Reference for ultralytics/nn/modules/transformer.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/transformer.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
TransformerEncoderLayer.with_pos_embedTransformerEncoderLayer.forward_postTransformerEncoderLayer.forward_preTransformerEncoderLayer.forwardAIFI.forwardAIFI.build_2d_sincos_position_embeddingTransformerLayer.forwardTransformerBlock.forwardMLPBlock.forwardMLP.forwardLayerNorm2d.forwardMSDeformAttn._reset_parametersMSDeformAttn.forwardDeformableTransformerDecoderLayer.with_pos_embedDeformableTransformerDecoderLayer.forward_ffnDeformableTransformerDecoderLayer.forwardDeformableTransformerDecoder.forward
class ultralytics.nn.modules.transformer.TransformerEncoderLayer
def __init__(
self,
c1: int,
cm: int = 2048,
num_heads: int = 8,
dropout: float = 0.0,
act: nn.Module = nn.GELU(),
normalize_before: bool = False,
)
Bases: nn.Module
A single layer of the transformer encoder.
This class implements a standard transformer encoder layer with multi-head attention and feedforward network, supporting both pre-normalization and post-normalization configurations.
Args
| Name | Type | Description | Default |
|---|---|---|---|
c1 | int | Input dimension. | required |
cm | int | Hidden dimension in the feedforward network. | 2048 |
num_heads | int | Number of attention heads. | 8 |
dropout | float | Dropout probability. | 0.0 |
act | nn.Module | Activation function. | nn.GELU() |
normalize_before | bool | Whether to apply normalization before attention and feedforward. | False |
Attributes
| Name | Type | Description |
|---|---|---|
ma | nn.MultiheadAttention | Multi-head attention module. |
fc1 | nn.Linear | First linear layer in the feedforward network. |
fc2 | nn.Linear | Second linear layer in the feedforward network. |
norm1 | nn.LayerNorm | Layer normalization after attention. |
norm2 | nn.LayerNorm | Layer normalization after feedforward network. |
dropout | nn.Dropout | Dropout layer for the feedforward network. |
dropout1 | nn.Dropout | Dropout layer after attention. |
dropout2 | nn.Dropout | Dropout layer after feedforward network. |
act | nn.Module | Activation function. |
normalize_before | bool | Whether to apply normalization before attention and feedforward. |
Methods
| Name | Description |
|---|---|
forward | Forward propagate the input through the encoder module. |
forward_post | Perform forward pass with post-normalization. |
forward_pre | Perform forward pass with pre-normalization. |
with_pos_embed | Add position embeddings to the tensor if provided. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass TransformerEncoderLayer(nn.Module):
"""A single layer of the transformer encoder.
This class implements a standard transformer encoder layer with multi-head attention and feedforward network,
supporting both pre-normalization and post-normalization configurations.
Attributes:
ma (nn.MultiheadAttention): Multi-head attention module.
fc1 (nn.Linear): First linear layer in the feedforward network.
fc2 (nn.Linear): Second linear layer in the feedforward network.
norm1 (nn.LayerNorm): Layer normalization after attention.
norm2 (nn.LayerNorm): Layer normalization after feedforward network.
dropout (nn.Dropout): Dropout layer for the feedforward network.
dropout1 (nn.Dropout): Dropout layer after attention.
dropout2 (nn.Dropout): Dropout layer after feedforward network.
act (nn.Module): Activation function.
normalize_before (bool): Whether to apply normalization before attention and feedforward.
"""
def __init__(
self,
c1: int,
cm: int = 2048,
num_heads: int = 8,
dropout: float = 0.0,
act: nn.Module = nn.GELU(),
normalize_before: bool = False,
):
"""Initialize the TransformerEncoderLayer with specified parameters.
Args:
c1 (int): Input dimension.
cm (int): Hidden dimension in the feedforward network.
num_heads (int): Number of attention heads.
dropout (float): Dropout probability.
act (nn.Module): Activation function.
normalize_before (bool): Whether to apply normalization before attention and feedforward.
"""
super().__init__()
from ...utils.torch_utils import TORCH_1_9
if not TORCH_1_9:
raise ModuleNotFoundError(
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
)
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
# Implementation of Feedforward model
self.fc1 = nn.Linear(c1, cm)
self.fc2 = nn.Linear(cm, c1)
self.norm1 = nn.LayerNorm(c1)
self.norm2 = nn.LayerNorm(c1)
self.dropout = nn.Dropout(dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.act = act
self.normalize_before = normalize_before
method ultralytics.nn.modules.transformer.TransformerEncoderLayer.forward
def forward(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor
Forward propagate the input through the encoder module.
