انتقل إلى المحتوى

تصدير النموذج مع Ultralytics YOLO

Ultralytics YOLO النظام البيئي والتكاملات

مقدمة

الهدف النهائي من تدريب نموذج هو نشره لتطبيقات العالم الحقيقي. وضع التصدير في Ultralytics YOLOv8 يقدم مجموعة متنوعة من الخيارات لتصدير نموذجك المدرب إلى تنسيقات مختلفة ، مما يجعله قابلا للنشر عبر الأنظمة الأساسية والأجهزة المختلفة. يهدف هذا الدليل الشامل إلى إرشادك عبر الفروق الدقيقة في تصدير النموذج ، وعرض كيفية تحقيق أقصى قدر من التوافق والأداء.



شاهد: كيفية تصدير تدريب مخصص Ultralytics YOLOv8 نموذج وتشغيل الاستدلال المباشر على كاميرا الويب.

لماذا تختار YOLOv8في وضع التصدير؟

  • براعه: تصدير إلى تنسيقات متعددة بما في ذلك ONNX, TensorRT, CoreML، وأكثر من ذلك.
  • اداء: احصل على تسريع يصل إلى 5x لوحدة معالجة الرسومات باستخدام TensorRT وتسريع وحدة المعالجة المركزية 3x مع ONNX أو OpenVINO.
  • التوافق: اجعل نموذجك قابلا للنشر عالميا عبر العديد من بيئات الأجهزة والبرامج.
  • سهولة الاستخدام: بسيط CLI و Python API لتصدير النموذج بسرعة ومباشرة.

الميزات الرئيسية لوضع التصدير

فيما يلي بعض الوظائف البارزة:

  • تصدير بنقرة واحدة: أوامر بسيطة للتصدير إلى تنسيقات مختلفة.
  • تصدير الدفعة: تصدير نماذج قادرة على الاستدلال الدفعي.
  • الاستدلال الأمثل: تم تحسين النماذج المصدرة لأوقات الاستدلال الأسرع.
  • مقاطع فيديو تعليمية: أدلة وبرامج تعليمية متعمقة لتجربة تصدير سلسة.

بقشيش

  • تصدير إلى ONNX أو OpenVINO لتسريع وحدة المعالجة المركزية حتى 3x.
  • تصدير إلى TensorRT لتسريع وحدة معالجة الرسومات حتى 5x.

أمثلة الاستخدام

تصدير أ YOLOv8n نموذج إلى تنسيق مختلف مثل ONNX أو TensorRT. راجع قسم الوسيطات أدناه للحصول على قائمة كاملة بوسيطات التصدير.

مثل

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained model

# Export the model
model.export(format='onnx')
yolo export model=yolov8n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

الحجج

يوضح هذا الجدول تفاصيل التكوينات والخيارات المتاحة للتصدير YOLO نماذج لأشكال مختلفة. تعد هذه الإعدادات ضرورية لتحسين أداء النموذج المصدر وحجمه وتوافقه عبر الأنظمة الأساسية والبيئات المختلفة. يضمن التكوين المناسب أن النموذج جاهز للنشر في التطبيق المقصود بكفاءة مثالية.

جدال نوع افتراضي وصف
format str 'torchscript' التنسيق الهدف للنموذج المصدر، مثل 'onnx', 'torchscript', 'tensorflow'، أو غيرها، تحديد التوافق مع بيئات النشر المختلفة.
imgsz int أو tuple 640 حجم الصورة المطلوب لإدخال النموذج. يمكن أن يكون عددا صحيحا للصور المربعة أو مجموعة (height, width) لأبعاد محددة.
keras bool False تمكين التصدير إلى تنسيق Keras ل TensorFlow SavedModel، مما يوفر التوافق مع TensorFlow الخدمة وواجهات برمجة التطبيقات.
optimize bool False يطبق التحسين للأجهزة المحمولة عند التصدير إلى TorchScript، مما قد يقلل من حجم النموذج ويحسن الأداء.
half bool False تمكين التكميم FP16 (نصف الدقة) ، مما يقلل من حجم النموذج ويحتمل أن يسرع الاستدلال على الأجهزة المدعومة.
int8 bool False ينشط تكميم INT8 ، مما يزيد من ضغط النموذج ويسرع الاستدلال بأقل قدر من فقدان الدقة ، بشكل أساسي لأجهزة الحافة.
dynamic bool False يسمح بأحجام الإدخال الديناميكية ل ONNX و TensorRT الصادرات ، وتعزيز المرونة في التعامل مع أبعاد الصورة المختلفة.
simplify bool False يبسط الرسم البياني النموذجي ل ONNX الصادرات ، مما قد يؤدي إلى تحسين الأداء والتوافق.
opset int None يحدد ONNX إصدار Opset للتوافق مع مختلف ONNX المحللون وأوقات التشغيل. إذا لم يتم تعيينه، يستخدم أحدث إصدار مدعوم.
workspace float 4.0 تعيين الحد الأقصى لحجم مساحة العمل بالجيجابايت ل TensorRT التحسينات ، وتحقيق التوازن بين استخدام الذاكرة والأداء.
nms bool False يضيف منع غير أقصى (NMS) إلى CoreML التصدير ، ضروري للكشف الدقيق والفعال بعد المعالجة.

يسمح ضبط هذه المعلمات بتخصيص عملية التصدير لتلائم متطلبات محددة، مثل بيئة النشر وقيود الأجهزة وأهداف الأداء. يعد تحديد التنسيق والإعدادات المناسبة أمرا ضروريا لتحقيق أفضل توازن بين حجم النموذج والسرعة والدقة.

تنسيقات التصدير

متوفر YOLOv8 تنسيقات التصدير موجودة في الجدول أدناه. يمكنك التصدير إلى أي تنسيق باستخدام format الحجة ، أي format='onnx' أو format='engine'.

تنسيق format جدال نموذج البيانات الوصفية الحجج
PyTorch - yolov8n.pt -
TorchScript torchscript yolov8n.torchscript imgsz, optimize
ONNX onnx yolov8n.onnx imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n_openvino_model/ imgsz, half, int8
TensorRT engine yolov8n.engine imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n.mlpackage imgsz, half, int8, nms
TF SavedModel saved_model yolov8n_saved_model/ imgsz, keras, int8
TF GraphDef pb yolov8n.pb imgsz
TF لايت tflite yolov8n.tflite imgsz, half, int8
TF حافة TPU edgetpu yolov8n_edgetpu.tflite imgsz
TF.شبيبه tfjs yolov8n_web_model/ imgsz, half, int8
PaddlePaddle paddle yolov8n_paddle_model/ imgsz
NCNN ncnn yolov8n_ncnn_model/ imgsz, half


تم إنشاؤه في 2023-11-12, اخر تحديث 2024-03-01
المؤلفون: جلين جوشر (10) ، برهان كيو (1)

التعليقات