = 8, k: int = 3, scale: bool = False
    ):
        """Initialize ImagePoolingAttn module.

        Args:
            ec (int): Embedding channels.
            ch (tuple): Channel dimensions for feature maps.
            ct (int): Channel dimension for text embeddings.
            nh (int): Number of attention heads.
            k (int): Kernel size for pooling.
            scale (bool): Whether to use learnable scale parameter.
        """
        super().__init__()

        nf = len(ch)
        self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
        self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
        self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
        self.proj = nn.Linear(ec, ct)
        self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
        self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
        self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
        self.ec = ec
        self.nh = nh
        self.nf = nf
        self.hc = ec // nh
        self.k = k


method ultralytics.nn.modules.block.ImagePoolingAttn.forward

def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> torch.Tensor

Forward pass of ImagePoolingAttn.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]List of input feature maps.required
texttorch.TensorText embeddings.required

Returns

TypeDescription
torch.TensorEnhanced text embeddings.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> torch.Tensor:
    """Forward pass of ImagePoolingAttn.

    Args:
        x (list[torch.Tensor]): List of input feature maps.
        text (torch.Tensor): Text embeddings.

    Returns:
        (torch.Tensor): Enhanced text embeddings.
    """
    bs = x[0].shape[0]
    assert len(x) == self.nf
    num_patches = self.k**2
    x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
    x = torch.cat(x, dim=-1).transpose(1, 2)
    q = self.query(text)
    k = self.key(x)
    v = self.value(x)

    # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
    q = q.reshape(bs, -1, self.nh, self.hc)
    k = k.reshape(bs, -1, self.nh, self.hc)
    v = v.reshape(bs, -1, self.nh, self.hc)

    aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
    aw = aw / (self.hc**0.5)
    aw = F.softmax(aw, dim=-1)

    x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
    x = self.proj(x.reshape(bs, -1, self.ec))
    return x * self.scale + text





class ultralytics.nn.modules.block.ContrastiveHead

ContrastiveHead(self)

Bases: nn.Module

Implements contrastive learning head for region-text similarity in vision-language models.

Methods

NameDescription
forwardForward function of contrastive learning.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ContrastiveHead(nn.Module):
    """Implements contrastive learning head for region-text similarity in vision-language models."""

    def __init__(self):
        """Initialize ContrastiveHead with region-text similarity parameters."""
        super().__init__()
        # NOTE: use -10.0 to keep the init cls loss consistency with other losses
        self.bias = nn.Parameter(torch.tensor([-10.0]))
        self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())


method ultralytics.nn.modules.block.ContrastiveHead.forward

def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor

Forward function of contrastive learning.

Args

NameTypeDescriptionDefault
xtorch.TensorImage features.required
wtorch.TensorText features.required

Returns

TypeDescription
torch.TensorSimilarity scores.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
    """Forward function of contrastive learning.

    Args:
        x (torch.Tensor): Image features.
        w (torch.Tensor): Text features.

    Returns:
        (torch.Tensor): Similarity scores.
    """
    x = F.normalize(x, dim=1, p=2)
    w = F.normalize(w, dim=-1, p=2)
    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias





class ultralytics.nn.modules.block.BNContrastiveHead

BNContrastiveHead(self, embed_dims: int)

Bases: nn.Module

Batch Norm Contrastive Head using batch norm instead of l2-normalization.

Args

NameTypeDescriptionDefault
embed_dimsintEmbed dimensions of text and image features.required
embed_dimsintEmbedding dimensions for features.required

Methods

NameDescription
forwardForward function of contrastive learning with batch normalization.
forward_fusePasses input out unchanged.
fuseFuse the batch normalization layer in the BNContrastiveHead module.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class BNContrastiveHead(nn.Module):
    """Batch Norm Contrastive Head using batch norm instead of l2-normalization.

    Args:
        embed_dims (int): Embed dimensions of text and image features.
    """

    def __init__(self, embed_dims: int):
        """Initialize BNContrastiveHead.

        Args:
            embed_dims (int): Embedding dimensions for features.
        """
        super().__init__()
        self.norm = nn.BatchNorm2d(embed_dims)
        # NOTE: use -10.0 to keep the init cls loss consistency with other losses
        self.bias = nn.Parameter(torch.tensor([-10.0]))
        # use -1.0 is more stable
        self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))


method ultralytics.nn.modules.block.BNContrastiveHead.forward

def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor

Forward function of contrastive learning with batch normalization.

Args

NameTypeDescriptionDefault
xtorch.TensorImage features.required
wtorch.TensorText features.required

Returns

TypeDescription
torch.TensorSimilarity scores.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
    """Forward function of contrastive learning with batch normalization.

    Args:
        x (torch.Tensor): Image features.
        w (torch.Tensor): Text features.

    Returns:
        (torch.Tensor): Similarity scores.
    """
    x = self.norm(x)
    w = F.normalize(w, dim=-1, p=2)

    x = torch.einsum("bchw,bkc->bkhw", x, w)
    return x * self.logit_scale.exp() + self.bias


method ultralytics.nn.modules.block.BNContrastiveHead.forward_fuse

def forward_fuse(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor

Passes input out unchanged.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
wtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward_fuse(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
    """Passes input out unchanged."""
    return x


method ultralytics.nn.modules.block.BNContrastiveHead.fuse

def fuse(self)

Fuse the batch normalization layer in the BNContrastiveHead module.

Source code in ultralytics/nn/modules/block.pyView on GitHub
def fuse(self):
    """Fuse the batch normalization layer in the BNContrastiveHead module."""
    del self.norm
    del self.bias
    del self.logit_scale
    self.forward = self.forward_fuse





class ultralytics.nn.modules.block.RepBottleneck

RepBottleneck(self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5)

Bases: Bottleneck

Rep bottleneck.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
shortcutboolWhether to use shortcut connection.True
gintGroups for convolutions.1
ktupleKernel sizes for convolutions.(3, 3)
efloatExpansion ratio.0.5
Source code in ultralytics/nn/modules/block.pyView on GitHub
class RepBottleneck(Bottleneck):
    """Rep bottleneck."""

    def __init__(
        self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5
    ):
        """Initialize RepBottleneck.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            shortcut (bool): Whether to use shortcut connection.
            g (int): Groups for convolutions.
            k (tuple): Kernel sizes for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = RepConv(c1, c_, k[0], 1)





class ultralytics.nn.modules.block.RepCSP

RepCSP(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5)

Bases: C3

Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of RepBottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5
Source code in ultralytics/nn/modules/block.pyView on GitHub
class RepCSP(C3):
    """Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
        """Initialize RepCSP layer.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of RepBottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))





class ultralytics.nn.modules.block.RepNCSPELAN4

RepNCSPELAN4(self, c1: int, c2: int, c3: int, c4: int, n: int = 1)