Args
| Name | Type | Description | Default |
|---|---|---|---|
src | torch.Tensor | Input tensor. | required |
src_mask | torch.Tensor, optional | Mask for the src sequence. | None |
src_key_padding_mask | torch.Tensor, optional | Mask for the src keys per batch. | None |
pos | torch.Tensor, optional | Positional encoding. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after transformer encoder layer. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""Forward propagate the input through the encoder module.
Args:
src (torch.Tensor): Input tensor.
src_mask (torch.Tensor, optional): Mask for the src sequence.
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
pos (torch.Tensor, optional): Positional encoding.
Returns:
(torch.Tensor): Output tensor after transformer encoder layer.
"""
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
method ultralytics.nn.modules.transformer.TransformerEncoderLayer.forward_post
def forward_post(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor
Perform forward pass with post-normalization.
Args
| Name | Type | Description | Default |
|---|---|---|---|
src | torch.Tensor | Input tensor. | required |
src_mask | torch.Tensor, optional | Mask for the src sequence. | None |
src_key_padding_mask | torch.Tensor, optional | Mask for the src keys per batch. | None |
pos | torch.Tensor, optional | Positional encoding. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after attention and feedforward. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward_post(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""Perform forward pass with post-normalization.
Args:
src (torch.Tensor): Input tensor.
src_mask (torch.Tensor, optional): Mask for the src sequence.
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
pos (torch.Tensor, optional): Positional encoding.
Returns:
(torch.Tensor): Output tensor after attention and feedforward.
"""
q = k = self.with_pos_embed(src, pos)
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
src = src + self.dropout2(src2)
return self.norm2(src)
method ultralytics.nn.modules.transformer.TransformerEncoderLayer.forward_pre
def forward_pre(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor
Perform forward pass with pre-normalization.
Args
| Name | Type | Description | Default |
|---|---|---|---|
src | torch.Tensor | Input tensor. | required |
src_mask | torch.Tensor, optional | Mask for the src sequence. | None |
src_key_padding_mask | torch.Tensor, optional | Mask for the src keys per batch. | None |
pos | torch.Tensor, optional | Positional encoding. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after attention and feedforward. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward_pre(
self,
src: torch.Tensor,
src_mask: torch.Tensor | None = None,
src_key_padding_mask: torch.Tensor | None = None,
pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""Perform forward pass with pre-normalization.
Args:
src (torch.Tensor): Input tensor.
src_mask (torch.Tensor, optional): Mask for the src sequence.
src_key_padding_mask (torch.Tensor, optional): Mask for the src keys per batch.
pos (torch.Tensor, optional): Positional encoding.
Returns:
(torch.Tensor): Output tensor after attention and feedforward.
"""
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
return src + self.dropout2(src2)
method ultralytics.nn.modules.transformer.TransformerEncoderLayer.with_pos_embed
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None = None) -> torch.Tensor
Add position embeddings to the tensor if provided.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tensor | torch.Tensor | required | |
pos | torch.Tensor | None | None |
Source code in ultralytics/nn/modules/transformer.py
View on GitHub@staticmethod
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None = None) -> torch.Tensor:
"""Add position embeddings to the tensor if provided."""
return tensor if pos is None else tensor + pos
class ultralytics.nn.modules.transformer.AIFI
def __init__(
self,
c1: int,
cm: int = 2048,
num_heads: int = 8,
dropout: float = 0,
act: nn.Module = nn.GELU(),
normalize_before: bool = False,
)
Bases: TransformerEncoderLayer
AIFI transformer layer for 2D data with positional embeddings.
This class extends TransformerEncoderLayer to work with 2D feature maps by adding 2D sine-cosine positional embeddings and handling the spatial dimensions appropriately.
Args
| Name | Type | Description | Default |
|---|---|---|---|
c1 | int | Input dimension. | required |
cm | int | Hidden dimension in the feedforward network. | 2048 |
num_heads | int | Number of attention heads. | 8 |
dropout | float | Dropout probability. | 0 |
act | nn.Module | Activation function. | nn.GELU() |
normalize_before | bool | Whether to apply normalization before attention and feedforward. | False |
Methods
| Name | Description |
|---|---|
build_2d_sincos_position_embedding | Build 2D sine-cosine position embedding. |
forward | Forward pass for the AIFI transformer layer. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass AIFI(TransformerEncoderLayer):
"""AIFI transformer layer for 2D data with positional embeddings.
This class extends TransformerEncoderLayer to work with 2D feature maps by adding 2D sine-cosine positional
embeddings and handling the spatial dimensions appropriately.
"""
def __init__(
self,
c1: int,
cm: int = 2048,
num_heads: int = 8,
dropout: float = 0,
act: nn.Module = nn.GELU(),
normalize_before: bool = False,
):
"""Initialize the AIFI instance with specified parameters.
