انتقل إلى المحتوى

Ultralytics YOLOv8 وسائط

Ultralytics YOLO النظام البيئي والتكاملات

مقدمة

Ultralytics YOLOv8 ليس مجرد نموذج آخر للكشف عن الكائنات. إنه إطار عمل متعدد الاستخدامات مصمم لتغطية دورة الحياة الكاملة لنماذج التعلم الآلي - من استيعاب البيانات والتدريب على النموذج إلى التحقق من الصحة والنشر والتتبع في العالم الحقيقي. يخدم كل وضع غرضا محددا وقد تم تصميمه ليوفر لك المرونة والكفاءة المطلوبة للمهام وحالات الاستخدام المختلفة.



شاهد: Ultralytics وسائط البرنامج التعليمي: تدريب، التحقق من الصحة، والتنبؤ، والتصدير والمعيار.

أوضاع في لمحة

فهم الأوضاع المختلفة التي Ultralytics YOLOv8 يعد الدعم أمرا بالغ الأهمية لتحقيق أقصى استفادة من نماذجك:

  • وضع القطار: اضبط نموذجك على مجموعات بيانات مخصصة أو محملة مسبقا.
  • وضع Val: نقطة تفتيش بعد التدريب للتحقق من أداء النموذج.
  • وضع التنبؤ: أطلق العنان للقوة التنبؤية لنموذجك على بيانات العالم الحقيقي.
  • وضع التصدير: اجعل نشر النموذج جاهزا بتنسيقات مختلفة.
  • وضع التتبع: قم بتوسيع نموذج اكتشاف الكائنات الخاص بك إلى تطبيقات التتبع في الوقت الفعلي.
  • وضع قياس الأداء: تحليل سرعة ودقة النموذج الخاص بك في بيئات النشر المتنوعة.

يهدف هذا الدليل الشامل إلى إعطائك نظرة عامة ورؤى عملية حول كل وضع ، مما يساعدك على تسخير الإمكانات الكاملة ل YOLOv8.

قطار

يستخدم وضع القطار لتدريب أ YOLOv8 نموذج على مجموعة بيانات مخصصة. في هذا الوضع ، يتم تدريب النموذج باستخدام مجموعة البيانات المحددة والمعلمات الفائقة. تتضمن عملية التدريب تحسين معلمات النموذج بحيث يمكنه التنبؤ بدقة بفئات ومواقع الكائنات في الصورة.

أمثلة القطار

فال

يستخدم وضع Val للتحقق من صحة YOLOv8 نموذج بعد تدريبه. في هذا الوضع ، يتم تقييم النموذج على مجموعة التحقق من الصحة لقياس دقته وأداء التعميم. يمكن استخدام هذا الوضع لضبط المعلمات الفائقة للنموذج لتحسين أدائه.

أمثلة فال

تنبأ

يستخدم وضع التنبؤ لعمل التنبؤات باستخدام مدرب YOLOv8 نموذج على الصور أو مقاطع الفيديو الجديدة. في هذا الوضع ، يتم تحميل النموذج من ملف نقطة تفتيش ، ويمكن للمستخدم توفير صور أو مقاطع فيديو لإجراء الاستدلال. يتنبأ النموذج بفئات ومواقع الكائنات في الصور أو مقاطع الفيديو المدخلة.

توقع الأمثلة

تصدير

يستخدم وضع التصدير لتصدير ملف YOLOv8 نموذج لتنسيق يمكن استخدامه للنشر. في هذا الوضع ، يتم تحويل النموذج إلى تنسيق يمكن استخدامه بواسطة تطبيقات البرامج أو الأجهزة الأخرى. يكون هذا الوضع مفيدا عند نشر النموذج في بيئات الإنتاج.

أمثلة التصدير

المسار

يستخدم وضع المسار لتتبع الكائنات في الوقت الفعلي باستخدام ملف YOLOv8 نموذج. في هذا الوضع ، يتم تحميل النموذج من ملف نقطة تفتيش ، ويمكن للمستخدم توفير دفق فيديو مباشر لإجراء تتبع الكائن في الوقت الفعلي. هذا الوضع مفيد لتطبيقات مثل أنظمة المراقبة أو السيارات ذاتية القيادة.

أمثلة المسار

المعيار

يستخدم الوضع القياسي لتحديد سرعة ودقة تنسيقات التصدير المختلفة ل YOLOv8. توفر المعايير معلومات عن حجم التنسيق المصدر ، mAP50-95 المقاييس (لاكتشاف الكائن وتقسيمه ووضعه) أو accuracy_top5 المقاييس (للتصنيف) ، ووقت الاستدلال بالمللي ثانية لكل صورة عبر تنسيقات تصدير مختلفة مثل ONNX, OpenVINO, TensorRT وغيرها. يمكن أن تساعد هذه المعلومات المستخدمين في اختيار تنسيق التصدير الأمثل لحالة الاستخدام الخاصة بهم بناء على متطلباتهم للسرعة والدقة.

أمثلة معيارية



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5)

التعليقات