Bases: nn.Module

CSP-ELAN.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
c3intIntermediate channels.required
c4intIntermediate channels for RepCSP.required
nintNumber of RepCSP blocks.1

Methods

NameDescription
forwardForward pass through RepNCSPELAN4 layer.
forward_splitForward pass using split() instead of chunk().
Source code in ultralytics/nn/modules/block.pyView on GitHub
class RepNCSPELAN4(nn.Module):
    """CSP-ELAN."""

    def __init__(self, c1: int, c2: int, c3: int, c4: int, n: int = 1):
        """Initialize CSP-ELAN layer.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            c3 (int): Intermediate channels.
            c4 (int): Intermediate channels for RepCSP.
            n (int): Number of RepCSP blocks.
        """
        super().__init__()
        self.c = c3 // 2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
        self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)


method ultralytics.nn.modules.block.RepNCSPELAN4.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through RepNCSPELAN4 layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through RepNCSPELAN4 layer."""
    y = list(self.cv1(x).chunk(2, 1))
    y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))


method ultralytics.nn.modules.block.RepNCSPELAN4.forward_split

def forward_split(self, x: torch.Tensor) -> torch.Tensor

Forward pass using split() instead of chunk().

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward_split(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass using split() instead of chunk()."""
    y = list(self.cv1(x).split((self.c, self.c), 1))
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
    return self.cv4(torch.cat(y, 1))





class ultralytics.nn.modules.block.ELAN1

ELAN1(self, c1: int, c2: int, c3: int, c4: int)

Bases: RepNCSPELAN4

ELAN1 module with 4 convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
c3intIntermediate channels.required
c4intIntermediate channels for convolutions.required
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ELAN1(RepNCSPELAN4):
    """ELAN1 module with 4 convolutions."""

    def __init__(self, c1: int, c2: int, c3: int, c4: int):
        """Initialize ELAN1 layer.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            c3 (int): Intermediate channels.
            c4 (int): Intermediate channels for convolutions.
        """
        super().__init__(c1, c2, c3, c4)
        self.c = c3 // 2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = Conv(c3 // 2, c4, 3, 1)
        self.cv3 = Conv(c4, c4, 3, 1)
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)





class ultralytics.nn.modules.block.AConv

AConv(self, c1: int, c2: int)

Bases: nn.Module

AConv.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required

Methods

NameDescription
forwardForward pass through AConv layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class AConv(nn.Module):
    """AConv."""

    def __init__(self, c1: int, c2: int):
        """Initialize AConv module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
        """
        super().__init__()
        self.cv1 = Conv(c1, c2, 3, 2, 1)


method ultralytics.nn.modules.block.AConv.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through AConv layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through AConv layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    return self.cv1(x)





class ultralytics.nn.modules.block.ADown

ADown(self, c1: int, c2: int)

Bases: nn.Module

ADown.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required

Methods

NameDescription
forwardForward pass through ADown layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ADown(nn.Module):
    """ADown."""

    def __init__(self, c1: int, c2: int):
        """Initialize ADown module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
        """
        super().__init__()
        self.c = c2 // 2
        self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
        self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)


method ultralytics.nn.modules.block.ADown.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through ADown layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through ADown layer."""
    x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
    x1, x2 = x.chunk(2, 1)
    x1 = self.cv1(x1)
    x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
    x2 = self.cv2(x2)
    return torch.cat((x1, x2), 1)





class ultralytics.nn.modules.block.SPPELAN

SPPELAN(self, c1: int, c2: int, c3: int, k: int = 5)

Bases: nn.Module

SPP-ELAN.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
c3intIntermediate channels.required
kintKernel size for max pooling.5

Methods

NameDescription
forwardForward pass through SPPELAN layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class SPPELAN(nn.Module):
    """SPP-ELAN."""

    def __init__(self, c1: int, c2: int, c3: int, k: int = 5):
        """Initialize SPP-ELAN block.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            c3 (int): Intermediate channels.
            k (int): Kernel size for max pooling.
        """
        super().__init__()
        self.c = c3
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv5 = Conv(4 * c3, c2, 1, 1)


method ultralytics.nn.modules.block.SPPELAN.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through SPPELAN layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through SPPELAN layer."""
    y = [self.cv1(x)]
    y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
    return self.cv5(torch.cat(y, 1))





class ultralytics.nn.modules.block.CBLinear

CBLinear(self, c1: int, c2s: list[int], k: int = 1, s: int = 1, p: int | None = None, g: int = 1)

Bases: nn.Module

CBLinear.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2slist[int]List of output channel sizes.required
kintKernel size.1
sintStride.1
pint | NonePadding.None
gintGroups.1

Methods

NameDescription
forwardForward pass through CBLinear layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class CBLinear(nn.Module):
    """CBLinear."""

    def __init__(self, c1: int, c2s: list[int], k: int = 1, s: int = 1, p: int | None = None, g: int = 1):
        """Initialize CBLinear module.

        Args:
            c1 (int): Input channels.
            c2s (list[int]): List of output channel sizes.
            k (int): Kernel size.
            s (int): Stride.
            p (int | None): Padding.
            g (int): Groups.
        """
        super().__init__()
        self.c2s = c2s
        self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)


method ultralytics.nn.modules.block.CBLinear.forward

def forward(self, x: torch.Tensor) -> list[torch.Tensor]

Forward pass through CBLinear layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
    """Forward pass through CBLinear layer."""
    return self.conv(x).split(self.c2s, dim=1)





class ultralytics.nn.modules.block.CBFuse

CBFuse(self, idx: list[int])

Bases: nn.Module

CBFuse.

Args

NameTypeDescriptionDefault
idxlist[int]Indices for feature selection.required

Methods

NameDescription
forwardForward pass through CBFuse layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class CBFuse(nn.Module):
    """CBFuse."""

    def __init__(self, idx: list[int]):
        """Initialize CBFuse module.

        Args:
            idx (list[int]): Indices for feature selection.
        """
        super().__init__()
        self.idx = idx


method ultralytics.nn.modules.block.CBFuse.forward

def forward(self, xs: list[torch.Tensor]) -> torch.Tensor

Forward pass through CBFuse layer.

Args

NameTypeDescriptionDefault
xslist[torch.Tensor]List of input tensors.required

Returns

TypeDescription
torch.TensorFused output tensor.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, xs: list[torch.Tensor]) -> torch.Tensor:
    """Forward pass through CBFuse layer.

    Args:
        xs (list[torch.Tensor]): List of input tensors.