Args:
c1 (int): Input dimension.
cm (int): Hidden dimension in the feedforward network.
num_heads (int): Number of attention heads.
dropout (float): Dropout probability.
act (nn.Module): Activation function.
normalize_before (bool): Whether to apply normalization before attention and feedforward.
"""
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
method ultralytics.nn.modules.transformer.AIFI.build_2d_sincos_position_embedding
def build_2d_sincos_position_embedding(
w: int, h: int, embed_dim: int = 256, temperature: float = 10000.0
) -> torch.Tensor
Build 2D sine-cosine position embedding.
Args
| Name | Type | Description | Default |
|---|---|---|---|
w | int | Width of the feature map. | required |
h | int | Height of the feature map. | required |
embed_dim | int | Embedding dimension. | 256 |
temperature | float | Temperature for the sine/cosine functions. | 10000.0 |
Returns
| Type | Description |
|---|---|
torch.Tensor | Position embedding with shape [1, embed_dim, h*w]. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHub@staticmethod
def build_2d_sincos_position_embedding(
w: int, h: int, embed_dim: int = 256, temperature: float = 10000.0
) -> torch.Tensor:
"""Build 2D sine-cosine position embedding.
Args:
w (int): Width of the feature map.
h (int): Height of the feature map.
embed_dim (int): Embedding dimension.
temperature (float): Temperature for the sine/cosine functions.
Returns:
(torch.Tensor): Position embedding with shape [1, embed_dim, h*w].
"""
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij") if TORCH_1_11 else torch.meshgrid(grid_w, grid_h)
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
method ultralytics.nn.modules.transformer.AIFI.forward
def forward(self, x: torch.Tensor) -> torch.Tensor
Forward pass for the AIFI transformer layer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor with shape [B, C, H, W]. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor with shape [B, C, H, W]. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass for the AIFI transformer layer.
Args:
x (torch.Tensor): Input tensor with shape [B, C, H, W].
Returns:
(torch.Tensor): Output tensor with shape [B, C, H, W].
"""
c, h, w = x.shape[1:]
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
# Flatten [B, C, H, W] to [B, HxW, C]
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
class ultralytics.nn.modules.transformer.TransformerLayer
TransformerLayer(self, c: int, num_heads: int)
Bases: nn.Module
Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance).
Args
| Name | Type | Description | Default |
|---|---|---|---|
c | int | Input and output channel dimension. | required |
num_heads | int | Number of attention heads. | required |
Methods
| Name | Description |
|---|---|
forward | Apply a transformer block to the input x and return the output. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass TransformerLayer(nn.Module):
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
def __init__(self, c: int, num_heads: int):
"""Initialize a self-attention mechanism using linear transformations and multi-head attention.
Args:
c (int): Input and output channel dimension.
num_heads (int): Number of attention heads.
"""
super().__init__()
self.q = nn.Linear(c, c, bias=False)
self.k = nn.Linear(c, c, bias=False)
self.v = nn.Linear(c, c, bias=False)
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
self.fc1 = nn.Linear(c, c, bias=False)
self.fc2 = nn.Linear(c, c, bias=False)
method ultralytics.nn.modules.transformer.TransformerLayer.forward
def forward(self, x: torch.Tensor) -> torch.Tensor
Apply a transformer block to the input x and return the output.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after transformer layer. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply a transformer block to the input x and return the output.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after transformer layer.
"""
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
return self.fc2(self.fc1(x)) + x
class ultralytics.nn.modules.transformer.TransformerBlock
TransformerBlock(self, c1: int, c2: int, num_heads: int, num_layers: int)
Bases: nn.Module
Vision Transformer block based on https://arxiv.org/abs/2010.11929.
This class implements a complete transformer block with optional convolution layer for channel adjustment, learnable position embedding, and multiple transformer layers.
Args
| Name | Type | Description | Default |
|---|---|---|---|
c1 | int | Input channel dimension. | required |
c2 | int | Output channel dimension. | required |
num_heads | int | Number of attention heads. | required |
num_layers | int | Number of transformer layers. | required |
Attributes
| Name | Type | Description |
|---|---|---|
conv | Conv, optional | Convolution layer if input and output channels differ. |
linear | nn.Linear | Learnable position embedding. |
tr | nn.Sequential | Sequential container of transformer layers. |
c2 | int | Output channel dimension. |
Methods
| Name | Description |
|---|---|
forward | Forward propagate the input through the transformer block. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass TransformerBlock(nn.Module):
"""Vision Transformer block based on https://arxiv.org/abs/2010.11929.
This class implements a complete transformer block with optional convolution layer for channel adjustment, learnable
position embedding, and multiple transformer layers.
Attributes:
conv (Conv, optional): Convolution layer if input and output channels differ.
linear (nn.Linear): Learnable position embedding.
tr (nn.Sequential): Sequential container of transformer layers.
c2 (int): Output channel dimension.
