Skip to content

Reference for ultralytics/utils/benchmarks.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/benchmarks.py. If you spot a problem please help fix it by contributing a Pull Request πŸ› οΈ. Thank you πŸ™!


ultralytics.utils.benchmarks.RF100Benchmark

RF100Benchmark()

Benchmark YOLO model performance across various formats for speed and accuracy.

This class provides functionality to benchmark YOLO models on the RF100 dataset collection.

Attributes:

Name Type Description
ds_names List[str]

Names of datasets used for benchmarking.

ds_cfg_list List[Path]

List of paths to dataset configuration files.

rf Roboflow

Roboflow instance for accessing datasets.

val_metrics List[str]

Metrics used for validation.

Methods:

Name Description
set_key

Set Roboflow API key for accessing datasets.

parse_dataset

Parse dataset links and download datasets.

fix_yaml

Fix train and validation paths in YAML files.

evaluate

Evaluate model performance on validation results.

Source code in ultralytics/utils/benchmarks.py
def __init__(self):
    """Initialize the RF100Benchmark class for benchmarking YOLO model performance across various formats."""
    self.ds_names = []
    self.ds_cfg_list = []
    self.rf = None
    self.val_metrics = ["class", "images", "targets", "precision", "recall", "map50", "map95"]

evaluate

evaluate(yaml_path, val_log_file, eval_log_file, list_ind)

Evaluate model performance on validation results.

Parameters:

Name Type Description Default
yaml_path str

Path to the YAML configuration file.

required
val_log_file str

Path to the validation log file.

required
eval_log_file str

Path to the evaluation log file.

required
list_ind int

Index of the current dataset in the list.

required

Returns:

Type Description
float

The mean average precision (mAP) value for the evaluated model.

Examples:

Evaluate a model on a specific dataset

>>> benchmark = RF100Benchmark()
>>> benchmark.evaluate("path/to/data.yaml", "path/to/val_log.txt", "path/to/eval_log.txt", 0)
Source code in ultralytics/utils/benchmarks.py
def evaluate(self, yaml_path, val_log_file, eval_log_file, list_ind):
    """
    Evaluate model performance on validation results.

    Args:
        yaml_path (str): Path to the YAML configuration file.
        val_log_file (str): Path to the validation log file.
        eval_log_file (str): Path to the evaluation log file.
        list_ind (int): Index of the current dataset in the list.

    Returns:
        (float): The mean average precision (mAP) value for the evaluated model.

    Examples:
        Evaluate a model on a specific dataset
        >>> benchmark = RF100Benchmark()
        >>> benchmark.evaluate("path/to/data.yaml", "path/to/val_log.txt", "path/to/eval_log.txt", 0)
    """
    skip_symbols = ["πŸš€", "⚠️", "πŸ’‘", "❌"]
    with open(yaml_path, encoding="utf-8") as stream:
        class_names = yaml.safe_load(stream)["names"]
    with open(val_log_file, encoding="utf-8") as f:
        lines = f.readlines()
        eval_lines = []
        for line in lines:
            if any(symbol in line for symbol in skip_symbols):
                continue
            entries = line.split(" ")
            entries = list(filter(lambda val: val != "", entries))
            entries = [e.strip("\n") for e in entries]
            eval_lines.extend(
                {
                    "class": entries[0],
                    "images": entries[1],
                    "targets": entries[2],
                    "precision": entries[3],
                    "recall": entries[4],
                    "map50": entries[5],
                    "map95": entries[6],
                }
                for e in entries
                if e in class_names or (e == "all" and "(AP)" not in entries and "(AR)" not in entries)
            )
    map_val = 0.0
    if len(eval_lines) > 1:
        print("There's more dicts")
        for lst in eval_lines:
            if lst["class"] == "all":
                map_val = lst["map50"]
    else:
        print("There's only one dict res")
        map_val = [res["map50"] for res in eval_lines][0]

    with open(eval_log_file, "a", encoding="utf-8") as f:
        f.write(f"{self.ds_names[list_ind]}: {map_val}\n")

fix_yaml staticmethod

fix_yaml(path)

Fix the train and validation paths in a given YAML file.

