Skip to content

Reference for ultralytics/utils/callbacks/comet.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/comet.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


function ultralytics.utils.callbacks.comet._get_comet_mode

def _get_comet_mode() -> str

Return the Comet mode from environment variables, defaulting to 'online'.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _get_comet_mode() -> str:
    """Return the Comet mode from environment variables, defaulting to 'online'."""
    comet_mode = os.getenv("COMET_MODE")
    if comet_mode is not None:
        LOGGER.warning(
            "The COMET_MODE environment variable is deprecated. "
            "Please use COMET_START_ONLINE to set the Comet experiment mode. "
            "To start an offline Comet experiment, use 'export COMET_START_ONLINE=0'. "
            "If COMET_START_ONLINE is not set or is set to '1', an online Comet experiment will be created."
        )
        return comet_mode

    return "online"





function ultralytics.utils.callbacks.comet._get_comet_model_name

def _get_comet_model_name() -> str

Return the Comet model name from environment variable or default to 'Ultralytics'.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _get_comet_model_name() -> str:
    """Return the Comet model name from environment variable or default to 'Ultralytics'."""
    return os.getenv("COMET_MODEL_NAME", "Ultralytics")





function ultralytics.utils.callbacks.comet._get_eval_batch_logging_interval

def _get_eval_batch_logging_interval() -> int

Get the evaluation batch logging interval from environment variable or use default value 1.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _get_eval_batch_logging_interval() -> int:
    """Get the evaluation batch logging interval from environment variable or use default value 1."""
    return int(os.getenv("COMET_EVAL_BATCH_LOGGING_INTERVAL", 1))





function ultralytics.utils.callbacks.comet._get_max_image_predictions_to_log

def _get_max_image_predictions_to_log() -> int

Get the maximum number of image predictions to log from environment variables.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _get_max_image_predictions_to_log() -> int:
    """Get the maximum number of image predictions to log from environment variables."""
    return int(os.getenv("COMET_MAX_IMAGE_PREDICTIONS", 100))





function ultralytics.utils.callbacks.comet._scale_confidence_score

def _scale_confidence_score(score: float) -> float

Scale the confidence score by a factor specified in environment variable.

Args

NameTypeDescriptionDefault
scorefloatrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _scale_confidence_score(score: float) -> float:
    """Scale the confidence score by a factor specified in environment variable."""
    scale = float(os.getenv("COMET_MAX_CONFIDENCE_SCORE", 100.0))
    return score * scale





function ultralytics.utils.callbacks.comet._should_log_confusion_matrix

def _should_log_confusion_matrix() -> bool

Determine if the confusion matrix should be logged based on environment variable settings.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _should_log_confusion_matrix() -> bool:
    """Determine if the confusion matrix should be logged based on environment variable settings."""
    return os.getenv("COMET_EVAL_LOG_CONFUSION_MATRIX", "false").lower() == "true"





function ultralytics.utils.callbacks.comet._should_log_image_predictions

def _should_log_image_predictions() -> bool

Determine whether to log image predictions based on environment variable.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _should_log_image_predictions() -> bool:
    """Determine whether to log image predictions based on environment variable."""
    return os.getenv("COMET_EVAL_LOG_IMAGE_PREDICTIONS", "true").lower() == "true"





function ultralytics.utils.callbacks.comet._resume_or_create_experiment

def _resume_or_create_experiment(args: SimpleNamespace) -> None

Resume CometML experiment or create a new experiment based on args.

Ensures that the experiment object is only created in a single process during distributed training.

Args

NameTypeDescriptionDefault
argsSimpleNamespaceTraining arguments containing project configuration and other parameters.required
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _resume_or_create_experiment(args: SimpleNamespace) -> None:
    """Resume CometML experiment or create a new experiment based on args.

    Ensures that the experiment object is only created in a single process during distributed training.