"""
def __init__(self, c1: int, c2: int, num_heads: int, num_layers: int):
"""Initialize a Transformer module with position embedding and specified number of heads and layers.
Args:
c1 (int): Input channel dimension.
c2 (int): Output channel dimension.
num_heads (int): Number of attention heads.
num_layers (int): Number of transformer layers.
"""
super().__init__()
self.conv = None
if c1 != c2:
self.conv = Conv(c1, c2)
self.linear = nn.Linear(c2, c2) # learnable position embedding
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
self.c2 = c2
method ultralytics.nn.modules.transformer.TransformerBlock.forward
def forward(self, x: torch.Tensor) -> torch.Tensor
Forward propagate the input through the transformer block.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor with shape [b, c1, w, h]. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor with shape [b, c2, w, h]. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward propagate the input through the transformer block.
Args:
x (torch.Tensor): Input tensor with shape [b, c1, w, h].
Returns:
(torch.Tensor): Output tensor with shape [b, c2, w, h].
"""
if self.conv is not None:
x = self.conv(x)
b, _, w, h = x.shape
p = x.flatten(2).permute(2, 0, 1)
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
class ultralytics.nn.modules.transformer.MLPBlock
MLPBlock(self, embedding_dim: int, mlp_dim: int, act = nn.GELU)
Bases: nn.Module
A single block of a multi-layer perceptron.
Args
| Name | Type | Description | Default |
|---|---|---|---|
embedding_dim | int | Input and output dimension. | required |
mlp_dim | int | Hidden dimension. | required |
act | nn.Module | Activation function. | nn.GELU |
Methods
| Name | Description |
|---|---|
forward | Forward pass for the MLPBlock. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass MLPBlock(nn.Module):
"""A single block of a multi-layer perceptron."""
def __init__(self, embedding_dim: int, mlp_dim: int, act=nn.GELU):
"""Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function.
Args:
embedding_dim (int): Input and output dimension.
mlp_dim (int): Hidden dimension.
act (nn.Module): Activation function.
"""
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
method ultralytics.nn.modules.transformer.MLPBlock.forward
def forward(self, x: torch.Tensor) -> torch.Tensor
Forward pass for the MLPBlock.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after MLP block. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass for the MLPBlock.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after MLP block.
"""
return self.lin2(self.act(self.lin1(x)))
class ultralytics.nn.modules.transformer.MLP
MLP(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act = nn.ReLU, sigmoid: bool = False)
Bases: nn.Module
A simple multi-layer perceptron (also called FFN).
This class implements a configurable MLP with multiple linear layers, activation functions, and optional sigmoid output activation.
Args
| Name | Type | Description | Default |
|---|---|---|---|
input_dim | int | Input dimension. | required |
hidden_dim | int | Hidden dimension. | required |
output_dim | int | Output dimension. | required |
num_layers | int | Number of layers. | required |
act | nn.Module | Activation function. | nn.ReLU |
sigmoid | bool | Whether to apply sigmoid to the output. | False |
Attributes
| Name | Type | Description |
|---|---|---|
num_layers | int | Number of layers in the MLP. |
layers | nn.ModuleList | List of linear layers. |
sigmoid | bool | Whether to apply sigmoid to the output. |
act | nn.Module | Activation function. |
Methods
| Name | Description |
|---|---|
forward | Forward pass for the entire MLP. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass MLP(nn.Module):
"""A simple multi-layer perceptron (also called FFN).
This class implements a configurable MLP with multiple linear layers, activation functions, and optional sigmoid
output activation.
Attributes:
num_layers (int): Number of layers in the MLP.
layers (nn.ModuleList): List of linear layers.
sigmoid (bool): Whether to apply sigmoid to the output.
act (nn.Module): Activation function.
"""
def __init__(
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, act=nn.ReLU, sigmoid: bool = False
):
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers.
Args:
input_dim (int): Input dimension.
hidden_dim (int): Hidden dimension.
output_dim (int): Output dimension.
num_layers (int): Number of layers.
act (nn.Module): Activation function.
sigmoid (bool): Whether to apply sigmoid to the output.
"""
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim, *h], [*h, output_dim]))
self.sigmoid = sigmoid
self.act = act()
method ultralytics.nn.modules.transformer.MLP.forward
def forward(self, x: torch.Tensor) -> torch.Tensor
Forward pass for the entire MLP.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after MLP. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass for the entire MLP.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after MLP.
