Ir al contenido

Exportaci贸n MNN para YOLO11 Modelos y despliegue

MNN

Arquitectura MNN

MNN es un marco de aprendizaje profundo muy eficiente y ligero. Soporta la inferencia y el entrenamiento de modelos de aprendizaje profundo y tiene un rendimiento l铆der en la industria para la inferencia y el entrenamiento en el dispositivo. En la actualidad, MNN se ha integrado en m谩s de 30 aplicaciones de Alibaba Inc, como Taobao, Tmall, Youku, DingTalk, Xianyu, etc., cubriendo m谩s de 70 escenarios de uso, como la transmisi贸n en directo, la captura de v铆deos cortos, la recomendaci贸n de b煤squeda, la b煤squeda de productos por imagen, el marketing interactivo, la distribuci贸n de acciones y el control de riesgos de seguridad. Adem谩s, MNN tambi茅n se utiliza en dispositivos integrados, como IoT.

Exportar a MNN: Conversi贸n de su modelo YOLO11

Puede ampliar la compatibilidad de los modelos y la flexibilidad de despliegue convirtiendo los modelos de YOLO11 al formato MNN.

Instalaci贸n

Para instalar los paquetes necesarios, ejecute

Instalaci贸n

# Install the required package for YOLO11 and MNN
pip install ultralytics
pip install MNN

Utilizaci贸n

Antes de entrar en las instrucciones de uso, es importante tener en cuenta que, aunque todos los modelos deUltralytics YOLO11 est谩n disponibles para la exportaci贸n, aqu铆 puede asegurarse de que el modelo que seleccione admite la funci贸n de exportaci贸n.

Utilizaci贸n

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export the model to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn'

# Load the exported MNN model
mnn_model = YOLO("yolo11n.mnn")

# Run inference
results = mnn_model("https://ultralytics.com/images/bus.jpg")
# Export a YOLO11n PyTorch model to MNN format
yolo export model=yolo11n.pt format=mnn  # creates 'yolo11n.mnn'

# Run inference with the exported model
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'

Para obtener m谩s informaci贸n sobre las opciones de exportaci贸n compatibles, visite la p谩gina de documentaci贸n deUltralytics sobre opciones de implantaci贸n.

Inferencia s贸lo MNN

Se implementa una funci贸n que se basa 煤nicamente en MNN para la inferencia y el preprocesamiento de YOLO11 , proporcionando versiones tanto en Python como en C++ para facilitar su implementaci贸n en cualquier escenario.

MNN

import argparse

import MNN
import MNN.cv as cv2
import MNN.numpy as np


def inference(model, img, precision, backend, thread):
    config = {}
    config["precision"] = precision
    config["backend"] = backend
    config["numThread"] = thread
    rt = MNN.nn.create_runtime_manager((config,))
    # net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
    net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
    original_image = cv2.imread(img)
    ih, iw, _ = original_image.shape
    length = max((ih, iw))
    scale = length / 640
    image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
    image = cv2.resize(
        image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
    )
    image = image[..., ::-1]  # BGR to RGB
    input_var = np.expand_dims(image, 0)
    input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
    output_var = net.forward(input_var)
    output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
    output_var = output_var.squeeze()
    # output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    cx = output_var[0]
    cy = output_var[1]
    w = output_var[2]
    h = output_var[3]
    probs = output_var[4:]
    # [cx, cy, w, h] -> [y0, x0, y1, x1]
    x0 = cx - w * 0.5
    y0 = cy - h * 0.5
    x1 = cx + w * 0.5
    y1 = cy + h * 0.5
    boxes = np.stack([x0, y0, x1, y1], axis=1)
    # get max prob and idx
    scores = np.max(probs, 0)
    class_ids = np.argmax(probs, 0)
    result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
    print(result_ids.shape)
    # nms result box, score, ids
    result_boxes = boxes[result_ids]
    result_scores = scores[result_ids]
    result_class_ids = class_ids[result_ids]
    for i in range(len(result_boxes)):
        x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
        y0 = int(y0 * scale)
        y1 = int(y1 * scale)
        x0 = int(x0 * scale)
        x1 = int(x1 * scale)
        print(result_class_ids[i])
        cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
    cv2.imwrite("res.jpg", original_image)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
    parser.add_argument("--img", type=str, required=True, help="the input image path")
    parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
    parser.add_argument(
        "--backend",
        type=str,
        default="CPU",
        help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
    )
    parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
    args = parser.parse_args()
    inference(args.model, args.img, args.precision, args.backend, args.thread)
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>