    Returns:
        (torch.Tensor): Fused output tensor.
    """
    target_size = xs[-1].shape[2:]
    res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
    return torch.sum(torch.stack(res + xs[-1:]), dim=0)





class ultralytics.nn.modules.block.C3f

C3f(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5)

Bases: nn.Module

Faster Implementation of CSP Bottleneck with 2 convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.False
gintGroups for convolutions.1
efloatExpansion ratio.0.5

Methods

NameDescription
forwardForward pass through C3f layer.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
        """Initialize CSP bottleneck layer with two convolutions.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv((2 + n) * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))


method ultralytics.nn.modules.block.C3f.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through C3f layer.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through C3f layer."""
    y = [self.cv2(x), self.cv1(x)]
    y.extend(m(y[-1]) for m in self.m)
    return self.cv3(torch.cat(y, 1))





class ultralytics.nn.modules.block.C3k2

C3k2(self, c1: int, c2: int, n: int = 1, c3k: bool = False, e: float = 0.5, g: int = 1, shortcut: bool = True)

Bases: C2f

Faster Implementation of CSP Bottleneck with 2 convolutions.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of blocks.1
c3kboolWhether to use C3k blocks.False
efloatExpansion ratio.0.5
gintGroups for convolutions.1
shortcutboolWhether to use shortcut connections.True
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3k2(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(
        self, c1: int, c2: int, n: int = 1, c3k: bool = False, e: float = 0.5, g: int = 1, shortcut: bool = True
    ):
        """Initialize C3k2 module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of blocks.
            c3k (bool): Whether to use C3k blocks.
            e (float): Expansion ratio.
            g (int): Groups for convolutions.
            shortcut (bool): Whether to use shortcut connections.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )





class ultralytics.nn.modules.block.C3k

C3k(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5, k: int = 3)

Bases: C3

C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of Bottleneck blocks.1
shortcutboolWhether to use shortcut connections.True
gintGroups for convolutions.1
efloatExpansion ratio.0.5
kintKernel size.3
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C3k(C3):
    """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""

    def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5, k: int = 3):
        """Initialize C3k module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of Bottleneck blocks.
            shortcut (bool): Whether to use shortcut connections.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
            k (int): Kernel size.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))





class ultralytics.nn.modules.block.RepVGGDW

RepVGGDW(self, ed: int) -> None

Bases: torch.nn.Module

RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.

Args

NameTypeDescriptionDefault
edintInput and output channels.required

Methods

NameDescription
forwardPerform a forward pass of the RepVGGDW block.
forward_fusePerform a forward pass of the RepVGGDW block without fusing the convolutions.
fuseFuse the convolutional layers in the RepVGGDW block.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class RepVGGDW(torch.nn.Module):
    """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""

    def __init__(self, ed: int) -> None:
        """Initialize RepVGGDW module.

        Args:
            ed (int): Input and output channels.
        """
        super().__init__()
        self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
        self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
        self.dim = ed
        self.act = nn.SiLU()


method ultralytics.nn.modules.block.RepVGGDW.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Perform a forward pass of the RepVGGDW block.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after applying the depth wise separable convolution.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Perform a forward pass of the RepVGGDW block.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x) + self.conv1(x))


method ultralytics.nn.modules.block.RepVGGDW.forward_fuse

def forward_fuse(self, x: torch.Tensor) -> torch.Tensor

Perform a forward pass of the RepVGGDW block without fusing the convolutions.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after applying the depth wise separable convolution.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward_fuse(self, x: torch.Tensor) -> torch.Tensor:
    """Perform a forward pass of the RepVGGDW block without fusing the convolutions.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after applying the depth wise separable convolution.
    """
    return self.act(self.conv(x))


method ultralytics.nn.modules.block.RepVGGDW.fuse

def fuse(self)

Fuse the convolutional layers in the RepVGGDW block.

This method fuses the convolutional layers and updates the weights and biases accordingly.

Source code in ultralytics/nn/modules/block.pyView on GitHub
@torch.no_grad()
def fuse(self):
    """Fuse the convolutional layers in the RepVGGDW block.

    This method fuses the convolutional layers and updates the weights and biases accordingly.
    """
    conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
    conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)

    conv_w = conv.weight
    conv_b = conv.bias
    conv1_w = conv1.weight
    conv1_b = conv1.bias

    conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])

    final_conv_w = conv_w + conv1_w
    final_conv_b = conv_b + conv1_b

    conv.weight.data.copy_(final_conv_w)
    conv.bias.data.copy_(final_conv_b)

    self.conv = conv
    del self.conv1





class ultralytics.nn.modules.block.CIB

CIB(self, c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False)

Bases: nn.Module

Conditional Identity Block (CIB) module.

Args

NameTypeDescriptionDefault
c1intNumber of input channels.required
c2intNumber of output channels.required
shortcutbool, optionalWhether to add a shortcut connection. Defaults to True.True
efloat, optionalScaling factor for the hidden channels. Defaults to 0.5.0.5
lkbool, optionalWhether to use RepVGGDW for the third convolutional layer. Defaults to False.False
c1intInput channels.required
c2intOutput channels.required
shortcutboolWhether to use shortcut connection.True
efloatExpansion ratio.0.5
lkboolWhether to use RepVGGDW.False

Methods

NameDescription
forwardForward pass of the CIB module.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class CIB(nn.Module):
    """Conditional Identity Block (CIB) module.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
        e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
        lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
    """

    def __init__(self, c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False):
        """Initialize the CIB module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            shortcut (bool): Whether to use shortcut connection.
            e (float): Expansion ratio.
            lk (bool): Whether to use RepVGGDW.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )

        self.add = shortcut and c1 == c2


method ultralytics.nn.modules.block.CIB.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass of the CIB module.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of the CIB module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor.
    """
    return x + self.cv1(x) if self.add else self.cv1(x)





class ultralytics.nn.modules.block.C2fCIB

C2fCIB(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, lk: bool = False, g: int = 1, e: float = 0.5)

Bases: C2f

C2fCIB class represents a convolutional block with C2f and CIB modules.

Args

NameTypeDescriptionDefault
c1intNumber of input channels.required
c2intNumber of output channels.required
nint, optionalNumber of CIB modules to stack. Defaults to 1.1
shortcutbool, optionalWhether to use shortcut connection. Defaults to False.False
lkbool, optionalWhether to use local key connection. Defaults to False.False
gint, optionalNumber of groups for grouped convolution. Defaults to 1.1
efloat, optionalExpansion ratio for CIB modules. Defaults to 0.5.0.5
c1intInput channels.required
c2intOutput channels.required
nintNumber of CIB modules.1
shortcutboolWhether to use shortcut connection.False
lkboolWhether to use local key connection.False
gintGroups for convolutions.1
efloatExpansion ratio.0.5
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C2fCIB(C2f):
    """C2fCIB class represents a convolutional block with C2f and CIB modules.