"""
for i, layer in enumerate(self.layers):
x = getattr(self, "act", nn.ReLU())(layer(x)) if i < self.num_layers - 1 else layer(x)
return x.sigmoid() if getattr(self, "sigmoid", False) else x
class ultralytics.nn.modules.transformer.LayerNorm2d
LayerNorm2d(self, num_channels: int, eps: float = 1e-6)
Bases: nn.Module
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
This class implements layer normalization for 2D feature maps, normalizing across the channel dimension while preserving spatial dimensions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
num_channels | int | Number of channels in the input. | required |
eps | float | Small constant for numerical stability. | 1e-6 |
Attributes
| Name | Type | Description |
|---|---|---|
weight | nn.Parameter | Learnable scale parameter. |
bias | nn.Parameter | Learnable bias parameter. |
eps | float | Small constant for numerical stability. |
References | ||
https | //github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py | |
https | //github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py |
Methods
| Name | Description |
|---|---|
forward | Perform forward pass for 2D layer normalization. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass LayerNorm2d(nn.Module):
"""2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
This class implements layer normalization for 2D feature maps, normalizing across the channel dimension while
preserving spatial dimensions.
Attributes:
weight (nn.Parameter): Learnable scale parameter.
bias (nn.Parameter): Learnable bias parameter.
eps (float): Small constant for numerical stability.
References:
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
"""
def __init__(self, num_channels: int, eps: float = 1e-6):
"""Initialize LayerNorm2d with the given parameters.
Args:
num_channels (int): Number of channels in the input.
eps (float): Small constant for numerical stability.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
method ultralytics.nn.modules.transformer.LayerNorm2d.forward
def forward(self, x: torch.Tensor) -> torch.Tensor
Perform forward pass for 2D layer normalization.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Normalized output tensor. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform forward pass for 2D layer normalization.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Normalized output tensor.
"""
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
return self.weight[:, None, None] * x + self.bias[:, None, None]
class ultralytics.nn.modules.transformer.MSDeformAttn
MSDeformAttn(self, d_model: int = 256, n_levels: int = 4, n_heads: int = 8, n_points: int = 4)
Bases: nn.Module
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
This module implements multiscale deformable attention that can attend to features at multiple scales with learnable sampling locations and attention weights.
Args
| Name | Type | Description | Default |
|---|---|---|---|
d_model | int | Model dimension. | 256 |
n_levels | int | Number of feature levels. | 4 |
n_heads | int | Number of attention heads. | 8 |
n_points | int | Number of sampling points per attention head per feature level. | 4 |
Attributes
| Name | Type | Description |
|---|---|---|
im2col_step | int | Step size for im2col operations. |
d_model | int | Model dimension. |
n_levels | int | Number of feature levels. |
n_heads | int | Number of attention heads. |
n_points | int | Number of sampling points per attention head per feature level. |
sampling_offsets | nn.Linear | Linear layer for generating sampling offsets. |
attention_weights | nn.Linear | Linear layer for generating attention weights. |
value_proj | nn.Linear | Linear layer for projecting values. |
output_proj | nn.Linear | Linear layer for projecting output. |
References | ||
https | //github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py |
Methods
| Name | Description |
|---|---|
_reset_parameters | Reset module parameters. |
forward | Perform forward pass for multiscale deformable attention. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass MSDeformAttn(nn.Module):
"""Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
This module implements multiscale deformable attention that can attend to features at multiple scales with learnable
sampling locations and attention weights.
Attributes:
im2col_step (int): Step size for im2col operations.
d_model (int): Model dimension.
n_levels (int): Number of feature levels.
n_heads (int): Number of attention heads.
n_points (int): Number of sampling points per attention head per feature level.
sampling_offsets (nn.Linear): Linear layer for generating sampling offsets.
attention_weights (nn.Linear): Linear layer for generating attention weights.
value_proj (nn.Linear): Linear layer for projecting values.
output_proj (nn.Linear): Linear layer for projecting output.
References:
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
"""
def __init__(self, d_model: int = 256, n_levels: int = 4, n_heads: int = 8, n_points: int = 4):
"""Initialize MSDeformAttn with the given parameters.
Args:
d_model (int): Model dimension.
n_levels (int): Number of feature levels.
n_heads (int): Number of attention heads.
n_points (int): Number of sampling points per attention head per feature level.
"""
super().__init__()
if d_model % n_heads != 0:
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
_d_per_head = d_model // n_heads
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
self.im2col_step = 64
self.d_model = d_model
self.n_levels = n_levels
self.n_heads = n_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
self.value_proj = nn.Linear(d_model, d_model)
self.output_proj = nn.Linear(d_model, d_model)
self._reset_parameters()
method ultralytics.nn.modules.transformer.MSDeformAttn._reset_parameters
def _reset_parameters(self)
Reset module parameters.