    Args:
        args (SimpleNamespace): Training arguments containing project configuration and other parameters.
    """
    if RANK not in {-1, 0}:
        return

    # Set environment variable (if not set by the user) to configure the Comet experiment's online mode under the hood.
    # IF COMET_START_ONLINE is set by the user it will override COMET_MODE value.
    if os.getenv("COMET_START_ONLINE") is None:
        comet_mode = _get_comet_mode()
        os.environ["COMET_START_ONLINE"] = "1" if comet_mode != "offline" else "0"

    try:
        _project_name = os.getenv("COMET_PROJECT_NAME", args.project)
        experiment = comet_ml.start(project_name=_project_name)
        experiment.log_parameters(vars(args))
        experiment.log_others(
            {
                "eval_batch_logging_interval": _get_eval_batch_logging_interval(),
                "log_confusion_matrix_on_eval": _should_log_confusion_matrix(),
                "log_image_predictions": _should_log_image_predictions(),
                "max_image_predictions": _get_max_image_predictions_to_log(),
            }
        )
        experiment.log_other("Created from", "ultralytics")

    except Exception as e:
        LOGGER.warning(f"Comet installed but not initialized correctly, not logging this run. {e}")





function ultralytics.utils.callbacks.comet._fetch_trainer_metadata

def _fetch_trainer_metadata(trainer) -> dict

Return metadata for YOLO training including epoch and asset saving status.

Args

NameTypeDescriptionDefault
trainerultralytics.engine.trainer.BaseTrainerThe YOLO trainer object containing training state and config.required

Returns

TypeDescription
dictDictionary containing current epoch, step, save assets flag, and final epoch flag.
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _fetch_trainer_metadata(trainer) -> dict:
    """Return metadata for YOLO training including epoch and asset saving status.

    Args:
        trainer (ultralytics.engine.trainer.BaseTrainer): The YOLO trainer object containing training state and config.

    Returns:
        (dict): Dictionary containing current epoch, step, save assets flag, and final epoch flag.
    """
    curr_epoch = trainer.epoch + 1

    train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size
    curr_step = curr_epoch * train_num_steps_per_epoch
    final_epoch = curr_epoch == trainer.epochs

    save = trainer.args.save
    save_period = trainer.args.save_period
    save_interval = curr_epoch % save_period == 0
    save_assets = save and save_period > 0 and save_interval and not final_epoch

    return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)





function ultralytics.utils.callbacks.comet._scale_bounding_box_to_original_image_shape

def _scale_bounding_box_to_original_image_shape(
    box, resized_image_shape, original_image_shape, ratio_pad
) -> list[float]

Scale bounding box from resized image coordinates to original image coordinates.

YOLO resizes images during training and the label values are normalized based on this resized shape. This function rescales the bounding box labels to the original image shape.

Args

NameTypeDescriptionDefault
boxtorch.TensorBounding box in normalized xywh format.required
resized_image_shapetupleShape of the resized image (height, width).required
original_image_shapetupleShape of the original image (height, width).required
ratio_padtupleRatio and padding information for scaling.required

Returns

TypeDescription
list[float]Scaled bounding box coordinates in xywh format with top-left corner adjustment.
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _scale_bounding_box_to_original_image_shape(
    box, resized_image_shape, original_image_shape, ratio_pad
) -> list[float]:
    """Scale bounding box from resized image coordinates to original image coordinates.

    YOLO resizes images during training and the label values are normalized based on this resized shape. This function
    rescales the bounding box labels to the original image shape.

    Args:
        box (torch.Tensor): Bounding box in normalized xywh format.
        resized_image_shape (tuple): Shape of the resized image (height, width).
        original_image_shape (tuple): Shape of the original image (height, width).
        ratio_pad (tuple): Ratio and padding information for scaling.