    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        n (int, optional): Number of CIB modules to stack. Defaults to 1.
        shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
        lk (bool, optional): Whether to use local key connection. Defaults to False.
        g (int, optional): Number of groups for grouped convolution. Defaults to 1.
        e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
    """

    def __init__(
        self, c1: int, c2: int, n: int = 1, shortcut: bool = False, lk: bool = False, g: int = 1, e: float = 0.5
    ):
        """Initialize C2fCIB module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of CIB modules.
            shortcut (bool): Whether to use shortcut connection.
            lk (bool): Whether to use local key connection.
            g (int): Groups for convolutions.
            e (float): Expansion ratio.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))





class ultralytics.nn.modules.block.Attention

Attention(self, dim: int, num_heads: int = 8, attn_ratio: float = 0.5)

Bases: nn.Module

Attention module that performs self-attention on the input tensor.

Args

NameTypeDescriptionDefault
dimintThe input tensor dimension.required
num_headsintThe number of attention heads.8
attn_ratiofloatThe ratio of the attention key dimension to the head dimension.0.5
dimintInput dimension.required
num_headsintNumber of attention heads.8
attn_ratiofloatAttention ratio for key dimension.0.5

Attributes

NameTypeDescription
num_headsintThe number of attention heads.
head_dimintThe dimension of each attention head.
key_dimintThe dimension of the attention key.
scalefloatThe scaling factor for the attention scores.
qkvConvConvolutional layer for computing the query, key, and value.
projConvConvolutional layer for projecting the attended values.
peConvConvolutional layer for positional encoding.

Methods

NameDescription
forwardForward pass of the Attention module.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class Attention(nn.Module):
    """Attention module that performs self-attention on the input tensor.

    Args:
        dim (int): The input tensor dimension.
        num_heads (int): The number of attention heads.
        attn_ratio (float): The ratio of the attention key dimension to the head dimension.

    Attributes:
        num_heads (int): The number of attention heads.
        head_dim (int): The dimension of each attention head.
        key_dim (int): The dimension of the attention key.
        scale (float): The scaling factor for the attention scores.
        qkv (Conv): Convolutional layer for computing the query, key, and value.
        proj (Conv): Convolutional layer for projecting the attended values.
        pe (Conv): Convolutional layer for positional encoding.
    """

    def __init__(self, dim: int, num_heads: int = 8, attn_ratio: float = 0.5):
        """Initialize multi-head attention module.

        Args:
            dim (int): Input dimension.
            num_heads (int): Number of attention heads.
            attn_ratio (float): Attention ratio for key dimension.
        """
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim**-0.5
        nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)


method ultralytics.nn.modules.block.Attention.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass of the Attention module.

Args

NameTypeDescriptionDefault
xtorch.TensorThe input tensor.required

Returns

TypeDescription
torch.TensorThe output tensor after self-attention.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass of the Attention module.

    Args:
        x (torch.Tensor): The input tensor.

    Returns:
        (torch.Tensor): The output tensor after self-attention.
    """
    B, C, H, W = x.shape
    N = H * W
    qkv = self.qkv(x)
    q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
        [self.key_dim, self.key_dim, self.head_dim], dim=2
    )

    attn = (q.transpose(-2, -1) @ k) * self.scale
    attn = attn.softmax(dim=-1)
    x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
    x = self.proj(x)
    return x





class ultralytics.nn.modules.block.PSABlock

PSABlock(self, c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True) -> None

Bases: nn.Module

PSABlock class implementing a Position-Sensitive Attention block for neural networks.

This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers with optional shortcut connections.

Args

NameTypeDescriptionDefault
cintInput and output channels.required
attn_ratiofloatAttention ratio for key dimension.0.5
num_headsintNumber of attention heads.4
shortcutboolWhether to use shortcut connections.True

Attributes

NameTypeDescription
attnAttentionMulti-head attention module.
ffnnn.SequentialFeed-forward neural network module.
addboolFlag indicating whether to add shortcut connections.

Methods

NameDescription
forwardExecute a forward pass through PSABlock.

Examples

Create a PSABlock and perform a forward pass
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)
Source code in ultralytics/nn/modules/block.pyView on GitHub
class PSABlock(nn.Module):
    """PSABlock class implementing a Position-Sensitive Attention block for neural networks.

    This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
    with optional shortcut connections.

    Attributes:
        attn (Attention): Multi-head attention module.
        ffn (nn.Sequential): Feed-forward neural network module.
        add (bool): Flag indicating whether to add shortcut connections.

    Methods:
        forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.

    Examples:
        Create a PSABlock and perform a forward pass
        >>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
        >>> input_tensor = torch.randn(1, 128, 32, 32)
        >>> output_tensor = psablock(input_tensor)
    """

    def __init__(self, c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True) -> None:
        """Initialize the PSABlock.

        Args:
            c (int): Input and output channels.
            attn_ratio (float): Attention ratio for key dimension.
            num_heads (int): Number of attention heads.
            shortcut (bool): Whether to use shortcut connections.
        """
        super().__init__()

        self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
        self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
        self.add = shortcut


method ultralytics.nn.modules.block.PSABlock.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Execute a forward pass through PSABlock.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after attention and feed-forward processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Execute a forward pass through PSABlock.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after attention and feed-forward processing.
    """
    x = x + self.attn(x) if self.add else self.attn(x)
    x = x + self.ffn(x) if self.add else self.ffn(x)
    return x





class ultralytics.nn.modules.block.PSA

PSA(self, c1: int, c2: int, e: float = 0.5)

Bases: nn.Module

PSA class for implementing Position-Sensitive Attention in neural networks.

This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to input tensors, enhancing feature extraction and processing capabilities.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
efloatExpansion ratio.0.5

Attributes

NameTypeDescription
cintNumber of hidden channels after applying the initial convolution.
cv1Conv1x1 convolution layer to reduce the number of input channels to 2*c.
cv2Conv1x1 convolution layer to reduce the number of output channels to c.
attnAttentionAttention module for position-sensitive attention.
ffnnn.SequentialFeed-forward network for further processing.

Methods

NameDescription
forwardExecute forward pass in PSA module.

Examples

Create a PSA module and apply it to an input tensor
>>> psa = PSA(c1=128, c2=128, e=0.5)
>>> input_tensor = torch.randn(1, 128, 64, 64)
>>> output_tensor = psa.forward(input_tensor)
Source code in ultralytics/nn/modules/block.pyView on GitHub
class PSA(nn.Module):
    """PSA class for implementing Position-Sensitive Attention in neural networks.

    This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to
    input tensors, enhancing feature extraction and processing capabilities.

    Attributes:
        c (int): Number of hidden channels after applying the initial convolution.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        attn (Attention): Attention module for position-sensitive attention.
        ffn (nn.Sequential): Feed-forward network for further processing.