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef _reset_parameters(self):
"""Reset module parameters."""
constant_(self.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(self.n_heads, 1, 1, 2)
.repeat(1, self.n_levels, self.n_points, 1)
)
for i in range(self.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
constant_(self.attention_weights.weight.data, 0.0)
constant_(self.attention_weights.bias.data, 0.0)
xavier_uniform_(self.value_proj.weight.data)
constant_(self.value_proj.bias.data, 0.0)
xavier_uniform_(self.output_proj.weight.data)
constant_(self.output_proj.bias.data, 0.0)
method ultralytics.nn.modules.transformer.MSDeformAttn.forward
def forward(
self,
query: torch.Tensor,
refer_bbox: torch.Tensor,
value: torch.Tensor,
value_shapes: list,
value_mask: torch.Tensor | None = None,
) -> torch.Tensor
Perform forward pass for multiscale deformable attention.
Args
| Name | Type | Description | Default |
|---|---|---|---|
query | torch.Tensor | Query tensor with shape [bs, query_length, C]. | required |
refer_bbox | torch.Tensor | Reference bounding boxes with shape [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area. | required |
value | torch.Tensor | Value tensor with shape [bs, value_length, C]. | required |
value_shapes | list | List with shape [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]. | required |
value_mask | torch.Tensor, optional | Mask tensor with shape [bs, value_length], True for non-padding elements, False for padding elements. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor with shape [bs, Length_{query}, C]. |
References | |
https | //github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(
self,
query: torch.Tensor,
refer_bbox: torch.Tensor,
value: torch.Tensor,
value_shapes: list,
value_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""Perform forward pass for multiscale deformable attention.
Args:
query (torch.Tensor): Query tensor with shape [bs, query_length, C].
refer_bbox (torch.Tensor): Reference bounding boxes with shape [bs, query_length, n_levels, 2], range in [0,
1], top-left (0,0), bottom-right (1, 1), including padding area.
value (torch.Tensor): Value tensor with shape [bs, value_length, C].
value_shapes (list): List with shape [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})].
value_mask (torch.Tensor, optional): Mask tensor with shape [bs, value_length], True for non-padding
elements, False for padding elements.
Returns:
(torch.Tensor): Output tensor with shape [bs, Length_{query}, C].
References:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
"""
bs, len_q = query.shape[:2]
len_v = value.shape[1]
assert sum(s[0] * s[1] for s in value_shapes) == len_v
value = self.value_proj(value)
if value_mask is not None:
value = value.masked_fill(value_mask[..., None], float(0))
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
# N, Len_q, n_heads, n_levels, n_points, 2
num_points = refer_bbox.shape[-1]
if num_points == 2:
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
elif num_points == 4:
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
return self.output_proj(output)
class ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer
def __init__(
self,
d_model: int = 256,
n_heads: int = 8,
d_ffn: int = 1024,
dropout: float = 0.0,
act: nn.Module = nn.ReLU(),
n_levels: int = 4,
n_points: int = 4,
)
Bases: nn.Module
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
This class implements a single decoder layer with self-attention, cross-attention using multiscale deformable attention, and a feedforward network.
Args
| Name | Type | Description | Default |
|---|---|---|---|
d_model | int | Model dimension. | 256 |
n_heads | int | Number of attention heads. | 8 |
d_ffn | int | Dimension of the feedforward network. | 1024 |
dropout | float | Dropout probability. | 0.0 |
act | nn.Module | Activation function. | nn.ReLU() |
n_levels | int | Number of feature levels. | 4 |
n_points | int | Number of sampling points. | 4 |
Attributes
| Name | Type | Description |
|---|---|---|
self_attn | nn.MultiheadAttention | Self-attention module. |
dropout1 | nn.Dropout | Dropout after self-attention. |
norm1 | nn.LayerNorm | Layer normalization after self-attention. |
cross_attn | MSDeformAttn | Cross-attention module. |
dropout2 | nn.Dropout | Dropout after cross-attention. |
norm2 | nn.LayerNorm | Layer normalization after cross-attention. |
linear1 | nn.Linear | First linear layer in the feedforward network. |
act | nn.Module | Activation function. |
dropout3 | nn.Dropout | Dropout in the feedforward network. |
linear2 | nn.Linear | Second linear layer in the feedforward network. |
dropout4 | nn.Dropout | Dropout after the feedforward network. |
norm3 | nn.LayerNorm | Layer normalization after the feedforward network. |
References | ||
https | //github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py | |
https | //github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py |
Methods
| Name | Description |
|---|---|
forward | Perform the forward pass through the entire decoder layer. |
forward_ffn | Perform forward pass through the Feed-Forward Network part of the layer. |
with_pos_embed | Add positional embeddings to the input tensor, if provided. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass DeformableTransformerDecoderLayer(nn.Module):
"""Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
This class implements a single decoder layer with self-attention, cross-attention using multiscale deformable
attention, and a feedforward network.
