Skip to content

Reference for ultralytics/solutions/parking_management.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/parking_management.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.solutions.parking_management.ParkingPtsSelection

ParkingPtsSelection(self) -> None

A class for selecting and managing parking zone points on images using a Tkinter-based UI.

This class provides functionality to upload an image, select points to define parking zones, and save the selected points to a JSON file. It uses Tkinter for the graphical user interface.

Attributes

NameTypeDescription
tkmoduleThe Tkinter module for GUI operations.
filedialogmoduleTkinter's filedialog module for file selection operations.
messageboxmoduleTkinter's messagebox module for displaying message boxes.
mastertk.TkThe main Tkinter window.
canvastk.CanvasThe canvas widget for displaying the image and drawing bounding boxes.
imagePIL.Image.ImageThe uploaded image.
canvas_imageImageTk.PhotoImageThe image displayed on the canvas.
rg_datalist[list[tuple[int, int]]]List of bounding boxes, each defined by 4 points.
current_boxlist[tuple[int, int]]Temporary storage for the points of the current bounding box.
imgwintOriginal width of the uploaded image.
imghintOriginal height of the uploaded image.
canvas_max_widthintMaximum width of the canvas.
canvas_max_heightintMaximum height of the canvas.

Methods

NameDescription
draw_boxDraw a bounding box on the canvas using the provided coordinates.
initialize_propertiesInitialize properties for image, canvas, bounding boxes, and dimensions.
on_canvas_clickHandle mouse clicks to add points for bounding boxes on the canvas.
redraw_canvasRedraw the canvas with the image and all bounding boxes.
remove_last_bounding_boxRemove the last bounding box from the list and redraw the canvas.
save_to_jsonSave the selected parking zone points to a JSON file with scaled coordinates.
upload_imageUpload and display an image on the canvas, resizing it to fit within specified dimensions.

Examples

>>> parking_selector = ParkingPtsSelection()
>>> # Use the GUI to upload an image, select parking zones, and save the data
Source code in ultralytics/solutions/parking_management.pyView on GitHub
class ParkingPtsSelection:
    """A class for selecting and managing parking zone points on images using a Tkinter-based UI.

    This class provides functionality to upload an image, select points to define parking zones, and save the selected
    points to a JSON file. It uses Tkinter for the graphical user interface.

    Attributes:
        tk (module): The Tkinter module for GUI operations.
        filedialog (module): Tkinter's filedialog module for file selection operations.
        messagebox (module): Tkinter's messagebox module for displaying message boxes.
        master (tk.Tk): The main Tkinter window.
        canvas (tk.Canvas): The canvas widget for displaying the image and drawing bounding boxes.
        image (PIL.Image.Image): The uploaded image.
        canvas_image (ImageTk.PhotoImage): The image displayed on the canvas.
        rg_data (list[list[tuple[int, int]]]): List of bounding boxes, each defined by 4 points.
        current_box (list[tuple[int, int]]): Temporary storage for the points of the current bounding box.
        imgw (int): Original width of the uploaded image.
        imgh (int): Original height of the uploaded image.
        canvas_max_width (int): Maximum width of the canvas.
        canvas_max_height (int): Maximum height of the canvas.

    Methods:
        initialize_properties: Initialize properties for image, canvas, bounding boxes, and dimensions.
        upload_image: Upload and display an image on the canvas, resizing it to fit within specified dimensions.
        on_canvas_click: Handle mouse clicks to add points for bounding boxes on the canvas.
        draw_box: Draw a bounding box on the canvas using the provided coordinates.
        remove_last_bounding_box: Remove the last bounding box from the list and redraw the canvas.
        redraw_canvas: Redraw the canvas with the image and all bounding boxes.
        save_to_json: Save the selected parking zone points to a JSON file with scaled coordinates.

    Examples:
        >>> parking_selector = ParkingPtsSelection()
        >>> # Use the GUI to upload an image, select parking zones, and save the data
    """

    def __init__(self) -> None:
        """Initialize the ParkingPtsSelection class, setting up UI and properties for parking zone point selection."""
        try:  # Check if tkinter is installed
            import tkinter as tk
            from tkinter import filedialog, messagebox
        except ImportError:  # Display error with recommendations
            import platform

            install_cmd = {
                "Linux": "sudo apt install python3-tk (Debian/Ubuntu) | sudo dnf install python3-tkinter (Fedora) | "
                "sudo pacman -S tk (Arch)",
                "Windows": "reinstall Python and enable the checkbox `tcl/tk and IDLE` on **Optional Features** during installation",
                "Darwin": "reinstall Python from https://www.python.org/downloads/macos/ or `brew install python-tk`",
            }.get(platform.system(), "Unknown OS. Check your Python installation.")

