सामग्री पर जाएं

सुरक्षा अलार्म सिस्टम परियोजना का उपयोग कर Ultralytics YOLOv8

सुरक्षा अलार्म सिस्टम

सुरक्षा अलार्म सिस्टम परियोजना का उपयोग Ultralytics YOLOv8 सुरक्षा उपायों को बढ़ाने के लिए उन्नत कंप्यूटर दृष्टि क्षमताओं को एकीकृत करता है। YOLOv8, द्वारा विकसित Ultralytics, रीयल-टाइम ऑब्जेक्ट डिटेक्शन प्रदान करता है, जिससे सिस्टम को संभावित सुरक्षा खतरों की तुरंत पहचान करने और उनका जवाब देने की अनुमति मिलती है। यह परियोजना कई फायदे प्रदान करती है:

  • वास्तविक समय का पता लगाने: YOLOv8की दक्षता सुरक्षा अलार्म सिस्टम को वास्तविक समय में सुरक्षा घटनाओं का पता लगाने और प्रतिक्रिया करने में सक्षम बनाती है, प्रतिक्रिया समय को कम करती है।
  • यथार्थता: YOLOv8 वस्तु का पता लगाने में इसकी सटीकता, झूठी सकारात्मकता को कम करने और सुरक्षा अलार्म सिस्टम की विश्वसनीयता बढ़ाने के लिए जाना जाता है।
  • एकीकरण क्षमताएं: परियोजना को मौजूदा सुरक्षा बुनियादी ढांचे के साथ समेकित रूप से एकीकृत किया जा सकता है, जो बुद्धिमान निगरानी की एक उन्नत परत प्रदान करता है।



सतर्कता: सुरक्षा अलार्म सिस्टम परियोजना के साथ Ultralytics YOLOv8 वस्तु का पता लगाना

कोड

पुस्तकालय आयात करें

import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from time import time

import cv2
import numpy as np
import torch

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

संदेश के पैरामीटर सेट करें

नोट

ऐप पासवर्ड जनरेशन जरूरी है

  • ऐप पासवर्ड जेनरेटर पर नेविगेट करें, "सुरक्षा प्रोजेक्ट" जैसे ऐप नाम निर्दिष्ट करें और 16-अंकीय पासवर्ड प्राप्त करें। इस पासवर्ड को कॉपी करें और निर्देशानुसार निर्दिष्ट पासवर्ड फ़ील्ड में पेस्ट करें।
password = ""
from_email = ""  # must match the email used to generate the password
to_email = ""  # receiver email

सर्वर निर्माण और प्रमाणीकरण

server = smtplib.SMTP("smtp.gmail.com: 587")
server.starttls()
server.login(from_email, password)

ईमेल भेजें समारोह

def send_email(to_email, from_email, object_detected=1):
    """Sends an email notification indicating the number of objects detected; defaults to 1 object."""
    message = MIMEMultipart()
    message["From"] = from_email
    message["To"] = to_email
    message["Subject"] = "Security Alert"
    # Add in the message body
    message_body = f"ALERT - {object_detected} objects has been detected!!"

    message.attach(MIMEText(message_body, "plain"))
    server.sendmail(from_email, to_email, message.as_string())

ऑब्जेक्ट डिटेक्शन और अलर्ट प्रेषक

class ObjectDetection:
    def __init__(self, capture_index):
        """Initializes an ObjectDetection instance with a given camera index."""
        self.capture_index = capture_index
        self.email_sent = False

        # model information
        self.model = YOLO("yolov8n.pt")

        # visual information
        self.annotator = None
        self.start_time = 0
        self.end_time = 0

        # device information
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

    def predict(self, im0):
        """Run prediction using a YOLO model for the input image `im0`."""
        results = self.model(im0)
        return results

    def display_fps(self, im0):
        """Displays the FPS on an image `im0` by calculating and overlaying as white text on a black rectangle."""
        self.end_time = time()
        fps = 1 / np.round(self.end_time - self.start_time, 2)
        text = f"FPS: {int(fps)}"
        text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]
        gap = 10
        cv2.rectangle(
            im0,
            (20 - gap, 70 - text_size[1] - gap),
            (20 + text_size[0] + gap, 70 + gap),
            (255, 255, 255),
            -1,
        )
        cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)

    def plot_bboxes(self, results, im0):
        """Plots bounding boxes on an image given detection results; returns annotated image and class IDs."""
        class_ids = []
        self.annotator = Annotator(im0, 3, results[0].names)
        boxes = results[0].boxes.xyxy.cpu()
        clss = results[0].boxes.cls.cpu().tolist()
        names = results[0].names
        for box, cls in zip(boxes, clss):
            class_ids.append(cls)
            self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))
        return im0, class_ids

    def __call__(self):
        """Executes object detection on video frames from a specified camera index, plotting bounding boxes and returning modified frames."""
        cap = cv2.VideoCapture(self.capture_index)
        assert cap.isOpened()
        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
        cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
        frame_count = 0
        while True:
            self.start_time = time()
            ret, im0 = cap.read()
            assert ret
            results = self.predict(im0)
            im0, class_ids = self.plot_bboxes(results, im0)

            if len(class_ids) > 0:  # Only send email If not sent before
                if not self.email_sent:
                    send_email(to_email, from_email, len(class_ids))
                    self.email_sent = True
            else:
                self.email_sent = False

            self.display_fps(im0)
            cv2.imshow("YOLOv8 Detection", im0)
            frame_count += 1
            if cv2.waitKey(5) & 0xFF == 27:
                break
        cap.release()
        cv2.destroyAllWindows()
        server.quit()

ऑब्जेक्ट डिटेक्शन क्लास को कॉल करें और अनुमान चलाएं

detector = ObjectDetection(capture_index=0)
detector()

बस! जब आप कोड निष्पादित करते हैं, तो किसी भी वस्तु का पता चलने पर आपको अपने ईमेल पर एक सूचना प्राप्त होगी। अधिसूचना तुरंत भेजी जाती है, बार-बार नहीं। हालांकि, अपनी परियोजना आवश्यकताओं के अनुरूप कोड को अनुकूलित करने के लिए स्वतंत्र महसूस करें।

ईमेल प्राप्त नमूना

ईमेल प्राप्त नमूना



Created 2023-12-02, Updated 2024-06-09
Authors: IvorZhu331 (1), glenn-jocher (5), RizwanMunawar (1)

टिप्पणियाँ