    Returns:
        (list[float]): Scaled bounding box coordinates in xywh format with top-left corner adjustment.
    """
    resized_image_height, resized_image_width = resized_image_shape

    # Convert normalized xywh format predictions to xyxy in resized scale format
    box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width)
    # Scale box predictions from resized image scale back to original image scale
    box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad)
    # Convert bounding box format from xyxy to xywh for Comet logging
    box = ops.xyxy2xywh(box)
    # Adjust xy center to correspond top-left corner
    box[:2] -= box[2:] / 2
    box = box.tolist()

    return box





function ultralytics.utils.callbacks.comet._format_ground_truth_annotations_for_detection

def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map = None) -> dict | None

Format ground truth annotations for object detection.

This function processes ground truth annotations from a batch of images for object detection tasks. It extracts bounding boxes, class labels, and other metadata for a specific image in the batch, and formats them for visualization or evaluation.

Args

NameTypeDescriptionDefault
img_idxintIndex of the image in the batch to process.required
image_pathstr | PathPath to the image file.required
batchdictBatch dictionary containing detection data with keys: - 'batch_idx': Tensor of batch indices - 'bboxes': Tensor of bounding boxes in normalized xywh format - 'cls': Tensor of class labels - 'ori_shape': Original image shapes - 'resized_shape': Resized image shapes - 'ratio_pad': Ratio and padding informationrequired
class_name_mapdict, optionalMapping from class indices to class names.None

Returns

TypeDescription
dict | NoneFormatted ground truth annotations with the following structure:
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None) -> dict | None:
    """Format ground truth annotations for object detection.

    This function processes ground truth annotations from a batch of images for object detection tasks. It extracts
    bounding boxes, class labels, and other metadata for a specific image in the batch, and formats them for
    visualization or evaluation.

    Args:
        img_idx (int): Index of the image in the batch to process.
        image_path (str | Path): Path to the image file.
        batch (dict): Batch dictionary containing detection data with keys:
            - 'batch_idx': Tensor of batch indices
            - 'bboxes': Tensor of bounding boxes in normalized xywh format
            - 'cls': Tensor of class labels
            - 'ori_shape': Original image shapes
            - 'resized_shape': Resized image shapes
            - 'ratio_pad': Ratio and padding information
        class_name_map (dict, optional): Mapping from class indices to class names.

    Returns:
        (dict | None): Formatted ground truth annotations with the following structure:
            - 'boxes': List of box coordinates [x, y, width, height]
            - 'label': Label string with format "gt_{class_name}"
            - 'score': Confidence score (always 1.0, scaled by _scale_confidence_score)
            Returns None if no bounding boxes are found for the image.
    """
    indices = batch["batch_idx"] == img_idx
    bboxes = batch["bboxes"][indices]
    if len(bboxes) == 0:
        LOGGER.debug(f"Comet Image: {image_path} has no bounding boxes labels")
        return None

    cls_labels = batch["cls"][indices].squeeze(1).tolist()
    if class_name_map:
        cls_labels = [str(class_name_map[label]) for label in cls_labels]

    original_image_shape = batch["ori_shape"][img_idx]
    resized_image_shape = batch["resized_shape"][img_idx]
    ratio_pad = batch["ratio_pad"][img_idx]

    data = []
    for box, label in zip(bboxes, cls_labels):
        box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
        data.append(
            {
                "boxes": [box],
                "label": f"gt_{label}",
                "score": _scale_confidence_score(1.0),
            }
        )

    return {"name": "ground_truth", "data": data}





function ultralytics.utils.callbacks.comet._format_prediction_annotations

def _format_prediction_annotations(image_path, metadata, class_label_map = None, class_map = None) -> dict | None

Format YOLO predictions for object detection visualization.

Args

NameTypeDescriptionDefault
image_pathPathPath to the image file.required
metadatadictPrediction metadata containing bounding boxes and class information.required
class_label_mapdict, optionalMapping from class indices to class names.None
class_mapdict, optionalAdditional class mapping for label conversion.None

Returns

TypeDescription
dict | NoneFormatted prediction annotations or None if no predictions exist.
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _format_prediction_annotations(image_path, metadata, class_label_map=None, class_map=None) -> dict | None:
    """Format YOLO predictions for object detection visualization.