            LOGGER.warning(f" Tkinter is not configured or supported. Potential fix: {install_cmd}")
            return

        if not check_imshow(warn=True):
            return

        self.tk, self.filedialog, self.messagebox = tk, filedialog, messagebox
        self.master = self.tk.Tk()  # Reference to the main application window
        self.master.title("Ultralytics Parking Zones Points Selector")
        self.master.resizable(False, False)

        self.canvas = self.tk.Canvas(self.master, bg="white")  # Canvas widget for displaying images
        self.canvas.pack(side=self.tk.BOTTOM)

        self.image = None  # Variable to store the loaded image
        self.canvas_image = None  # Reference to the image displayed on the canvas
        self.canvas_max_width = None  # Maximum allowed width for the canvas
        self.canvas_max_height = None  # Maximum allowed height for the canvas
        self.rg_data = None  # Data for region annotation management
        self.current_box = None  # Stores the currently selected bounding box
        self.imgh = None  # Height of the current image
        self.imgw = None  # Width of the current image

        # Button frame with buttons
        button_frame = self.tk.Frame(self.master)
        button_frame.pack(side=self.tk.TOP)

        for text, cmd in [
            ("Upload Image", self.upload_image),
            ("Remove Last BBox", self.remove_last_bounding_box),
            ("Save", self.save_to_json),
        ]:
            self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT)

        self.initialize_properties()
        self.master.mainloop()


method ultralytics.solutions.parking_management.ParkingPtsSelection.draw_box

def draw_box(self, box: list[tuple[int, int]]) -> None

Draw a bounding box on the canvas using the provided coordinates.

Args

NameTypeDescriptionDefault
boxlist[tuple[int, int]]required
Source code in ultralytics/solutions/parking_management.pyView on GitHub
def draw_box(self, box: list[tuple[int, int]]) -> None:
    """Draw a bounding box on the canvas using the provided coordinates."""
    for i in range(4):
        self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2)


method ultralytics.solutions.parking_management.ParkingPtsSelection.initialize_properties

def initialize_properties(self) -> None

Initialize properties for image, canvas, bounding boxes, and dimensions.

Source code in ultralytics/solutions/parking_management.pyView on GitHub
def initialize_properties(self) -> None:
    """Initialize properties for image, canvas, bounding boxes, and dimensions."""
    self.image = self.canvas_image = None
    self.rg_data, self.current_box = [], []
    self.imgw = self.imgh = 0
    self.canvas_max_width, self.canvas_max_height = 1280, 720


method ultralytics.solutions.parking_management.ParkingPtsSelection.on_canvas_click

def on_canvas_click(self, event) -> None

Handle mouse clicks to add points for bounding boxes on the canvas.

Args

NameTypeDescriptionDefault
eventrequired
Source code in ultralytics/solutions/parking_management.pyView on GitHub
def on_canvas_click(self, event) -> None:
    """Handle mouse clicks to add points for bounding boxes on the canvas."""
    self.current_box.append((event.x, event.y))
    self.canvas.create_oval(event.x - 3, event.y - 3, event.x + 3, event.y + 3, fill="red")
    if len(self.current_box) == 4:
        self.rg_data.append(self.current_box.copy())
        self.draw_box(self.current_box)
        self.current_box.clear()


method ultralytics.solutions.parking_management.ParkingPtsSelection.redraw_canvas

def redraw_canvas(self) -> None

Redraw the canvas with the image and all bounding boxes.

Source code in ultralytics/solutions/parking_management.pyView on GitHub
def redraw_canvas(self) -> None:
    """Redraw the canvas with the image and all bounding boxes."""
    self.canvas.delete("all")
    self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
    for box in self.rg_data:
        self.draw_box(box)


method ultralytics.solutions.parking_management.ParkingPtsSelection.remove_last_bounding_box

def remove_last_bounding_box(self) -> None

Remove the last bounding box from the list and redraw the canvas.

