Skip to content

Reference for ultralytics/solutions/vision_eye.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/vision_eye.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


Summary

class ultralytics.solutions.vision_eye.VisionEye

VisionEye(self, **kwargs: Any) -> None

Bases: BaseSolution

A class to manage object detection and vision mapping in images or video streams.

This class extends the BaseSolution class and provides functionality for detecting objects, mapping vision points, and annotating results with bounding boxes and labels.

Args

NameTypeDescriptionDefault
**kwargsAnyKeyword arguments passed to the parent class and for configuring vision_point.required

Attributes

NameTypeDescription
vision_pointtuple[int, int]Coordinates (x, y) where vision will view objects and draw tracks.

Methods

NameDescription
processPerform object detection, vision mapping, and annotation on the input image.

Examples

>>> vision_eye = VisionEye()
>>> frame = cv2.imread("frame.jpg")
>>> results = vision_eye.process(frame)
>>> print(f"Total detected instances: {results.total_tracks}")
Source code in ultralytics/solutions/vision_eye.pyView on GitHub
class VisionEye(BaseSolution):
    """A class to manage object detection and vision mapping in images or video streams.

    This class extends the BaseSolution class and provides functionality for detecting objects, mapping vision points,
    and annotating results with bounding boxes and labels.

    Attributes:
        vision_point (tuple[int, int]): Coordinates (x, y) where vision will view objects and draw tracks.

    Methods:
        process: Process the input image to detect objects, annotate them, and apply vision mapping.

    Examples:
        >>> vision_eye = VisionEye()
        >>> frame = cv2.imread("frame.jpg")
        >>> results = vision_eye.process(frame)
        >>> print(f"Total detected instances: {results.total_tracks}")
    """

    def __init__(self, **kwargs: Any) -> None:
        """Initialize the VisionEye class for detecting objects and applying vision mapping.

        Args:
            **kwargs (Any): Keyword arguments passed to the parent class and for configuring vision_point.
        """
        super().__init__(**kwargs)
        # Set the vision point where the system will view objects and draw tracks
        self.vision_point = self.CFG["vision_point"]


method ultralytics.solutions.vision_eye.VisionEye.process

def process(self, im0) -> SolutionResults

Perform object detection, vision mapping, and annotation on the input image.

Args

NameTypeDescriptionDefault
im0np.ndarrayThe input image for detection and annotation.required

Returns

TypeDescription
SolutionResultsObject containing the annotated image and tracking statistics.

Examples

>>> vision_eye = VisionEye()
>>> frame = cv2.imread("image.jpg")
>>> results = vision_eye.process(frame)
>>> print(f"Detected {results.total_tracks} objects")
Source code in ultralytics/solutions/vision_eye.pyView on GitHub
def process(self, im0) -> SolutionResults:
    """Perform object detection, vision mapping, and annotation on the input image.

    Args:
        im0 (np.ndarray): The input image for detection and annotation.

    Returns:
        (SolutionResults): Object containing the annotated image and tracking statistics.
            - plot_im: Annotated output image with bounding boxes and vision mapping
            - total_tracks: Number of tracked objects in the frame

    Examples:
        >>> vision_eye = VisionEye()
        >>> frame = cv2.imread("image.jpg")
        >>> results = vision_eye.process(frame)
        >>> print(f"Detected {results.total_tracks} objects")
    """
    self.extract_tracks(im0)  # Extract tracks (bounding boxes, classes, and masks)
    annotator = SolutionAnnotator(im0, self.line_width)

    for cls, t_id, box, conf in zip(self.clss, self.track_ids, self.boxes, self.confs):
        # Annotate the image with bounding boxes, labels, and vision mapping
        annotator.box_label(box, label=self.adjust_box_label(cls, conf, t_id), color=colors(int(t_id), True))
        annotator.visioneye(box, self.vision_point)

    plot_im = annotator.result()
    self.display_output(plot_im)  # Display the annotated output using the base class function

    # Return a SolutionResults object with the annotated image and tracking statistics
    return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))





📅 Created 8 months ago ✏️ Updated 2 days ago
glenn-jocherRizwanMunawar