    Args:
        image_path (Path): Path to the image file.
        metadata (dict): Prediction metadata containing bounding boxes and class information.
        class_label_map (dict, optional): Mapping from class indices to class names.
        class_map (dict, optional): Additional class mapping for label conversion.

    Returns:
        (dict | None): Formatted prediction annotations or None if no predictions exist.
    """
    stem = image_path.stem
    image_id = int(stem) if stem.isnumeric() else stem

    predictions = metadata.get(image_id)
    if not predictions:
        LOGGER.debug(f"Comet Image: {image_path} has no bounding boxes predictions")
        return None

    # apply the mapping that was used to map the predicted classes when the JSON was created
    if class_label_map and class_map:
        class_label_map = {class_map[k]: v for k, v in class_label_map.items()}
    try:
        # import pycotools utilities to decompress annotations for various tasks, e.g. segmentation
        from faster_coco_eval.core.mask import decode
    except ImportError:
        decode = None

    data = []
    for prediction in predictions:
        boxes = prediction["bbox"]
        score = _scale_confidence_score(prediction["score"])
        cls_label = prediction["category_id"]
        if class_label_map:
            cls_label = str(class_label_map[cls_label])

        annotation_data = {"boxes": [boxes], "label": cls_label, "score": score}

        if decode is not None:
            # do segmentation processing only if we are able to decode it
            segments = prediction.get("segmentation", None)
            if segments is not None:
                segments = _extract_segmentation_annotation(segments, decode)
            if segments is not None:
                annotation_data["points"] = segments

        data.append(annotation_data)

    return {"name": "prediction", "data": data}





function ultralytics.utils.callbacks.comet._extract_segmentation_annotation

def _extract_segmentation_annotation(segmentation_raw: str, decode: Callable) -> list[list[Any]] | None

Extract segmentation annotation from compressed segmentations as list of polygons.

Args

NameTypeDescriptionDefault
segmentation_rawstrRaw segmentation data in compressed format.required
decodeCallableFunction to decode the compressed segmentation data.required

Returns

TypeDescription
list[list[Any]] | NoneList of polygon points or None if extraction fails.
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _extract_segmentation_annotation(segmentation_raw: str, decode: Callable) -> list[list[Any]] | None:
    """Extract segmentation annotation from compressed segmentations as list of polygons.

    Args:
        segmentation_raw (str): Raw segmentation data in compressed format.
        decode (Callable): Function to decode the compressed segmentation data.

    Returns:
        (list[list[Any]] | None): List of polygon points or None if extraction fails.
    """
    try:
        mask = decode(segmentation_raw)
        contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        annotations = [np.array(polygon).squeeze() for polygon in contours if len(polygon) >= 3]
        return [annotation.ravel().tolist() for annotation in annotations]
    except Exception as e:
        LOGGER.warning(f"Comet Failed to extract segmentation annotation: {e}")
    return None





function ultralytics.utils.callbacks.comet._fetch_annotations

def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map, class_map) -> list | None

Join the ground truth and prediction annotations if they exist.

Args

NameTypeDescriptionDefault
img_idxintIndex of the image in the batch.required
image_pathPathPath to the image file.required
batchdictBatch data containing ground truth annotations.required
prediction_metadata_mapdictMap of prediction metadata by image ID.required
class_label_mapdictMapping from class indices to class names.required
class_mapdictAdditional class mapping for label conversion.required

Returns

TypeDescription
list | NoneList of annotation dictionaries or None if no annotations exist.
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map, class_map) -> list | None:
    """Join the ground truth and prediction annotations if they exist.

    Args:
        img_idx (int): Index of the image in the batch.
        image_path (Path): Path to the image file.
        batch (dict): Batch data containing ground truth annotations.
        prediction_metadata_map (dict): Map of prediction metadata by image ID.
        class_label_map (dict): Mapping from class indices to class names.
        class_map (dict): Additional class mapping for label conversion.