Source code in ultralytics/utils/benchmarks.py
@staticmethod
def fix_yaml(path):
    """Fix the train and validation paths in a given YAML file."""
    with open(path, encoding="utf-8") as file:
        yaml_data = yaml.safe_load(file)
    yaml_data["train"] = "train/images"
    yaml_data["val"] = "valid/images"
    with open(path, "w", encoding="utf-8") as file:
        yaml.safe_dump(yaml_data, file)

parse_dataset

parse_dataset(ds_link_txt='datasets_links.txt')

Parse dataset links and download datasets.

Parameters:

Name Type Description Default
ds_link_txt str

Path to the file containing dataset links.

'datasets_links.txt'

Returns:

Name Type Description
ds_names List[str]

List of dataset names.

ds_cfg_list List[Path]

List of paths to dataset configuration files.

Examples:

>>> benchmark = RF100Benchmark()
>>> benchmark.set_key("api_key")
>>> benchmark.parse_dataset("datasets_links.txt")
Source code in ultralytics/utils/benchmarks.py
def parse_dataset(self, ds_link_txt="datasets_links.txt"):
    """
    Parse dataset links and download datasets.

    Args:
        ds_link_txt (str): Path to the file containing dataset links.

    Returns:
        ds_names (List[str]): List of dataset names.
        ds_cfg_list (List[Path]): List of paths to dataset configuration files.

    Examples:
        >>> benchmark = RF100Benchmark()
        >>> benchmark.set_key("api_key")
        >>> benchmark.parse_dataset("datasets_links.txt")
    """
    (shutil.rmtree("rf-100"), os.mkdir("rf-100")) if os.path.exists("rf-100") else os.mkdir("rf-100")
    os.chdir("rf-100")
    os.mkdir("ultralytics-benchmarks")
    safe_download("https://github.com/ultralytics/assets/releases/download/v0.0.0/datasets_links.txt")

    with open(ds_link_txt, encoding="utf-8") as file:
        for line in file:
            try:
                _, url, workspace, project, version = re.split("/+", line.strip())
                self.ds_names.append(project)
                proj_version = f"{project}-{version}"
                if not Path(proj_version).exists():
                    self.rf.workspace(workspace).project(project).version(version).download("yolov8")
                else:
                    print("Dataset already downloaded.")
                self.ds_cfg_list.append(Path.cwd() / proj_version / "data.yaml")
            except Exception:
                continue

    return self.ds_names, self.ds_cfg_list

set_key

set_key(api_key)

Set Roboflow API key for processing.

Parameters:

Name Type Description Default
api_key str

The API key.

required

Examples:

Set the Roboflow API key for accessing datasets:

>>> benchmark = RF100Benchmark()
>>> benchmark.set_key("your_roboflow_api_key")
Source code in ultralytics/utils/benchmarks.py
def set_key(self, api_key):
    """
    Set Roboflow API key for processing.

    Args:
        api_key (str): The API key.

    Examples:
        Set the Roboflow API key for accessing datasets:
        >>> benchmark = RF100Benchmark()
        >>> benchmark.set_key("your_roboflow_api_key")
    """
    check_requirements("roboflow")
    from roboflow import Roboflow

    self.rf = Roboflow(api_key=api_key)





ultralytics.utils.benchmarks.ProfileModels

ProfileModels(
    paths: list,
    num_timed_runs=100,
    num_warmup_runs=10,
    min_time=60,
    imgsz=640,
    half=True,
    trt=True,
    device=None,
)

ProfileModels class for profiling different models on ONNX and TensorRT.

This class profiles the performance of different models, returning results such as model speed and FLOPs.

Attributes:

Name Type Description
paths List[str]

Paths of the models to profile.

num_timed_runs int

Number of timed runs for the profiling.

num_warmup_runs int

Number of warmup runs before profiling.

min_time float

Minimum number of seconds to profile for.

imgsz int

Image size used in the models.

half bool

Flag to indicate whether to use FP16 half-precision for TensorRT profiling.

trt bool

Flag to indicate whether to profile using TensorRT.

device device

Device used for profiling.

Methods:

Name Description
profile

Profiles the models and prints the result.

get_files

Gets all relevant model files.

get_onnx_model_info

Extracts metadata from an ONNX model.

iterative_sigma_clipping

Applies sigma clipping to remove outliers.

profile_tensorrt_model

Profiles a TensorRT model.

profile_onnx_model

Profiles an ONNX model.

generate_table_row

Generates a table row with model metrics.

generate_results_dict

Generates a dictionary of profiling results.

print_table

Prints a formatted table of results.