#include <cv/cv.hpp>

using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;

int main(int argc, const char* argv[]) {
    if (argc < 3) {
        MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
        return 0;
    }
    int thread = 4;
    int precision = 0;
    int forwardType = MNN_FORWARD_CPU;
    if (argc >= 4) {
        forwardType = atoi(argv[3]);
    }
    if (argc >= 5) {
        precision = atoi(argv[4]);
    }
    if (argc >= 6) {
        thread = atoi(argv[5]);
    }
    MNN::ScheduleConfig sConfig;
    sConfig.type = static_cast<MNNForwardType>(forwardType);
    sConfig.numThread = thread;
    BackendConfig bConfig;
    bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
    sConfig.backendConfig = &bConfig;
    std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
    if(rtmgr == nullptr) {
        MNN_ERROR("Empty RuntimeManger\n");
        return 0;
    }
    rtmgr->setCache(".cachefile");

    std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
    auto original_image = imread(argv[2]);
    auto dims = original_image->getInfo()->dim;
    int ih = dims[0];
    int iw = dims[1];
    int len = ih > iw ? ih : iw;
    float scale = len / 640.0;
    std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
    auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
    auto image = _Pad(original_image, pads, CONSTANT);
    image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
    image = cvtColor(image, COLOR_BGR2RGB);
    auto input = _Unsqueeze(image, {0});
    input = _Convert(input, NC4HW4);
    auto outputs = net->onForward({input});
    auto output = _Convert(outputs[0], NCHW);
    output = _Squeeze(output);
    // output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    auto cx = _Gather(output, _Scalar<int>(0));
    auto cy = _Gather(output, _Scalar<int>(1));
    auto w = _Gather(output, _Scalar<int>(2));
    auto h = _Gather(output, _Scalar<int>(3));
    std::vector<int> startvals { 4, 0 };
    auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
    std::vector<int> sizevals { -1, -1 };
    auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
    auto probs = _Slice(output, start, size);
    // [cx, cy, w, h] -> [y0, x0, y1, x1]
    auto x0 = cx - w * _Const(0.5);
    auto y0 = cy - h * _Const(0.5);
    auto x1 = cx + w * _Const(0.5);
    auto y1 = cy + h * _Const(0.5);
    auto boxes = _Stack({x0, y0, x1, y1}, 1);
    auto scores = _ReduceMax(probs, {0});
    auto ids = _ArgMax(probs, 0);
    auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
    auto result_ptr = result_ids->readMap<int>();
    auto box_ptr = boxes->readMap<float>();
    auto ids_ptr = ids->readMap<int>();
    auto score_ptr = scores->readMap<float>();
    for (int i = 0; i < 100; i++) {
        auto idx = result_ptr[i];
        if (idx < 0) break;
        auto x0 = box_ptr[idx * 4 + 0] * scale;
        auto y0 = box_ptr[idx * 4 + 1] * scale;
        auto x1 = box_ptr[idx * 4 + 2] * scale;
        auto y1 = box_ptr[idx * 4 + 3] * scale;
        auto class_idx = ids_ptr[idx];
        auto score = score_ptr[idx];
        rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
    }
    if (imwrite("res.jpg", original_image)) {
        MNN_PRINT("result image write to `res.jpg`.\n");
    }
    rtmgr->updateCache();
    return 0;
}

Resumen

En esta gu铆a, presentamos c贸mo exportar el modelo Ultralytics YOLO11 a MNN y utilizar MNN para la inferencia.

Para m谩s informaci贸n, consulte la documentaci贸n de MNN.

PREGUNTAS FRECUENTES

驴C贸mo se exportan los modelos de Ultralytics YOLO11 al formato MNN?

Para exportar su modelo Ultralytics YOLO11 al formato MNN, siga estos pasos:

Exportar

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn' with fp32 weight
model.export(format="mnn", half=True)  # creates 'yolo11n.mnn' with fp16 weight
model.export(format="mnn", int8=True)  # creates 'yolo11n.mnn' with int8 weight
yolo export model=yolo11n.pt format=mnn            # creates 'yolo11n.mnn' with fp32 weight
yolo export model=yolo11n.pt format=mnn half=True  # creates 'yolo11n.mnn' with fp16 weight
yolo export model=yolo11n.pt format=mnn int8=True  # creates 'yolo11n.mnn' with int8 weight

Para obtener informaci贸n detallada sobre las opciones de exportaci贸n, consulte la p谩gina Exportar de la documentaci贸n.

驴C贸mo puedo predecir con un modelo MNN exportado de YOLO11 ?

Para predecir con un modelo MNN exportado de YOLO11 , utilice la funci贸n predict de la clase YOLO .

Predecir

from ultralytics import YOLO

# Load the YOLO11 MNN model
model = YOLO("yolo11n.mnn")

# Export to MNN format
results = mnn_model("https://ultralytics.com/images/bus.jpg")  # predict with `fp32`
results = mnn_model("https://ultralytics.com/images/bus.jpg", half=True)  # predict with `fp16` if device support

for result in results:
    result.show()  # display to screen
    result.save(filename="result.jpg")  # save to disk
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'              # predict with `fp32`
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' --half=True  # predict with `fp16` if device support

驴Qu茅 plataformas son compatibles con MNN?

MNN es vers谩til y compatible con varias plataformas:

  • M贸vil: Android, iOS, Harmony.
  • Sistemas embebidos y dispositivos IoT: Dispositivos como Raspberry Pi y NVIDIA Jetson.
  • Ordenadores de sobremesa y servidores: Linux, Windows y macOS.

驴C贸mo puedo desplegar los modelos Ultralytics YOLO11 MNN en dispositivos m贸viles?

Para desplegar sus modelos YOLO11 en dispositivos m贸viles:

  1. Construya para Android: Siga el MNN Android.
  2. Construya para iOS: Siga el MNN iOS.
  3. Construir para la armon铆a: Siga el MNN Harmony.
Creado hace 2 meses 鉁忥笍 Actualizado hace 12 d铆as

Comentarios