    Returns:
        (list | None): List of annotation dictionaries or None if no annotations exist.
    """
    ground_truth_annotations = _format_ground_truth_annotations_for_detection(
        img_idx, image_path, batch, class_label_map
    )
    prediction_annotations = _format_prediction_annotations(
        image_path, prediction_metadata_map, class_label_map, class_map
    )

    annotations = [
        annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None
    ]
    return [annotations] if annotations else None





function ultralytics.utils.callbacks.comet._create_prediction_metadata_map

def _create_prediction_metadata_map(model_predictions) -> dict

Create metadata map for model predictions by grouping them based on image ID.

Args

NameTypeDescriptionDefault
model_predictionsrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _create_prediction_metadata_map(model_predictions) -> dict:
    """Create metadata map for model predictions by grouping them based on image ID."""
    pred_metadata_map = {}
    for prediction in model_predictions:
        pred_metadata_map.setdefault(prediction["image_id"], [])
        pred_metadata_map[prediction["image_id"]].append(prediction)

    return pred_metadata_map





function ultralytics.utils.callbacks.comet._log_confusion_matrix

def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) -> None

Log the confusion matrix to Comet experiment.

Args

NameTypeDescriptionDefault
experimentrequired
trainerrequired
curr_steprequired
curr_epochrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) -> None:
    """Log the confusion matrix to Comet experiment."""
    conf_mat = trainer.validator.confusion_matrix.matrix
    names = [*list(trainer.data["names"].values()), "background"]
    experiment.log_confusion_matrix(
        matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step
    )





function ultralytics.utils.callbacks.comet._log_images

def _log_images(experiment, image_paths, curr_step: int | None, annotations = None) -> None

Log images to the experiment with optional annotations.

This function logs images to a Comet ML experiment, optionally including annotation data for visualization such as bounding boxes or segmentation masks.

Args

NameTypeDescriptionDefault
experimentcomet_ml.CometExperimentThe Comet ML experiment to log images to.required
image_pathslist[Path]List of paths to images that will be logged.required
curr_stepintCurrent training step/iteration for tracking in the experiment timeline.required
annotationslist[list[dict]], optionalNested list of annotation dictionaries for each image. Each annotation contains visualization data like bounding boxes, labels, and confidence scores.None
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_images(experiment, image_paths, curr_step: int | None, annotations=None) -> None:
    """Log images to the experiment with optional annotations.

    This function logs images to a Comet ML experiment, optionally including annotation data for visualization such as
    bounding boxes or segmentation masks.

    Args:
        experiment (comet_ml.CometExperiment): The Comet ML experiment to log images to.
        image_paths (list[Path]): List of paths to images that will be logged.
        curr_step (int): Current training step/iteration for tracking in the experiment timeline.
        annotations (list[list[dict]], optional): Nested list of annotation dictionaries for each image. Each annotation
            contains visualization data like bounding boxes, labels, and confidence scores.
    """
    if annotations:
        for image_path, annotation in zip(image_paths, annotations):
            experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation)

    else:
        for image_path in image_paths:
            experiment.log_image(image_path, name=image_path.stem, step=curr_step)





function ultralytics.utils.callbacks.comet._log_image_predictions

def _log_image_predictions(experiment, validator, curr_step) -> None

Log predicted boxes for a single image during training.

This function logs image predictions to a Comet ML experiment during model validation. It processes validation data and formats both ground truth and prediction annotations for visualization in the Comet dashboard. The function respects configured limits on the number of images to log.

Args

NameTypeDescriptionDefault
experimentcomet_ml.CometExperimentThe Comet ML experiment to log to.required
validatorBaseValidatorThe validator instance containing validation data and predictions.required
curr_stepintThe current training step for logging timeline.required

Notes

This function uses global state to track the number of logged predictions across calls. It only logs predictions for supported tasks defined in COMET_SUPPORTED_TASKS. The number of logged images is limited by the COMET_MAX_IMAGE_PREDICTIONS environment variable.

Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_image_predictions(experiment, validator, curr_step) -> None:
    """Log predicted boxes for a single image during training.

    This function logs image predictions to a Comet ML experiment during model validation. It processes validation data
    and formats both ground truth and prediction annotations for visualization in the Comet
    dashboard. The function respects configured limits on the number of images to log.

    Args:
        experiment (comet_ml.CometExperiment): The Comet ML experiment to log to.
        validator (BaseValidator): The validator instance containing validation data and predictions.
        curr_step (int): The current training step for logging timeline.

    Notes:
        This function uses global state to track the number of logged predictions across calls.
        It only logs predictions for supported tasks defined in COMET_SUPPORTED_TASKS.
        The number of logged images is limited by the COMET_MAX_IMAGE_PREDICTIONS environment variable.
    """
    global _comet_image_prediction_count

    task = validator.args.task
    if task not in COMET_SUPPORTED_TASKS:
        return

    jdict = validator.jdict
    if not jdict:
        return

    predictions_metadata_map = _create_prediction_metadata_map(jdict)
    dataloader = validator.dataloader
    class_label_map = validator.names
    class_map = getattr(validator, "class_map", None)

    batch_logging_interval = _get_eval_batch_logging_interval()
    max_image_predictions = _get_max_image_predictions_to_log()

    for batch_idx, batch in enumerate(dataloader):
        if (batch_idx + 1) % batch_logging_interval != 0:
            continue

        image_paths = batch["im_file"]
        for img_idx, image_path in enumerate(image_paths):
            if _comet_image_prediction_count >= max_image_predictions:
                return

            image_path = Path(image_path)
            annotations = _fetch_annotations(
                img_idx,
                image_path,
                batch,
                predictions_metadata_map,
                class_label_map,
                class_map=class_map,
            )
            _log_images(
                experiment,
                [image_path],
                curr_step,
                annotations=annotations,
            )
            _comet_image_prediction_count += 1





function ultralytics.utils.callbacks.comet._log_plots

def _log_plots(experiment, trainer) -> None

Log evaluation plots and label plots for the experiment.

This function logs various evaluation plots and confusion matrices to the experiment tracking system. It handles different types of metrics (SegmentMetrics, PoseMetrics, DetMetrics, OBBMetrics) and logs the appropriate plots for each type.

Args

NameTypeDescriptionDefault
experimentcomet_ml.CometExperimentThe Comet ML experiment to log plots to.required
trainerultralytics.engine.trainer.BaseTrainerThe trainer object containing validation metrics and save directory information.required

Examples

>>> from ultralytics.utils.callbacks.comet import _log_plots
>>> _log_plots(experiment, trainer)
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_plots(experiment, trainer) -> None:
    """Log evaluation plots and label plots for the experiment.

    This function logs various evaluation plots and confusion matrices to the experiment tracking system. It handles
    different types of metrics (SegmentMetrics, PoseMetrics, DetMetrics, OBBMetrics) and logs the appropriate plots for
    each type.

    Args:
        experiment (comet_ml.CometExperiment): The Comet ML experiment to log plots to.
        trainer (ultralytics.engine.trainer.BaseTrainer): The trainer object containing validation metrics and save
            directory information.