Source code in ultralytics/solutions/parking_management.pyView on GitHub
def remove_last_bounding_box(self) -> None:
    """Remove the last bounding box from the list and redraw the canvas."""
    if not self.rg_data:
        self.messagebox.showwarning("Warning", "No bounding boxes to remove.")
        return
    self.rg_data.pop()
    self.redraw_canvas()


method ultralytics.solutions.parking_management.ParkingPtsSelection.save_to_json

def save_to_json(self) -> None

Save the selected parking zone points to a JSON file with scaled coordinates.

Source code in ultralytics/solutions/parking_management.pyView on GitHub
def save_to_json(self) -> None:
    """Save the selected parking zone points to a JSON file with scaled coordinates."""
    scale_w, scale_h = self.imgw / self.canvas.winfo_width(), self.imgh / self.canvas.winfo_height()
    data = [{"points": [(int(x * scale_w), int(y * scale_h)) for x, y in box]} for box in self.rg_data]

    from io import StringIO  # Function level import, as it's only required to store coordinates

    write_buffer = StringIO()
    json.dump(data, write_buffer, indent=4)
    with open("bounding_boxes.json", "w", encoding="utf-8") as f:
        f.write(write_buffer.getvalue())
    self.messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")


method ultralytics.solutions.parking_management.ParkingPtsSelection.upload_image

def upload_image(self) -> None

Upload and display an image on the canvas, resizing it to fit within specified dimensions.

Source code in ultralytics/solutions/parking_management.pyView on GitHub
def upload_image(self) -> None:
    """Upload and display an image on the canvas, resizing it to fit within specified dimensions."""
    from PIL import Image, ImageTk  # Scoped import because ImageTk requires tkinter package

    file = self.filedialog.askopenfilename(filetypes=[("Image Files", "*.png *.jpg *.jpeg")])
    if not file:
        LOGGER.info("No image selected.")
        return

    self.image = Image.open(file)
    self.imgw, self.imgh = self.image.size
    aspect_ratio = self.imgw / self.imgh
    canvas_width = (
        min(self.canvas_max_width, self.imgw) if aspect_ratio > 1 else int(self.canvas_max_height * aspect_ratio)
    )
    canvas_height = (
        min(self.canvas_max_height, self.imgh) if aspect_ratio <= 1 else int(canvas_width / aspect_ratio)
    )

    self.canvas.config(width=canvas_width, height=canvas_height)
    self.canvas_image = ImageTk.PhotoImage(self.image.resize((canvas_width, canvas_height)))
    self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
    self.canvas.bind("<Button-1>", self.on_canvas_click)

    self.rg_data.clear(), self.current_box.clear()





class ultralytics.solutions.parking_management.ParkingManagement

ParkingManagement(self, **kwargs: Any) -> None

Bases: BaseSolution

Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization.

This class extends BaseSolution to provide functionality for parking lot management, including detection of occupied spaces, visualization of parking regions, and display of occupancy statistics.

Args

NameTypeDescriptionDefault
**kwargsAnyrequired

Attributes

NameTypeDescription
json_filestrPath to the JSON file containing parking region details.
jsonlist[dict]Loaded JSON data containing parking region information.
pr_infodict[str, int]Dictionary storing parking information (Occupancy and Available spaces).
arctuple[int, int, int]RGB color tuple for available region visualization.
occtuple[int, int, int]RGB color tuple for occupied region visualization.
dctuple[int, int, int]RGB color tuple for centroid visualization of detected objects.

Methods

NameDescription
processProcess the input image for parking lot management and visualization.

Examples

>>> from ultralytics.solutions import ParkingManagement
>>> parking_manager = ParkingManagement(model="yolo11n.pt", json_file="parking_regions.json")
>>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
>>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
Source code in ultralytics/solutions/parking_management.pyView on GitHub
class ParkingManagement(BaseSolution):
    """Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization.

    This class extends BaseSolution to provide functionality for parking lot management, including detection of occupied
    spaces, visualization of parking regions, and display of occupancy statistics.

    Attributes:
        json_file (str): Path to the JSON file containing parking region details.
        json (list[dict]): Loaded JSON data containing parking region information.
        pr_info (dict[str, int]): Dictionary storing parking information (Occupancy and Available spaces).
        arc (tuple[int, int, int]): RGB color tuple for available region visualization.
        occ (tuple[int, int, int]): RGB color tuple for occupied region visualization.
        dc (tuple[int, int, int]): RGB color tuple for centroid visualization of detected objects.