Attributes:
self_attn (nn.MultiheadAttention): Self-attention module.
dropout1 (nn.Dropout): Dropout after self-attention.
norm1 (nn.LayerNorm): Layer normalization after self-attention.
cross_attn (MSDeformAttn): Cross-attention module.
dropout2 (nn.Dropout): Dropout after cross-attention.
norm2 (nn.LayerNorm): Layer normalization after cross-attention.
linear1 (nn.Linear): First linear layer in the feedforward network.
act (nn.Module): Activation function.
dropout3 (nn.Dropout): Dropout in the feedforward network.
linear2 (nn.Linear): Second linear layer in the feedforward network.
dropout4 (nn.Dropout): Dropout after the feedforward network.
norm3 (nn.LayerNorm): Layer normalization after the feedforward network.
References:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
"""
def __init__(
self,
d_model: int = 256,
n_heads: int = 8,
d_ffn: int = 1024,
dropout: float = 0.0,
act: nn.Module = nn.ReLU(),
n_levels: int = 4,
n_points: int = 4,
):
"""Initialize the DeformableTransformerDecoderLayer with the given parameters.
Args:
d_model (int): Model dimension.
n_heads (int): Number of attention heads.
d_ffn (int): Dimension of the feedforward network.
dropout (float): Dropout probability.
act (nn.Module): Activation function.
n_levels (int): Number of feature levels.
n_points (int): Number of sampling points.
"""
super().__init__()
# Self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# Cross attention
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# FFN
self.linear1 = nn.Linear(d_model, d_ffn)
self.act = act
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
method ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer.forward
def forward(
self,
embed: torch.Tensor,
refer_bbox: torch.Tensor,
feats: torch.Tensor,
shapes: list,
padding_mask: torch.Tensor | None = None,
attn_mask: torch.Tensor | None = None,
query_pos: torch.Tensor | None = None,
) -> torch.Tensor
Perform the forward pass through the entire decoder layer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
embed | torch.Tensor | Input embeddings. | required |
refer_bbox | torch.Tensor | Reference bounding boxes. | required |
feats | torch.Tensor | Feature maps. | required |
shapes | list | Feature shapes. | required |
padding_mask | torch.Tensor, optional | Padding mask. | None |
attn_mask | torch.Tensor, optional | Attention mask. | None |
query_pos | torch.Tensor, optional | Query position embeddings. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after decoder layer. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(
self,
embed: torch.Tensor,
refer_bbox: torch.Tensor,
feats: torch.Tensor,
shapes: list,
padding_mask: torch.Tensor | None = None,
attn_mask: torch.Tensor | None = None,
query_pos: torch.Tensor | None = None,
) -> torch.Tensor:
"""Perform the forward pass through the entire decoder layer.
Args:
embed (torch.Tensor): Input embeddings.
refer_bbox (torch.Tensor): Reference bounding boxes.
feats (torch.Tensor): Feature maps.
shapes (list): Feature shapes.
padding_mask (torch.Tensor, optional): Padding mask.
attn_mask (torch.Tensor, optional): Attention mask.
query_pos (torch.Tensor, optional): Query position embeddings.
Returns:
(torch.Tensor): Output tensor after decoder layer.
"""
# Self attention
q = k = self.with_pos_embed(embed, query_pos)
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
0
].transpose(0, 1)
embed = embed + self.dropout1(tgt)
embed = self.norm1(embed)
# Cross attention
tgt = self.cross_attn(
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
)
embed = embed + self.dropout2(tgt)
embed = self.norm2(embed)
# FFN
return self.forward_ffn(embed)
method ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer.forward_ffn
def forward_ffn(self, tgt: torch.Tensor) -> torch.Tensor
Perform forward pass through the Feed-Forward Network part of the layer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tgt | torch.Tensor | Input tensor. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Output tensor after FFN. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward_ffn(self, tgt: torch.Tensor) -> torch.Tensor:
"""Perform forward pass through the Feed-Forward Network part of the layer.
Args:
tgt (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after FFN.
"""
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
return self.norm3(tgt)
method ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer.with_pos_embed
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None) -> torch.Tensor
Add positional embeddings to the input tensor, if provided.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tensor | torch.Tensor | required | |
pos | torch.Tensor | None | required |
Source code in ultralytics/nn/modules/transformer.py
View on GitHub@staticmethod
def with_pos_embed(tensor: torch.Tensor, pos: torch.Tensor | None) -> torch.Tensor:
"""Add positional embeddings to the input tensor, if provided."""
return tensor if pos is None else tensor + pos
class ultralytics.nn.modules.transformer.DeformableTransformerDecoder
DeformableTransformerDecoder(self, hidden_dim: int, decoder_layer: nn.Module, num_layers: int, eval_idx: int = -1)
Bases: nn.Module
Deformable Transformer Decoder based on PaddleDetection implementation.