    Methods:
        forward: Applies position-sensitive attention and feed-forward network to the input tensor.

    Examples:
        Create a PSA module and apply it to an input tensor
        >>> psa = PSA(c1=128, c2=128, e=0.5)
        >>> input_tensor = torch.randn(1, 128, 64, 64)
        >>> output_tensor = psa.forward(input_tensor)
    """

    def __init__(self, c1: int, c2: int, e: float = 0.5):
        """Initialize PSA module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            e (float): Expansion ratio.
        """
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))


method ultralytics.nn.modules.block.PSA.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Execute forward pass in PSA module.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after attention and feed-forward processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Execute forward pass in PSA module.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after attention and feed-forward processing.
    """
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = b + self.attn(b)
    b = b + self.ffn(b)
    return self.cv2(torch.cat((a, b), 1))





class ultralytics.nn.modules.block.C2PSA

C2PSA(self, c1: int, c2: int, n: int = 1, e: float = 0.5)

Bases: nn.Module

C2PSA module with attention mechanism for enhanced feature extraction and processing.

This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of PSABlock modules.1
efloatExpansion ratio.0.5

Attributes

NameTypeDescription
cintNumber of hidden channels.
cv1Conv1x1 convolution layer to reduce the number of input channels to 2*c.
cv2Conv1x1 convolution layer to reduce the number of output channels to c.
mnn.SequentialSequential container of PSABlock modules for attention and feed-forward operations.

Methods

NameDescription
forwardProcess the input tensor through a series of PSA blocks.

Examples

>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)

Notes

This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.

Source code in ultralytics/nn/modules/block.pyView on GitHub
class C2PSA(nn.Module):
    """C2PSA module with attention mechanism for enhanced feature extraction and processing.

    This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
    capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.

    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.

    Methods:
        forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.

    Examples:
        >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
        >>> input_tensor = torch.randn(1, 256, 64, 64)
        >>> output_tensor = c2psa(input_tensor)

    Notes:
        This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
    """

    def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
        """Initialize C2PSA module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of PSABlock modules.
            e (float): Expansion ratio.
        """
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))


method ultralytics.nn.modules.block.C2PSA.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Process the input tensor through a series of PSA blocks.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Process the input tensor through a series of PSA blocks.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    a, b = self.cv1(x).split((self.c, self.c), dim=1)
    b = self.m(b)
    return self.cv2(torch.cat((a, b), 1))





class ultralytics.nn.modules.block.C2fPSA

C2fPSA(self, c1: int, c2: int, n: int = 1, e: float = 0.5)

Bases: C2f

C2fPSA module with enhanced feature extraction using PSA blocks.

This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
nintNumber of PSABlock modules.1
efloatExpansion ratio.0.5

Attributes

NameTypeDescription
cintNumber of hidden channels.
cv1Conv1x1 convolution layer to reduce the number of input channels to 2*c.
cv2Conv1x1 convolution layer to reduce the number of output channels to c.
mnn.ModuleListList of PSA blocks for feature extraction.

Examples

>>> import torch
>>> from ultralytics.models.common import C2fPSA
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
>>> x = torch.randn(1, 64, 128, 128)
>>> output = model(x)
>>> print(output.shape)
Source code in ultralytics/nn/modules/block.pyView on GitHub
class C2fPSA(C2f):
    """C2fPSA module with enhanced feature extraction using PSA blocks.

    This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature
    extraction.

    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.ModuleList): List of PSA blocks for feature extraction.

    Methods:
        forward: Performs a forward pass through the C2fPSA module.
        forward_split: Performs a forward pass using split() instead of chunk().

    Examples:
        >>> import torch
        >>> from ultralytics.models.common import C2fPSA
        >>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
        >>> x = torch.randn(1, 64, 128, 128)
        >>> output = model(x)
        >>> print(output.shape)
    """

    def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
        """Initialize C2fPSA module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            n (int): Number of PSABlock modules.
            e (float): Expansion ratio.
        """
        assert c1 == c2
        super().__init__(c1, c2, n=n, e=e)
        self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))





class ultralytics.nn.modules.block.SCDown

SCDown(self, c1: int, c2: int, k: int, s: int)

Bases: nn.Module

SCDown module for downsampling with separable convolutions.

This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.

Args

NameTypeDescriptionDefault
c1intInput channels.required
c2intOutput channels.required
kintKernel size.required
sintStride.required

Attributes

NameTypeDescription
cv1ConvPointwise convolution layer that reduces the number of channels.
cv2ConvDepthwise convolution layer that performs spatial downsampling.

Methods

NameDescription
forwardApply convolution and downsampling to the input tensor.

Examples

>>> import torch
>>> from ultralytics import SCDown
>>> model = SCDown(c1=64, c2=128, k=3, s=2)
>>> x = torch.randn(1, 64, 128, 128)
>>> y = model(x)
>>> print(y.shape)
torch.Size([1, 128, 64, 64])
Source code in ultralytics/nn/modules/block.pyView on GitHub
class SCDown(nn.Module):
    """SCDown module for downsampling with separable convolutions.

    This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in
    efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.

    Attributes:
        cv1 (Conv): Pointwise convolution layer that reduces the number of channels.
        cv2 (Conv): Depthwise convolution layer that performs spatial downsampling.

    Methods:
        forward: Applies the SCDown module to the input tensor.

    Examples:
        >>> import torch
        >>> from ultralytics import SCDown
        >>> model = SCDown(c1=64, c2=128, k=3, s=2)
        >>> x = torch.randn(1, 64, 128, 128)
        >>> y = model(x)
        >>> print(y.shape)
        torch.Size([1, 128, 64, 64])
    """

    def __init__(self, c1: int, c2: int, k: int, s: int):
        """Initialize SCDown module.

        Args:
            c1 (int): Input channels.
            c2 (int): Output channels.
            k (int): Kernel size.
            s (int): Stride.
        """
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)


method ultralytics.nn.modules.block.SCDown.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply convolution and downsampling to the input tensor.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorDownsampled output tensor.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply convolution and downsampling to the input tensor.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Downsampled output tensor.
    """
    return self.cv2(self.cv1(x))





class ultralytics.nn.modules.block.TorchVision

TorchVision(self, model: str, weights: str = "DEFAULT", unwrap: bool = True, truncate: int = 2, split: bool = False)

Bases: nn.Module

TorchVision module to allow loading any torchvision model.

This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers.

