Reference for ultralytics/utils/callbacks/mlflow.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/mlflow.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
function ultralytics.utils.callbacks.mlflow.sanitize_dict
def sanitize_dict(x: dict) -> dict
Sanitize dictionary keys by removing parentheses and converting values to floats.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | dict | required |
Source code in ultralytics/utils/callbacks/mlflow.py
View on GitHubdef sanitize_dict(x: dict) -> dict:
"""Sanitize dictionary keys by removing parentheses and converting values to floats."""
return {k.replace("(", "").replace(")", ""): float(v) for k, v in x.items()}
function ultralytics.utils.callbacks.mlflow.on_pretrain_routine_end
def on_pretrain_routine_end(trainer)
Log training parameters to MLflow at the end of the pretraining routine.
This function sets up MLflow logging based on environment variables and trainer arguments. It sets the tracking URI, experiment name, and run name, then starts the MLflow run if not already active. It finally logs the parameters from the trainer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
trainer | ultralytics.engine.trainer.BaseTrainer | The training object with arguments and parameters to log. | required |
Notes
MLFLOW_TRACKING_URI: The URI for MLflow tracking. If not set, defaults to 'runs/mlflow'. MLFLOW_EXPERIMENT_NAME: The name of the MLflow experiment. If not set, defaults to trainer.args.project. MLFLOW_RUN: The name of the MLflow run. If not set, defaults to trainer.args.name. MLFLOW_KEEP_RUN_ACTIVE: Boolean indicating whether to keep the MLflow run active after training ends.
Source code in ultralytics/utils/callbacks/mlflow.py
View on GitHubdef on_pretrain_routine_end(trainer):
"""Log training parameters to MLflow at the end of the pretraining routine.
This function sets up MLflow logging based on environment variables and trainer arguments. It sets the tracking URI,
experiment name, and run name, then starts the MLflow run if not already active. It finally logs the parameters from
the trainer.
Args:
trainer (ultralytics.engine.trainer.BaseTrainer): The training object with arguments and parameters to log.
Notes:
MLFLOW_TRACKING_URI: The URI for MLflow tracking. If not set, defaults to 'runs/mlflow'.
MLFLOW_EXPERIMENT_NAME: The name of the MLflow experiment. If not set, defaults to trainer.args.project.
MLFLOW_RUN: The name of the MLflow run. If not set, defaults to trainer.args.name.
MLFLOW_KEEP_RUN_ACTIVE: Boolean indicating whether to keep the MLflow run active after training ends.
"""
global mlflow
uri = os.environ.get("MLFLOW_TRACKING_URI") or str(RUNS_DIR / "mlflow")
LOGGER.debug(f"{PREFIX} tracking uri: {uri}")
mlflow.set_tracking_uri(uri)
# Set experiment and run names
experiment_name = os.environ.get("MLFLOW_EXPERIMENT_NAME") or trainer.args.project or "/Shared/Ultralytics"
run_name = os.environ.get("MLFLOW_RUN") or trainer.args.name
mlflow.set_experiment(experiment_name)
mlflow.autolog()
try:
active_run = mlflow.active_run() or mlflow.start_run(run_name=run_name)
LOGGER.info(f"{PREFIX}logging run_id({active_run.info.run_id}) to {uri}")
if Path(uri).is_dir():
LOGGER.info(f"{PREFIX}view at http://127.0.0.1:5000 with 'mlflow server --backend-store-uri {uri}'")
LOGGER.info(f"{PREFIX}disable with 'yolo settings mlflow=False'")
mlflow.log_params(dict(trainer.args))
except Exception as e:
LOGGER.warning(f"{PREFIX}Failed to initialize: {e}")
LOGGER.warning(f"{PREFIX}Not tracking this run")
function ultralytics.utils.callbacks.mlflow.on_train_epoch_end
def on_train_epoch_end(trainer)
Log training metrics at the end of each train epoch to MLflow.
Args
| Name | Type | Description | Default |
|---|---|---|---|
trainer | required |
Source code in ultralytics/utils/callbacks/mlflow.py
View on GitHubdef on_train_epoch_end(trainer):
"""Log training metrics at the end of each train epoch to MLflow."""
if mlflow:
mlflow.log_metrics(
metrics={
**sanitize_dict(trainer.lr),
**sanitize_dict(trainer.label_loss_items(trainer.tloss, prefix="train")),
},
step=trainer.epoch,
)
function ultralytics.utils.callbacks.mlflow.on_fit_epoch_end
def on_fit_epoch_end(trainer)
Log training metrics at the end of each fit epoch to MLflow.
Args
| Name | Type | Description | Default |
|---|---|---|---|
trainer | required |
Source code in ultralytics/utils/callbacks/mlflow.py
View on GitHubdef on_fit_epoch_end(trainer):
"""Log training metrics at the end of each fit epoch to MLflow."""
if mlflow:
mlflow.log_metrics(metrics=sanitize_dict(trainer.metrics), step=trainer.epoch)
function ultralytics.utils.callbacks.mlflow.on_train_end
def on_train_end(trainer)
Log model artifacts at the end of training.
Args
| Name | Type | Description | Default |
|---|---|---|---|
trainer | required |
Source code in ultralytics/utils/callbacks/mlflow.py
View on GitHubdef on_train_end(trainer):
"""Log model artifacts at the end of training."""
if not mlflow:
return
mlflow.log_artifact(str(trainer.best.parent)) # log save_dir/weights directory with best.pt and last.pt
for f in trainer.save_dir.glob("*"): # log all other files in save_dir
if f.suffix in {".png", ".jpg", ".csv", ".pt", ".yaml"}:
mlflow.log_artifact(str(f))
keep_run_active = os.environ.get("MLFLOW_KEEP_RUN_ACTIVE", "False").lower() == "true"
if keep_run_active:
LOGGER.info(f"{PREFIX}mlflow run still alive, remember to close it using mlflow.end_run()")
else:
mlflow.end_run()
LOGGER.debug(f"{PREFIX}mlflow run ended")
LOGGER.info(
f"{PREFIX}results logged to {mlflow.get_tracking_uri()}\n{PREFIX}disable with 'yolo settings mlflow=False'"
)