    Examples:
        >>> from ultralytics.utils.callbacks.comet import _log_plots
        >>> _log_plots(experiment, trainer)
    """
    plot_filenames = None
    if isinstance(trainer.validator.metrics, SegmentMetrics):
        plot_filenames = [
            trainer.save_dir / f"{prefix}{plots}.png"
            for plots in EVALUATION_PLOT_NAMES
            for prefix in SEGMENT_METRICS_PLOT_PREFIX
        ]
    elif isinstance(trainer.validator.metrics, PoseMetrics):
        plot_filenames = [
            trainer.save_dir / f"{prefix}{plots}.png"
            for plots in EVALUATION_PLOT_NAMES
            for prefix in POSE_METRICS_PLOT_PREFIX
        ]
    elif isinstance(trainer.validator.metrics, (DetMetrics, OBBMetrics)):
        plot_filenames = [
            trainer.save_dir / f"{prefix}{plots}.png"
            for plots in EVALUATION_PLOT_NAMES
            for prefix in DETECTION_METRICS_PLOT_PREFIX
        ]

    if plot_filenames is not None:
        _log_images(experiment, plot_filenames, None)

    confusion_matrix_filenames = [trainer.save_dir / f"{plots}.png" for plots in CONFUSION_MATRIX_PLOT_NAMES]
    _log_images(experiment, confusion_matrix_filenames, None)

    if not isinstance(trainer.validator.metrics, ClassifyMetrics):
        label_plot_filenames = [trainer.save_dir / f"{labels}.jpg" for labels in LABEL_PLOT_NAMES]
        _log_images(experiment, label_plot_filenames, None)





function ultralytics.utils.callbacks.comet._log_model

def _log_model(experiment, trainer) -> None

Log the best-trained model to Comet.ml.

Args

NameTypeDescriptionDefault
experimentrequired
trainerrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_model(experiment, trainer) -> None:
    """Log the best-trained model to Comet.ml."""
    model_name = _get_comet_model_name()
    experiment.log_model(model_name, file_or_folder=str(trainer.best), file_name="best.pt", overwrite=True)





function ultralytics.utils.callbacks.comet._log_image_batches

def _log_image_batches(experiment, trainer, curr_step: int) -> None

Log samples of image batches for train, validation, and test.

Args

NameTypeDescriptionDefault
experimentrequired
trainerrequired
curr_stepintrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_image_batches(experiment, trainer, curr_step: int) -> None:
    """Log samples of image batches for train, validation, and test."""
    _log_images(experiment, trainer.save_dir.glob("train_batch*.jpg"), curr_step)
    _log_images(experiment, trainer.save_dir.glob("val_batch*.jpg"), curr_step)





function ultralytics.utils.callbacks.comet._log_asset

def _log_asset(experiment, asset_path) -> None

Logs a specific asset file to the given experiment.

This function facilitates logging an asset, such as a file, to the provided experiment. It enables integration with experiment tracking platforms.

Args

NameTypeDescriptionDefault
experimentcomet_ml.CometExperimentThe experiment instance to which the asset will be logged.required
asset_pathPathThe file path of the asset to log.required
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_asset(experiment, asset_path) -> None:
    """Logs a specific asset file to the given experiment.

    This function facilitates logging an asset, such as a file, to the provided
    experiment. It enables integration with experiment tracking platforms.

    Args:
        experiment (comet_ml.CometExperiment): The experiment instance to which the asset will be logged.
        asset_path (Path): The file path of the asset to log.
    """
    experiment.log_asset(asset_path)





function ultralytics.utils.callbacks.comet._log_table

def _log_table(experiment, table_path) -> None

Logs a table to the provided experiment.

This function is used to log a table file to the given experiment. The table is identified by its file path.

Args

NameTypeDescriptionDefault
experimentcomet_ml.CometExperimentThe experiment object where the table file will be logged.required
table_pathPathThe file path of the table to be logged.required
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def _log_table(experiment, table_path) -> None:
    """Logs a table to the provided experiment.

    This function is used to log a table file to the given experiment. The table is identified by its file path.

    Args:
        experiment (comet_ml.CometExperiment): The experiment object where the table file will be logged.
        table_path (Path): The file path of the table to be logged.
    """
    experiment.log_table(str(table_path))





function ultralytics.utils.callbacks.comet.on_pretrain_routine_start

def on_pretrain_routine_start(trainer) -> None

Create or resume a CometML experiment at the start of a YOLO pre-training routine.