Args

NameTypeDescriptionDefault
modelstrName of the torchvision model to load.required
weightsstr, optionalPre-trained weights to load. Default is "DEFAULT"."DEFAULT"
unwrapbool, optionalUnwraps the model to a sequential containing all but the last truncate layers.True
truncateint, optionalNumber of layers to truncate from the end if unwrap is True. Default is 2.2
splitbool, optionalReturns output from intermediate child modules as list. Default is False.False
weightsstrPre-trained weights to load."DEFAULT"
unwrapboolWhether to unwrap the model.True
truncateintNumber of layers to truncate.2
splitboolWhether to split the output.False

Attributes

NameTypeDescription
mnn.ModuleThe loaded torchvision model, possibly truncated and unwrapped.

Methods

NameDescription
forwardForward pass through the model.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class TorchVision(nn.Module):
    """TorchVision module to allow loading any torchvision model.

    This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and
    customize the model by truncating or unwrapping layers.

    Args:
        model (str): Name of the torchvision model to load.
        weights (str, optional): Pre-trained weights to load. Default is "DEFAULT".
        unwrap (bool, optional): Unwraps the model to a sequential containing all but the last `truncate` layers.
        truncate (int, optional): Number of layers to truncate from the end if `unwrap` is True. Default is 2.
        split (bool, optional): Returns output from intermediate child modules as list. Default is False.

    Attributes:
        m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped.
    """

    def __init__(
        self, model: str, weights: str = "DEFAULT", unwrap: bool = True, truncate: int = 2, split: bool = False
    ):
        """Load the model and weights from torchvision.

        Args:
            model (str): Name of the torchvision model to load.
            weights (str): Pre-trained weights to load.
            unwrap (bool): Whether to unwrap the model.
            truncate (int): Number of layers to truncate.
            split (bool): Whether to split the output.
        """
        import torchvision  # scope for faster 'import ultralytics'

        super().__init__()
        if hasattr(torchvision.models, "get_model"):
            self.m = torchvision.models.get_model(model, weights=weights)
        else:
            self.m = torchvision.models.__dict__[model](pretrained=bool(weights))
        if unwrap:
            layers = list(self.m.children())
            if isinstance(layers[0], nn.Sequential):  # Second-level for some models like EfficientNet, Swin
                layers = [*list(layers[0].children()), *layers[1:]]
            self.m = nn.Sequential(*(layers[:-truncate] if truncate else layers))
            self.split = split
        else:
            self.split = False
            self.m.head = self.m.heads = nn.Identity()


method ultralytics.nn.modules.block.TorchVision.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through the model.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.Tensor | list[torch.Tensor]Output tensor or list of tensors.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through the model.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor | list[torch.Tensor]): Output tensor or list of tensors.
    """
    if self.split:
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
    else:
        y = self.m(x)
    return y





class ultralytics.nn.modules.block.AAttn

AAttn(self, dim: int, num_heads: int, area: int = 1)

Bases: nn.Module

Area-attention module for YOLO models, providing efficient attention mechanisms.

This module implements an area-based attention mechanism that processes input features in a spatially-aware manner, making it particularly effective for object detection tasks.

Args

NameTypeDescriptionDefault
dimintNumber of hidden channels.required
num_headsintNumber of heads into which the attention mechanism is divided.required
areaintNumber of areas the feature map is divided.1

Attributes

NameTypeDescription
areaintNumber of areas the feature map is divided.
num_headsintNumber of heads into which the attention mechanism is divided.
head_dimintDimension of each attention head.
qkvConvConvolution layer for computing query, key and value tensors.
projConvProjection convolution layer.
peConvPosition encoding convolution layer.

Methods

NameDescription
forwardProcess the input tensor through the area-attention.

Examples

>>> attn = AAttn(dim=256, num_heads=8, area=4)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = attn(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])
Source code in ultralytics/nn/modules/block.pyView on GitHub
class AAttn(nn.Module):
    """Area-attention module for YOLO models, providing efficient attention mechanisms.

    This module implements an area-based attention mechanism that processes input features in a spatially-aware manner,
    making it particularly effective for object detection tasks.

    Attributes:
        area (int): Number of areas the feature map is divided.
        num_heads (int): Number of heads into which the attention mechanism is divided.
        head_dim (int): Dimension of each attention head.
        qkv (Conv): Convolution layer for computing query, key and value tensors.
        proj (Conv): Projection convolution layer.
        pe (Conv): Position encoding convolution layer.

    Methods:
        forward: Applies area-attention to input tensor.

    Examples:
        >>> attn = AAttn(dim=256, num_heads=8, area=4)
        >>> x = torch.randn(1, 256, 32, 32)
        >>> output = attn(x)
        >>> print(output.shape)
        torch.Size([1, 256, 32, 32])
    """

    def __init__(self, dim: int, num_heads: int, area: int = 1):
        """Initialize an Area-attention module for YOLO models.

        Args:
            dim (int): Number of hidden channels.
            num_heads (int): Number of heads into which the attention mechanism is divided.
            area (int): Number of areas the feature map is divided.
        """
        super().__init__()
        self.area = area

        self.num_heads = num_heads
        self.head_dim = head_dim = dim // num_heads
        all_head_dim = head_dim * self.num_heads

        self.qkv = Conv(dim, all_head_dim * 3, 1, act=False)
        self.proj = Conv(all_head_dim, dim, 1, act=False)
        self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)


method ultralytics.nn.modules.block.AAttn.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Process the input tensor through the area-attention.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after area-attention.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Process the input tensor through the area-attention.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after area-attention.
    """
    B, C, H, W = x.shape
    N = H * W

    qkv = self.qkv(x).flatten(2).transpose(1, 2)
    if self.area > 1:
        qkv = qkv.reshape(B * self.area, N // self.area, C * 3)
        B, N, _ = qkv.shape
    q, k, v = (
        qkv.view(B, N, self.num_heads, self.head_dim * 3)
        .permute(0, 2, 3, 1)
        .split([self.head_dim, self.head_dim, self.head_dim], dim=2)
    )
    attn = (q.transpose(-2, -1) @ k) * (self.head_dim**-0.5)
    attn = attn.softmax(dim=-1)
    x = v @ attn.transpose(-2, -1)
    x = x.permute(0, 3, 1, 2)
    v = v.permute(0, 3, 1, 2)

    if self.area > 1:
        x = x.reshape(B // self.area, N * self.area, C)
        v = v.reshape(B // self.area, N * self.area, C)
        B, N, _ = x.shape

    x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
    v = v.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()

    x = x + self.pe(v)
    return self.proj(x)





class ultralytics.nn.modules.block.ABlock

ABlock(self, dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1)

Bases: nn.Module

Area-attention block module for efficient feature extraction in YOLO models.

This module implements an area-attention mechanism combined with a feed-forward network for processing feature maps. It uses a novel area-based attention approach that is more efficient than traditional self-attention while maintaining effectiveness.