Examples:

Profile models and print results

>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler.profile()

Parameters:

Name Type Description Default
paths List[str]

List of paths of the models to be profiled.

required
num_timed_runs int

Number of timed runs for the profiling.

100
num_warmup_runs int

Number of warmup runs before the actual profiling starts.

10
min_time float

Minimum time in seconds for profiling a model.

60
imgsz int

Size of the image used during profiling.

640
half bool

Flag to indicate whether to use FP16 half-precision for TensorRT profiling.

True
trt bool

Flag to indicate whether to profile using TensorRT.

True
device device | None

Device used for profiling. If None, it is determined automatically.

None
Notes

FP16 'half' argument option removed for ONNX as slower on CPU than FP32.

Examples:

Initialize and profile models

>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler.profile()
Source code in ultralytics/utils/benchmarks.py
def __init__(
    self,
    paths: list,
    num_timed_runs=100,
    num_warmup_runs=10,
    min_time=60,
    imgsz=640,
    half=True,
    trt=True,
    device=None,
):
    """
    Initialize the ProfileModels class for profiling models.

    Args:
        paths (List[str]): List of paths of the models to be profiled.
        num_timed_runs (int): Number of timed runs for the profiling.
        num_warmup_runs (int): Number of warmup runs before the actual profiling starts.
        min_time (float): Minimum time in seconds for profiling a model.
        imgsz (int): Size of the image used during profiling.
        half (bool): Flag to indicate whether to use FP16 half-precision for TensorRT profiling.
        trt (bool): Flag to indicate whether to profile using TensorRT.
        device (torch.device | None): Device used for profiling. If None, it is determined automatically.

    Notes:
        FP16 'half' argument option removed for ONNX as slower on CPU than FP32.

    Examples:
        Initialize and profile models
        >>> from ultralytics.utils.benchmarks import ProfileModels
        >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
        >>> profiler.profile()
    """
    self.paths = paths
    self.num_timed_runs = num_timed_runs
    self.num_warmup_runs = num_warmup_runs
    self.min_time = min_time
    self.imgsz = imgsz
    self.half = half
    self.trt = trt  # run TensorRT profiling
    self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu")

generate_results_dict staticmethod

generate_results_dict(model_name, t_onnx, t_engine, model_info)

Generate a dictionary of profiling results.

Parameters:

Name Type Description Default
model_name str

Name of the model.

required
t_onnx tuple

ONNX model inference time statistics (mean, std).

required
t_engine tuple

TensorRT engine inference time statistics (mean, std).

required
model_info tuple

Model information (layers, params, gradients, flops).

required

Returns:

Type Description
dict

Dictionary containing profiling results.

Source code in ultralytics/utils/benchmarks.py
@staticmethod
def generate_results_dict(model_name, t_onnx, t_engine, model_info):
    """
    Generate a dictionary of profiling results.

    Args:
        model_name (str): Name of the model.
        t_onnx (tuple): ONNX model inference time statistics (mean, std).
        t_engine (tuple): TensorRT engine inference time statistics (mean, std).
        model_info (tuple): Model information (layers, params, gradients, flops).

    Returns:
        (dict): Dictionary containing profiling results.
    """
    layers, params, gradients, flops = model_info
    return {
        "model/name": model_name,
        "model/parameters": params,
        "model/GFLOPs": round(flops, 3),
        "model/speed_ONNX(ms)": round(t_onnx[0], 3),
        "model/speed_TensorRT(ms)": round(t_engine[0], 3),
    }

generate_table_row

generate_table_row(model_name, t_onnx, t_engine, model_info)

Generate a table row string with model performance metrics.

Parameters:

Name Type Description Default
model_name str

Name of the model.

required
t_onnx tuple

ONNX model inference time statistics (mean, std).

required
t_engine tuple

TensorRT engine inference time statistics (mean, std).

required
model_info tuple

Model information (layers, params, gradients, flops).

required

Returns:

Type Description
str

Formatted table row string with model metrics.

Source code in ultralytics/utils/benchmarks.py
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
    """
    Generate a table row string with model performance metrics.

    Args:
        model_name (str): Name of the model.
        t_onnx (tuple): ONNX model inference time statistics (mean, std).
        t_engine (tuple): TensorRT engine inference time statistics (mean, std).
        model_info (tuple): Model information (layers, params, gradients, flops).

    Returns:
        (str): Formatted table row string with model metrics.
    """
    layers, params, gradients, flops = model_info
    return (
        f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}Β±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}Β±"
        f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
    )

get_files

get_files()

Return a list of paths for all relevant model files given by the user.