Args

NameTypeDescriptionDefault
trainerrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def on_pretrain_routine_start(trainer) -> None:
    """Create or resume a CometML experiment at the start of a YOLO pre-training routine."""
    _resume_or_create_experiment(trainer.args)





function ultralytics.utils.callbacks.comet.on_train_epoch_end

def on_train_epoch_end(trainer) -> None

Log metrics and save batch images at the end of training epochs.

Args

NameTypeDescriptionDefault
trainerrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def on_train_epoch_end(trainer) -> None:
    """Log metrics and save batch images at the end of training epochs."""
    experiment = comet_ml.get_running_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]

    experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=curr_step, epoch=curr_epoch)





function ultralytics.utils.callbacks.comet.on_fit_epoch_end

def on_fit_epoch_end(trainer) -> None

Log model assets at the end of each epoch during training.

This function is called at the end of each training epoch to log metrics, learning rates, and model information to a Comet ML experiment. It also logs model assets, confusion matrices, and image predictions based on configuration settings.

The function retrieves the current Comet ML experiment and logs various training metrics. If it's the first epoch, it also logs model information. On specified save intervals, it logs the model, confusion matrix (if enabled), and image predictions (if enabled).

Args

NameTypeDescriptionDefault
trainerBaseTrainerThe YOLO trainer object containing training state, metrics, and configuration.required

Examples

>>> # Inside a training loop
>>> on_fit_epoch_end(trainer)  # Log metrics and assets to Comet ML
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def on_fit_epoch_end(trainer) -> None:
    """Log model assets at the end of each epoch during training.

    This function is called at the end of each training epoch to log metrics, learning rates, and model information to a
    Comet ML experiment. It also logs model assets, confusion matrices, and image predictions based on configuration
    settings.

    The function retrieves the current Comet ML experiment and logs various training metrics. If it's the first epoch,
    it also logs model information. On specified save intervals, it logs the model, confusion matrix (if enabled), and
    image predictions (if enabled).

    Args:
        trainer (BaseTrainer): The YOLO trainer object containing training state, metrics, and configuration.

    Examples:
        >>> # Inside a training loop
        >>> on_fit_epoch_end(trainer)  # Log metrics and assets to Comet ML
    """
    experiment = comet_ml.get_running_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]
    save_assets = metadata["save_assets"]

    experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
    experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
    if curr_epoch == 1:
        from ultralytics.utils.torch_utils import model_info_for_loggers

        experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)

    if not save_assets:
        return

    _log_model(experiment, trainer)
    if _should_log_confusion_matrix():
        _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
    if _should_log_image_predictions():
        _log_image_predictions(experiment, trainer.validator, curr_step)





function ultralytics.utils.callbacks.comet.on_train_end

def on_train_end(trainer) -> None

Perform operations at the end of training.

Args

NameTypeDescriptionDefault
trainerrequired
Source code in ultralytics/utils/callbacks/comet.pyView on GitHub
def on_train_end(trainer) -> None:
    """Perform operations at the end of training."""
    experiment = comet_ml.get_running_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]
    plots = trainer.args.plots

    _log_model(experiment, trainer)
    if plots:
        _log_plots(experiment, trainer)

    _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
    _log_image_predictions(experiment, trainer.validator, curr_step)
    _log_image_batches(experiment, trainer, curr_step)
    # log results table
    table_path = trainer.save_dir / RESULTS_TABLE_NAME
    if table_path.exists():
        _log_table(experiment, table_path)

    # log arguments YAML
    args_path = trainer.save_dir / ARGS_YAML_NAME
    if args_path.exists():
        _log_asset(experiment, args_path)

    experiment.end()

    global _comet_image_prediction_count
    _comet_image_prediction_count = 0





📅 Created 2 years ago ✏️ Updated 2 days ago
glenn-jocherUltralyticsAssistantlakshanthadjk4eBurhan-Q