This class implements a complete deformable transformer decoder with multiple decoder layers and prediction heads for bounding box regression and classification.
Args
| Name | Type | Description | Default |
|---|---|---|---|
hidden_dim | int | Hidden dimension. | required |
decoder_layer | nn.Module | Decoder layer module. | required |
num_layers | int | Number of decoder layers. | required |
eval_idx | int | Index of the layer to use during evaluation. | -1 |
Attributes
| Name | Type | Description |
|---|---|---|
layers | nn.ModuleList | List of decoder layers. |
num_layers | int | Number of decoder layers. |
hidden_dim | int | Hidden dimension. |
eval_idx | int | Index of the layer to use during evaluation. |
References | ||
https | //github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py |
Methods
| Name | Description |
|---|---|
forward | Perform the forward pass through the entire decoder. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubclass DeformableTransformerDecoder(nn.Module):
"""Deformable Transformer Decoder based on PaddleDetection implementation.
This class implements a complete deformable transformer decoder with multiple decoder layers and prediction heads
for bounding box regression and classification.
Attributes:
layers (nn.ModuleList): List of decoder layers.
num_layers (int): Number of decoder layers.
hidden_dim (int): Hidden dimension.
eval_idx (int): Index of the layer to use during evaluation.
References:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
"""
def __init__(self, hidden_dim: int, decoder_layer: nn.Module, num_layers: int, eval_idx: int = -1):
"""Initialize the DeformableTransformerDecoder with the given parameters.
Args:
hidden_dim (int): Hidden dimension.
decoder_layer (nn.Module): Decoder layer module.
num_layers (int): Number of decoder layers.
eval_idx (int): Index of the layer to use during evaluation.
"""
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
method ultralytics.nn.modules.transformer.DeformableTransformerDecoder.forward
def forward(
self,
embed: torch.Tensor, # decoder embeddings
refer_bbox: torch.Tensor, # anchor
feats: torch.Tensor, # image features
shapes: list, # feature shapes
bbox_head: nn.Module,
score_head: nn.Module,
pos_mlp: nn.Module,
attn_mask: torch.Tensor | None = None,
padding_mask: torch.Tensor | None = None,
)
Perform the forward pass through the entire decoder.
Args
| Name | Type | Description | Default |
|---|---|---|---|
embed | torch.Tensor | Decoder embeddings. | required |
refer_bbox | torch.Tensor | Reference bounding boxes. | required |
feats | torch.Tensor | Image features. | required |
shapes | list | Feature shapes. | required |
bbox_head | nn.Module | Bounding box prediction head. | required |
score_head | nn.Module | Score prediction head. | required |
pos_mlp | nn.Module | Position MLP. | required |
attn_mask | torch.Tensor, optional | Attention mask. | None |
padding_mask | torch.Tensor, optional | Padding mask. | None |
Returns
| Type | Description |
|---|---|
dec_bboxes (torch.Tensor) | Decoded bounding boxes. |
dec_cls (torch.Tensor) | Decoded classification scores. |
Source code in ultralytics/nn/modules/transformer.py
View on GitHubdef forward(
self,
embed: torch.Tensor, # decoder embeddings
refer_bbox: torch.Tensor, # anchor
feats: torch.Tensor, # image features
shapes: list, # feature shapes
bbox_head: nn.Module,
score_head: nn.Module,
pos_mlp: nn.Module,
attn_mask: torch.Tensor | None = None,
padding_mask: torch.Tensor | None = None,
):
"""Perform the forward pass through the entire decoder.
Args:
embed (torch.Tensor): Decoder embeddings.
refer_bbox (torch.Tensor): Reference bounding boxes.
feats (torch.Tensor): Image features.
shapes (list): Feature shapes.
bbox_head (nn.Module): Bounding box prediction head.
score_head (nn.Module): Score prediction head.
pos_mlp (nn.Module): Position MLP.
attn_mask (torch.Tensor, optional): Attention mask.
padding_mask (torch.Tensor, optional): Padding mask.
Returns:
dec_bboxes (torch.Tensor): Decoded bounding boxes.
dec_cls (torch.Tensor): Decoded classification scores.
"""
output = embed
dec_bboxes = []
dec_cls = []
last_refined_bbox = None
refer_bbox = refer_bbox.sigmoid()
for i, layer in enumerate(self.layers):
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
bbox = bbox_head[i](output)
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
if self.training:
dec_cls.append(score_head[i](output))
if i == 0:
dec_bboxes.append(refined_bbox)
else:
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
elif i == self.eval_idx:
dec_cls.append(score_head[i](output))
dec_bboxes.append(refined_bbox)
break
last_refined_bbox = refined_bbox
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
return torch.stack(dec_bboxes), torch.stack(dec_cls)