Args

NameTypeDescriptionDefault
dimintNumber of input channels.required
num_headsintNumber of heads into which the attention mechanism is divided.required
mlp_ratiofloatExpansion ratio for MLP hidden dimension.1.2
areaintNumber of areas the feature map is divided.1

Attributes

NameTypeDescription
attnAAttnArea-attention module for processing spatial features.
mlpnn.SequentialMulti-layer perceptron for feature transformation.

Methods

NameDescription
_init_weightsInitialize weights using a truncated normal distribution.
forwardForward pass through ABlock.

Examples

>>> block = ABlock(dim=256, num_heads=8, mlp_ratio=1.2, area=1)
>>> x = torch.randn(1, 256, 32, 32)
>>> output = block(x)
>>> print(output.shape)
torch.Size([1, 256, 32, 32])
Source code in ultralytics/nn/modules/block.pyView on GitHub
class ABlock(nn.Module):
    """Area-attention block module for efficient feature extraction in YOLO models.

    This module implements an area-attention mechanism combined with a feed-forward network for processing feature maps.
    It uses a novel area-based attention approach that is more efficient than traditional self-attention while
    maintaining effectiveness.

    Attributes:
        attn (AAttn): Area-attention module for processing spatial features.
        mlp (nn.Sequential): Multi-layer perceptron for feature transformation.

    Methods:
        _init_weights: Initializes module weights using truncated normal distribution.
        forward: Applies area-attention and feed-forward processing to input tensor.

    Examples:
        >>> block = ABlock(dim=256, num_heads=8, mlp_ratio=1.2, area=1)
        >>> x = torch.randn(1, 256, 32, 32)
        >>> output = block(x)
        >>> print(output.shape)
        torch.Size([1, 256, 32, 32])
    """

    def __init__(self, dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1):
        """Initialize an Area-attention block module.

        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of heads into which the attention mechanism is divided.
            mlp_ratio (float): Expansion ratio for MLP hidden dimension.
            area (int): Number of areas the feature map is divided.
        """
        super().__init__()

        self.attn = AAttn(dim, num_heads=num_heads, area=area)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))

        self.apply(self._init_weights)


method ultralytics.nn.modules.block.ABlock._init_weights

def _init_weights(self, m: nn.Module)

Initialize weights using a truncated normal distribution.

Args

NameTypeDescriptionDefault
mnn.ModuleModule to initialize.required
Source code in ultralytics/nn/modules/block.pyView on GitHub
def _init_weights(self, m: nn.Module):
    """Initialize weights using a truncated normal distribution.

    Args:
        m (nn.Module): Module to initialize.
    """
    if isinstance(m, nn.Conv2d):
        nn.init.trunc_normal_(m.weight, std=0.02)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)


method ultralytics.nn.modules.block.ABlock.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through ABlock.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after area-attention and feed-forward processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through ABlock.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after area-attention and feed-forward processing.
    """
    x = x + self.attn(x)
    return x + self.mlp(x)





class ultralytics.nn.modules.block.A2C2f

def __init__(
    self,
    c1: int,
    c2: int,
    n: int = 1,
    a2: bool = True,
    area: int = 1,
    residual: bool = False,
    mlp_ratio: float = 2.0,
    e: float = 0.5,
    g: int = 1,
    shortcut: bool = True,
)

Bases: nn.Module

Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms.

This module extends the C2f architecture by incorporating area-attention and ABlock layers for improved feature processing. It supports both area-attention and standard convolution modes.

Args

NameTypeDescriptionDefault
c1intNumber of input channels.required
c2intNumber of output channels.required
nintNumber of ABlock or C3k modules to stack.1
a2boolWhether to use area attention blocks. If False, uses C3k blocks instead.True
areaintNumber of areas the feature map is divided.1
residualboolWhether to use residual connections with learnable gamma parameter.False
mlp_ratiofloatExpansion ratio for MLP hidden dimension.2.0
efloatChannel expansion ratio for hidden channels.0.5
gintNumber of groups for grouped convolutions.1
shortcutboolWhether to use shortcut connections in C3k blocks.True

Attributes

NameTypeDescription
cv1ConvInitial 1x1 convolution layer that reduces input channels to hidden channels.
cv2ConvFinal 1x1 convolution layer that processes concatenated features.
gammann.Parameter | NoneLearnable parameter for residual scaling when using area attention.
mnn.ModuleListList of either ABlock or C3k modules for feature processing.

Methods

NameDescription
forwardForward pass through A2C2f layer.

Examples

>>> m = A2C2f(512, 512, n=1, a2=True, area=1)
>>> x = torch.randn(1, 512, 32, 32)
>>> output = m(x)
>>> print(output.shape)
torch.Size([1, 512, 32, 32])
Source code in ultralytics/nn/modules/block.pyView on GitHub
class A2C2f(nn.Module):
    """Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms.

    This module extends the C2f architecture by incorporating area-attention and ABlock layers for improved feature
    processing. It supports both area-attention and standard convolution modes.

    Attributes:
        cv1 (Conv): Initial 1x1 convolution layer that reduces input channels to hidden channels.
        cv2 (Conv): Final 1x1 convolution layer that processes concatenated features.
        gamma (nn.Parameter | None): Learnable parameter for residual scaling when using area attention.
        m (nn.ModuleList): List of either ABlock or C3k modules for feature processing.

    Methods:
        forward: Processes input through area-attention or standard convolution pathway.

    Examples:
        >>> m = A2C2f(512, 512, n=1, a2=True, area=1)
        >>> x = torch.randn(1, 512, 32, 32)
        >>> output = m(x)
        >>> print(output.shape)
        torch.Size([1, 512, 32, 32])
    """

    def __init__(
        self,
        c1: int,
        c2: int,
        n: int = 1,
        a2: bool = True,
        area: int = 1,
        residual: bool = False,
        mlp_ratio: float = 2.0,
        e: float = 0.5,
        g: int = 1,
        shortcut: bool = True,
    ):
        """Initialize Area-Attention C2f module.

        Args:
            c1 (int): Number of input channels.
            c2 (int): Number of output channels.
            n (int): Number of ABlock or C3k modules to stack.
            a2 (bool): Whether to use area attention blocks. If False, uses C3k blocks instead.
            area (int): Number of areas the feature map is divided.
            residual (bool): Whether to use residual connections with learnable gamma parameter.
            mlp_ratio (float): Expansion ratio for MLP hidden dimension.
            e (float): Channel expansion ratio for hidden channels.
            g (int): Number of groups for grouped convolutions.
            shortcut (bool): Whether to use shortcut connections in C3k blocks.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."

        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv((1 + n) * c_, c2, 1)

        self.gamma = nn.Parameter(0.01 * torch.ones(c2), requires_grad=True) if a2 and residual else None
        self.m = nn.ModuleList(
            nn.Sequential(*(ABlock(c_, c_ // 32, mlp_ratio, area) for _ in range(2)))
            if a2
            else C3k(c_, c_, 2, shortcut, g)
            for _ in range(n)
        )


method ultralytics.nn.modules.block.A2C2f.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Forward pass through A2C2f layer.