Returns:

Type Description
List[Path]

List of Path objects for the model files.

Source code in ultralytics/utils/benchmarks.py
def get_files(self):
    """
    Return a list of paths for all relevant model files given by the user.

    Returns:
        (List[Path]): List of Path objects for the model files.
    """
    files = []
    for path in self.paths:
        path = Path(path)
        if path.is_dir():
            extensions = ["*.pt", "*.onnx", "*.yaml"]
            files.extend([file for ext in extensions for file in glob.glob(str(path / ext))])
        elif path.suffix in {".pt", ".yaml", ".yml"}:  # add non-existing
            files.append(str(path))
        else:
            files.extend(glob.glob(str(path)))

    print(f"Profiling: {sorted(files)}")
    return [Path(file) for file in sorted(files)]

get_onnx_model_info staticmethod

get_onnx_model_info(onnx_file: str)

Extracts metadata from an ONNX model file including parameters, GFLOPs, and input shape.

Source code in ultralytics/utils/benchmarks.py
@staticmethod
def get_onnx_model_info(onnx_file: str):
    """Extracts metadata from an ONNX model file including parameters, GFLOPs, and input shape."""
    return 0.0, 0.0, 0.0, 0.0  # return (num_layers, num_params, num_gradients, num_flops)

iterative_sigma_clipping staticmethod

iterative_sigma_clipping(data, sigma=2, max_iters=3)

Apply iterative sigma clipping to data to remove outliers.

Parameters:

Name Type Description Default
data ndarray

Input data array.

required
sigma float

Number of standard deviations to use for clipping.

2
max_iters int

Maximum number of iterations for the clipping process.

3

Returns:

Type Description
ndarray

Clipped data array with outliers removed.

Source code in ultralytics/utils/benchmarks.py
@staticmethod
def iterative_sigma_clipping(data, sigma=2, max_iters=3):
    """
    Apply iterative sigma clipping to data to remove outliers.

    Args:
        data (numpy.ndarray): Input data array.
        sigma (float): Number of standard deviations to use for clipping.
        max_iters (int): Maximum number of iterations for the clipping process.

    Returns:
        (numpy.ndarray): Clipped data array with outliers removed.
    """
    data = np.array(data)
    for _ in range(max_iters):
        mean, std = np.mean(data), np.std(data)
        clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
        if len(clipped_data) == len(data):
            break
        data = clipped_data
    return data

print_table staticmethod

print_table(table_rows)

Print a formatted table of model profiling results.

Parameters:

Name Type Description Default
table_rows List[str]

List of formatted table row strings.

required
Source code in ultralytics/utils/benchmarks.py
@staticmethod
def print_table(table_rows):
    """
    Print a formatted table of model profiling results.

    Args:
        table_rows (List[str]): List of formatted table row strings.
    """
    gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "GPU"
    headers = [
        "Model",
        "size<br><sup>(pixels)",
        "mAP<sup>val<br>50-95",
        f"Speed<br><sup>CPU ({get_cpu_info()}) ONNX<br>(ms)",
        f"Speed<br><sup>{gpu} TensorRT<br>(ms)",
        "params<br><sup>(M)",
        "FLOPs<br><sup>(B)",
    ]
    header = "|" + "|".join(f" {h} " for h in headers) + "|"
    separator = "|" + "|".join("-" * (len(h) + 2) for h in headers) + "|"

    print(f"\n\n{header}")
    print(separator)
    for row in table_rows:
        print(row)

profile

profile()

Profile YOLO models for speed and accuracy across various formats including ONNX and TensorRT.

Returns:

Type Description
List[Dict]

List of dictionaries containing profiling results for each model.

Examples:

Profile models and print results

>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"])
>>> results = profiler.profile()
Source code in ultralytics/utils/benchmarks.py
def profile(self):
    """
    Profile YOLO models for speed and accuracy across various formats including ONNX and TensorRT.

    Returns:
        (List[Dict]): List of dictionaries containing profiling results for each model.