    Methods:
        process: Process the input image for parking lot management and visualization.

    Examples:
        >>> from ultralytics.solutions import ParkingManagement
        >>> parking_manager = ParkingManagement(model="yolo11n.pt", json_file="parking_regions.json")
        >>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
        >>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
    """

    def __init__(self, **kwargs: Any) -> None:
        """Initialize the parking management system with a YOLO model and visualization settings."""
        super().__init__(**kwargs)

        self.json_file = self.CFG["json_file"]  # Load parking regions JSON data
        if self.json_file is None:
            LOGGER.warning("json_file argument missing. Parking region details required.")
            raise ValueError("❌ Json file path can not be empty")

        with open(self.json_file) as f:
            self.json = json.load(f)

        self.pr_info = {"Occupancy": 0, "Available": 0}  # Dictionary for parking information

        self.arc = (0, 0, 255)  # Available region color
        self.occ = (0, 255, 0)  # Occupied region color
        self.dc = (255, 0, 189)  # Centroid color for each box


method ultralytics.solutions.parking_management.ParkingManagement.process

def process(self, im0: np.ndarray) -> SolutionResults

Process the input image for parking lot management and visualization.

This function analyzes the input image, extracts tracks, and determines the occupancy status of parking regions defined in the JSON file. It annotates the image with occupied and available parking spots, and updates the parking information.

Args

NameTypeDescriptionDefault
im0np.ndarrayThe input inference image.required

Returns

TypeDescription
SolutionResultsContains processed image plot_im, 'filled_slots' (number of occupied parking slots),

Examples

>>> parking_manager = ParkingManagement(json_file="parking_regions.json")
>>> image = cv2.imread("parking_lot.jpg")
>>> results = parking_manager.process(image)
Source code in ultralytics/solutions/parking_management.pyView on GitHub
def process(self, im0: np.ndarray) -> SolutionResults:
    """Process the input image for parking lot management and visualization.

    This function analyzes the input image, extracts tracks, and determines the occupancy status of parking regions
    defined in the JSON file. It annotates the image with occupied and available parking spots, and updates the
    parking information.

    Args:
        im0 (np.ndarray): The input inference image.

    Returns:
        (SolutionResults): Contains processed image `plot_im`, 'filled_slots' (number of occupied parking slots),
            'available_slots' (number of available parking slots), and 'total_tracks' (total number of
            tracked objects).

    Examples:
        >>> parking_manager = ParkingManagement(json_file="parking_regions.json")
        >>> image = cv2.imread("parking_lot.jpg")
        >>> results = parking_manager.process(image)
    """
    self.extract_tracks(im0)  # Extract tracks from im0
    es, fs = len(self.json), 0  # Empty slots, filled slots
    annotator = SolutionAnnotator(im0, self.line_width)  # Initialize annotator

    for region in self.json:
        # Convert points to a NumPy array with the correct dtype and reshape properly
        pts_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
        rg_occupied = False  # Occupied region initialization
        for box, cls in zip(self.boxes, self.clss):
            xc, yc = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
            dist = cv2.pointPolygonTest(pts_array, (xc, yc), False)
            if dist >= 0:
                # cv2.circle(im0, (xc, yc), radius=self.line_width * 4, color=self.dc, thickness=-1)
                annotator.display_objects_labels(
                    im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10
                )
                rg_occupied = True
                break
        fs, es = (fs + 1, es - 1) if rg_occupied else (fs, es)
        # Plot regions
        cv2.polylines(im0, [pts_array], isClosed=True, color=self.occ if rg_occupied else self.arc, thickness=2)

    self.pr_info["Occupancy"], self.pr_info["Available"] = fs, es

    annotator.display_analytics(im0, self.pr_info, (104, 31, 17), (255, 255, 255), 10)

    plot_im = annotator.result()
    self.display_output(plot_im)  # Display output with base class function

    # Return SolutionResults
    return SolutionResults(
        plot_im=plot_im,
        filled_slots=self.pr_info["Occupancy"],
        available_slots=self.pr_info["Available"],
        total_tracks=len(self.track_ids),
    )





📅 Created 1 year ago ✏️ Updated 18 days ago
glenn-jocherjk4eBurhan-QlakshanthadRizwanMunawar