Args

NameTypeDescriptionDefault
xtorch.TensorInput tensor.required

Returns

TypeDescription
torch.TensorOutput tensor after processing.
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward pass through A2C2f layer.

    Args:
        x (torch.Tensor): Input tensor.

    Returns:
        (torch.Tensor): Output tensor after processing.
    """
    y = [self.cv1(x)]
    y.extend(m(y[-1]) for m in self.m)
    y = self.cv2(torch.cat(y, 1))
    if self.gamma is not None:
        return x + self.gamma.view(-1, self.gamma.shape[0], 1, 1) * y
    return y





class ultralytics.nn.modules.block.SwiGLUFFN

SwiGLUFFN(self, gc: int, ec: int, e: int = 4) -> None

Bases: nn.Module

SwiGLU Feed-Forward Network for transformer-based architectures.

Args

NameTypeDescriptionDefault
gcintGuide channels.required
ecintEmbedding channels.required
eintExpansion factor.4

Methods

NameDescription
forwardApply SwiGLU transformation to input features.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class SwiGLUFFN(nn.Module):
    """SwiGLU Feed-Forward Network for transformer-based architectures."""

    def __init__(self, gc: int, ec: int, e: int = 4) -> None:
        """Initialize SwiGLU FFN with input dimension, output dimension, and expansion factor.

        Args:
            gc (int): Guide channels.
            ec (int): Embedding channels.
            e (int): Expansion factor.
        """
        super().__init__()
        self.w12 = nn.Linear(gc, e * ec)
        self.w3 = nn.Linear(e * ec // 2, ec)


method ultralytics.nn.modules.block.SwiGLUFFN.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply SwiGLU transformation to input features.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply SwiGLU transformation to input features."""
    x12 = self.w12(x)
    x1, x2 = x12.chunk(2, dim=-1)
    hidden = F.silu(x1) * x2
    return self.w3(hidden)





class ultralytics.nn.modules.block.Residual

Residual(self, m: nn.Module) -> None

Bases: nn.Module

Residual connection wrapper for neural network modules.

Args

NameTypeDescriptionDefault
mnn.ModuleModule to wrap with residual connection.required

Methods

NameDescription
forwardApply residual connection to input features.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class Residual(nn.Module):
    """Residual connection wrapper for neural network modules."""

    def __init__(self, m: nn.Module) -> None:
        """Initialize residual module with the wrapped module.

        Args:
            m (nn.Module): Module to wrap with residual connection.
        """
        super().__init__()
        self.m = m
        nn.init.zeros_(self.m.w3.bias)
        # For models with l scale, please change the initialization to
        # nn.init.constant_(self.m.w3.weight, 1e-6)
        nn.init.zeros_(self.m.w3.weight)


method ultralytics.nn.modules.block.Residual.forward

def forward(self, x: torch.Tensor) -> torch.Tensor

Apply residual connection to input features.

Args

NameTypeDescriptionDefault
xtorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Apply residual connection to input features."""
    return x + self.m(x)





class ultralytics.nn.modules.block.SAVPE

SAVPE(self, ch: list[int], c3: int, embed: int)

Bases: nn.Module

Spatial-Aware Visual Prompt Embedding module for feature enhancement.

Args

NameTypeDescriptionDefault
chlist[int]List of input channel dimensions.required
c3intIntermediate channels.required
embedintEmbedding dimension.required

Methods

NameDescription
forwardProcess input features and visual prompts to generate enhanced embeddings.
Source code in ultralytics/nn/modules/block.pyView on GitHub
class SAVPE(nn.Module):
    """Spatial-Aware Visual Prompt Embedding module for feature enhancement."""

    def __init__(self, ch: list[int], c3: int, embed: int):
        """Initialize SAVPE module with channels, intermediate channels, and embedding dimension.

        Args:
            ch (list[int]): List of input channel dimensions.
            c3 (int): Intermediate channels.
            embed (int): Embedding dimension.
        """
        super().__init__()
        self.cv1 = nn.ModuleList(
            nn.Sequential(
                Conv(x, c3, 3), Conv(c3, c3, 3), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity()
            )
            for i, x in enumerate(ch)
        )

        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 1), nn.Upsample(scale_factor=i * 2) if i in {1, 2} else nn.Identity())
            for i, x in enumerate(ch)
        )

        self.c = 16
        self.cv3 = nn.Conv2d(3 * c3, embed, 1)
        self.cv4 = nn.Conv2d(3 * c3, self.c, 3, padding=1)
        self.cv5 = nn.Conv2d(1, self.c, 3, padding=1)
        self.cv6 = nn.Sequential(Conv(2 * self.c, self.c, 3), nn.Conv2d(self.c, self.c, 3, padding=1))


method ultralytics.nn.modules.block.SAVPE.forward

def forward(self, x: list[torch.Tensor], vp: torch.Tensor) -> torch.Tensor

Process input features and visual prompts to generate enhanced embeddings.

Args

NameTypeDescriptionDefault
xlist[torch.Tensor]required
vptorch.Tensorrequired
Source code in ultralytics/nn/modules/block.pyView on GitHub
def forward(self, x: list[torch.Tensor], vp: torch.Tensor) -> torch.Tensor:
    """Process input features and visual prompts to generate enhanced embeddings."""
    y = [self.cv2[i](xi) for i, xi in enumerate(x)]
    y = self.cv4(torch.cat(y, dim=1))

    x = [self.cv1[i](xi) for i, xi in enumerate(x)]
    x = self.cv3(torch.cat(x, dim=1))

    B, C, H, W = x.shape

    Q = vp.shape[1]

    x = x.view(B, C, -1)

    y = y.reshape(B, 1, self.c, H, W).expand(-1, Q, -1, -1, -1).reshape(B * Q, self.c, H, W)
    vp = vp.reshape(B, Q, 1, H, W).reshape(B * Q, 1, H, W)

    y = self.cv6(torch.cat((y, self.cv5(vp)), dim=1))

    y = y.reshape(B, Q, self.c, -1)
    vp = vp.reshape(B, Q, 1, -1)

    score = y * vp + torch.logical_not(vp) * torch.finfo(y.dtype).min
    score = F.softmax(score, dim=-1).to(y.dtype)
    aggregated = score.transpose(-2, -3) @ x.reshape(B, self.c, C // self.c, -1).transpose(-1, -2)

    return F.normalize(aggregated.transpose(-2, -3).reshape(B, Q, -1), dim=-1, p=2)





📅 Created 2 years ago ✏️ Updated 2 days ago
glenn-jocherLaughing-qBurhan-QY-T-Gjk4e