    Examples:
        Profile models and print results
        >>> from ultralytics.utils.benchmarks import ProfileModels
        >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"])
        >>> results = profiler.profile()
    """
    files = self.get_files()

    if not files:
        print("No matching *.pt or *.onnx files found.")
        return

    table_rows = []
    output = []
    for file in files:
        engine_file = file.with_suffix(".engine")
        if file.suffix in {".pt", ".yaml", ".yml"}:
            model = YOLO(str(file))
            model.fuse()  # to report correct params and GFLOPs in model.info()
            model_info = model.info()
            if self.trt and self.device.type != "cpu" and not engine_file.is_file():
                engine_file = model.export(
                    format="engine",
                    half=self.half,
                    imgsz=self.imgsz,
                    device=self.device,
                    verbose=False,
                )
            onnx_file = model.export(
                format="onnx",
                imgsz=self.imgsz,
                device=self.device,
                verbose=False,
            )
        elif file.suffix == ".onnx":
            model_info = self.get_onnx_model_info(file)
            onnx_file = file
        else:
            continue

        t_engine = self.profile_tensorrt_model(str(engine_file))
        t_onnx = self.profile_onnx_model(str(onnx_file))
        table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
        output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))

    self.print_table(table_rows)
    return output

profile_onnx_model

profile_onnx_model(onnx_file: str, eps: float = 0.001)

Profile an ONNX model, measuring average inference time and standard deviation across multiple runs.

Parameters:

Name Type Description Default
onnx_file str

Path to the ONNX model file.

required
eps float

Small epsilon value to prevent division by zero.

0.001

Returns:

Name Type Description
mean_time float

Mean inference time in milliseconds.

std_time float

Standard deviation of inference time in milliseconds.

Source code in ultralytics/utils/benchmarks.py
def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3):
    """
    Profile an ONNX model, measuring average inference time and standard deviation across multiple runs.

    Args:
        onnx_file (str): Path to the ONNX model file.
        eps (float): Small epsilon value to prevent division by zero.

    Returns:
        mean_time (float): Mean inference time in milliseconds.
        std_time (float): Standard deviation of inference time in milliseconds.
    """
    check_requirements("onnxruntime")
    import onnxruntime as ort

    # Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
    sess_options = ort.SessionOptions()
    sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
    sess_options.intra_op_num_threads = 8  # Limit the number of threads
    sess = ort.InferenceSession(onnx_file, sess_options, providers=["CPUExecutionProvider"])

    input_tensor = sess.get_inputs()[0]
    input_type = input_tensor.type
    dynamic = not all(isinstance(dim, int) and dim >= 0 for dim in input_tensor.shape)  # dynamic input shape
    input_shape = (1, 3, self.imgsz, self.imgsz) if dynamic else input_tensor.shape

    # Mapping ONNX datatype to numpy datatype
    if "float16" in input_type:
        input_dtype = np.float16
    elif "float" in input_type:
        input_dtype = np.float32
    elif "double" in input_type:
        input_dtype = np.float64
    elif "int64" in input_type:
        input_dtype = np.int64
    elif "int32" in input_type:
        input_dtype = np.int32
    else:
        raise ValueError(f"Unsupported ONNX datatype {input_type}")

    input_data = np.random.rand(*input_shape).astype(input_dtype)
    input_name = input_tensor.name
    output_name = sess.get_outputs()[0].name

    # Warmup runs
    elapsed = 0.0
    for _ in range(3):
        start_time = time.time()
        for _ in range(self.num_warmup_runs):
            sess.run([output_name], {input_name: input_data})
        elapsed = time.time() - start_time

    # Compute number of runs as higher of min_time or num_timed_runs
    num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs)

    # Timed runs
    run_times = []
    for _ in TQDM(range(num_runs), desc=onnx_file):
        start_time = time.time()
        sess.run([output_name], {input_name: input_data})
        run_times.append((time.time() - start_time) * 1000)  # Convert to milliseconds

    run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5)  # sigma clipping
    return np.mean(run_times), np.std(run_times)

profile_tensorrt_model

profile_tensorrt_model(engine_file: str, eps: float = 0.001)

Profile YOLO model performance with TensorRT, measuring average run time and standard deviation.

Parameters:

Name Type Description Default
engine_file str

Path to the TensorRT engine file.

required
eps float

Small epsilon value to prevent division by zero.

0.001

Returns:

Name Type Description
mean_time float

Mean inference time in milliseconds.

std_time float

Standard deviation of inference time in milliseconds.

Source code in ultralytics/utils/benchmarks.py
def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3):
    """
    Profile YOLO model performance with TensorRT, measuring average run time and standard deviation.

    Args:
        engine_file (str): Path to the TensorRT engine file.
        eps (float): Small epsilon value to prevent division by zero.

    Returns:
        mean_time (float): Mean inference time in milliseconds.
        std_time (float): Standard deviation of inference time in milliseconds.
    """
    if not self.trt or not Path(engine_file).is_file():
        return 0.0, 0.0

    # Model and input
    model = YOLO(engine_file)
    input_data = np.zeros((self.imgsz, self.imgsz, 3), dtype=np.uint8)  # use uint8 for Classify

    # Warmup runs
    elapsed = 0.0
    for _ in range(3):
        start_time = time.time()
        for _ in range(self.num_warmup_runs):
            model(input_data, imgsz=self.imgsz, verbose=False)
        elapsed = time.time() - start_time

    # Compute number of runs as higher of min_time or num_timed_runs
    num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs * 50)

    # Timed runs
    run_times = []
    for _ in TQDM(range(num_runs), desc=engine_file):
        results = model(input_data, imgsz=self.imgsz, verbose=False)
        run_times.append(results[0].speed["inference"])  # Convert to milliseconds

    run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3)  # sigma clipping
    return np.mean(run_times), np.std(run_times)





ultralytics.utils.benchmarks.benchmark

benchmark(
    model=WEIGHTS_DIR / "yolo11n.pt",
    data=None,
    imgsz=160,
    half=False,
    int8=False,
    device="cpu",
    verbose=False,
    eps=0.001,
    format="",
)

Benchmark a YOLO model across different formats for speed and accuracy.

Parameters:

Name Type Description Default
model str | Path

Path to the model file or directory.

WEIGHTS_DIR / 'yolo11n.pt'
data str | None

Dataset to evaluate on, inherited from TASK2DATA if not passed.

None
imgsz int

Image size for the benchmark.

160
half bool

Use half-precision for the model if True.

False
int8 bool

Use int8-precision for the model if True.

False
device str

Device to run the benchmark on, either 'cpu' or 'cuda'.

'cpu'
verbose bool | float

If True or a float, assert benchmarks pass with given metric.

False
eps float

Epsilon value for divide by zero prevention.

0.001
format str

Export format for benchmarking. If not supplied all formats are benchmarked.

''

Returns:

Type Description
DataFrame

A pandas DataFrame with benchmark results for each format, including file size, metric, and inference time.

Examples:

Benchmark a YOLO model with default settings:

>>> from ultralytics.utils.benchmarks import benchmark
>>> benchmark(model="yolo11n.pt", imgsz=640)
Source code in ultralytics/utils/benchmarks.py
def benchmark(
    model=WEIGHTS_DIR / "yolo11n.pt",
    data=None,
    imgsz=160,
    half=False,
    int8=False,
    device="cpu",
    verbose=False,
    eps=1e-3,
    format="",
):
    """
    Benchmark a YOLO model across different formats for speed and accuracy.

    Args:
        model (str | Path): Path to the model file or directory.
        data (str | None): Dataset to evaluate on, inherited from TASK2DATA if not passed.
        imgsz (int): Image size for the benchmark.
        half (bool): Use half-precision for the model if True.
        int8 (bool): Use int8-precision for the model if True.
        device (str): Device to run the benchmark on, either 'cpu' or 'cuda'.
        verbose (bool | float): If True or a float, assert benchmarks pass with given metric.
        eps (float): Epsilon value for divide by zero prevention.
        format (str): Export format for benchmarking. If not supplied all formats are benchmarked.

    Returns:
        (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, metric,
            and inference time.

    Examples:
        Benchmark a YOLO model with default settings:
        >>> from ultralytics.utils.benchmarks import benchmark
        >>> benchmark(model="yolo11n.pt", imgsz=640)
    """
    imgsz = check_imgsz(imgsz)
    assert imgsz[0] == imgsz[1] if isinstance(imgsz, list) else True, "benchmark() only supports square imgsz."

    import pandas as pd  # scope for faster 'import ultralytics'

    pd.options.display.max_columns = 10
    pd.options.display.width = 120
    device = select_device(device, verbose=False)
    if isinstance(model, (str, Path)):
        model = YOLO(model)
    is_end2end = getattr(model.model.model[-1], "end2end", False)
    data = data or TASK2DATA[model.task]  # task to dataset, i.e. coco8.yaml for task=detect
    key = TASK2METRIC[model.task]  # task to metric, i.e. metrics/mAP50-95(B) for task=detect

    y = []
    t0 = time.time()

    format_arg = format.lower()
    if format_arg:
        formats = frozenset(export_formats()["Argument"])
        assert format in formats, f"Expected format to be one of {formats}, but got '{format_arg}'."
    for i, (name, format, suffix, cpu, gpu, _) in enumerate(zip(*export_formats().values())):
        emoji, filename = "❌", None  # export defaults
        try:
            if format_arg and format_arg != format:
                continue

            # Checks
            if i == 7:  # TF GraphDef
                assert model.task != "obb", "TensorFlow GraphDef not supported for OBB task"
            elif i == 9:  # Edge TPU
                assert LINUX and not ARM64, "Edge TPU export only supported on non-aarch64 Linux"
            elif i in {5, 10}:  # CoreML and TF.js
                assert MACOS or (LINUX and not ARM64), (
                    "CoreML and TF.js export only supported on macOS and non-aarch64 Linux"
                )
            if i in {5}:  # CoreML
                assert not IS_PYTHON_3_13, "CoreML not supported on Python 3.13"
            if i in {6, 7, 8}:  # TF SavedModel, TF GraphDef, and TFLite
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
            if i in {9, 10}:  # TF EdgeTPU and TF.js
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
            if i == 11:  # Paddle
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
                assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
                assert LINUX or MACOS, "Windows Paddle exports not supported yet"
            if i == 12:  # MNN
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 MNN exports not supported yet"
            if i == 13:  # NCNN
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
            if i == 14:  # IMX
                assert not is_end2end
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 IMX exports not supported"
                assert model.task == "detect", "IMX only supported for detection task"
                assert "C2f" in model.__str__(), "IMX only supported for YOLOv8"
            if i == 15:  # RKNN
                assert not isinstance(model, YOLOWorld), "YOLOWorldv2 RKNN exports not supported yet"
                assert not is_end2end, "End-to-end models not supported by RKNN yet"
                assert LINUX, "RKNN only supported on Linux"
                assert not is_rockchip(), "RKNN Inference only supported on Rockchip devices"
            if "cpu" in device.type:
                assert cpu, "inference not supported on CPU"
            if "cuda" in device.type:
                assert gpu, "inference not supported on GPU"

            # Export
            if format == "-":
                filename = model.pt_path or model.ckpt_path or model.model_name
                exported_model = model  # PyTorch format
            else:
                filename = model.export(
                    imgsz=imgsz, format=format, half=half, int8=int8, data=data, device=device, verbose=False
                )
                exported_model = YOLO(filename, task=model.task)
                assert suffix in str(filename), "export failed"
            emoji = "❎"  # indicates export succeeded

            # Predict
            assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
            assert i not in {9, 10}, "inference not supported"  # Edge TPU and TF.js are unsupported
            assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13"  # CoreML
            if i in {13}:
                assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
            exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half, verbose=False)

            # Validate
            results = exported_model.val(
                data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False
            )
            metric, speed = results.results_dict[key], results.speed["inference"]
            fps = round(1000 / (speed + eps), 2)  # frames per second
            y.append([name, "βœ…", round(file_size(filename), 1), round(metric, 4), round(speed, 2), fps])
        except Exception as e:
            if verbose:
                assert type(e) is AssertionError, f"Benchmark failure for {name}: {e}"
            LOGGER.warning(f"ERROR ❌️ Benchmark failure for {name}: {e}")
            y.append([name, emoji, round(file_size(filename), 1), None, None, None])  # mAP, t_inference

    # Print results
    check_yolo(device=device)  # print system info
    df = pd.DataFrame(y, columns=["Format", "Status❔", "Size (MB)", key, "Inference time (ms/im)", "FPS"])

    name = model.model_name
    dt = time.time() - t0
    legend = "Benchmarks legend:  - βœ… Success  - ❎ Export passed but validation failed  - ❌️ Export failed"
    s = f"\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({dt:.2f}s)\n{legend}\n{df.fillna('-')}\n"
    LOGGER.info(s)
    with open("benchmarks.log", "a", errors="ignore", encoding="utf-8") as f:
        f.write(s)

    if verbose and isinstance(verbose, float):
        metrics = df[key].array  # values to compare to floor
        floor = verbose  # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
        assert all(x > floor for x in metrics if pd.notna(x)), f"Benchmark failure: metric(s) < floor {floor}"

    return df



πŸ“… Created 1 year ago ✏️ Updated 6 months ago