Skip to content

Reference for ultralytics/utils/export/imx.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/export/imx.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.utils.export.imx.FXModel

FXModel(self, model, imgsz = (640, 640))

Bases: torch.nn.Module

A custom model class for torch.fx compatibility.

This class extends torch.nn.Module and is designed to ensure compatibility with torch.fx for tracing and graph manipulation. It copies attributes from an existing model and explicitly sets the model attribute to ensure proper copying.

Args

NameTypeDescriptionDefault
modelnn.ModuleThe original model to wrap for torch.fx compatibility.required
imgsztuple[int, int]The input image size (height, width). Default is (640, 640).(640, 640)

Attributes

NameTypeDescription
modelnn.ModuleThe original model's layers.

Methods

NameDescription
forwardForward pass through the model.
Source code in ultralytics/utils/export/imx.pyView on GitHub
class FXModel(torch.nn.Module):
    """A custom model class for torch.fx compatibility.

    This class extends `torch.nn.Module` and is designed to ensure compatibility with torch.fx for tracing and graph
    manipulation. It copies attributes from an existing model and explicitly sets the model attribute to ensure proper
    copying.

    Attributes:
        model (nn.Module): The original model's layers.
    """

    def __init__(self, model, imgsz=(640, 640)):
        """Initialize the FXModel.

        Args:
            model (nn.Module): The original model to wrap for torch.fx compatibility.
            imgsz (tuple[int, int]): The input image size (height, width). Default is (640, 640).
        """
        super().__init__()
        copy_attr(self, model)
        # Explicitly set `model` since `copy_attr` somehow does not copy it.
        self.model = model.model
        self.imgsz = imgsz


method ultralytics.utils.export.imx.FXModel.forward

def forward(self, x)

Forward pass through the model.

This method performs the forward pass through the model, handling the dependencies between layers and saving intermediate outputs.

Args

NameTypeDescriptionDefault
xtorch.TensorThe input tensor to the model.required

Returns

TypeDescription
torch.TensorThe output tensor from the model.
Source code in ultralytics/utils/export/imx.pyView on GitHub
def forward(self, x):
    """Forward pass through the model.

    This method performs the forward pass through the model, handling the dependencies between layers and saving
    intermediate outputs.

    Args:
        x (torch.Tensor): The input tensor to the model.

    Returns:
        (torch.Tensor): The output tensor from the model.
    """
    y = []  # outputs
    for m in self.model:
        if m.f != -1:  # if not from previous layer
            # from earlier layers
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]
        if isinstance(m, Detect):
            m._inference = types.MethodType(_inference, m)  # bind method to Detect
            m.anchors, m.strides = (
                x.transpose(0, 1)
                for x in make_anchors(
                    torch.cat([s / m.stride.unsqueeze(-1) for s in self.imgsz], dim=1), m.stride, 0.5
                )
            )
        if type(m) is Pose:
            m.forward = types.MethodType(pose_forward, m)  # bind method to Detect
        x = m(x)  # run
        y.append(x)  # save output
    return x





class ultralytics.utils.export.imx.NMSWrapper

def __init__(
    self,
    model: torch.nn.Module,
    score_threshold: float = 0.001,
    iou_threshold: float = 0.7,
    max_detections: int = 300,
    task: str = "detect",
)

Bases: torch.nn.Module

Wrap PyTorch Module with multiclass_nms layer from sony_custom_layers.

Args

NameTypeDescriptionDefault
modeltorch.nn.ModuleModel instance.required
score_thresholdfloatScore threshold for non-maximum suppression.0.001
iou_thresholdfloatIntersection over union threshold for non-maximum suppression.0.7
max_detectionsintThe number of detections to return.300
taskstrTask type, either 'detect' or 'pose'."detect"

Methods

NameDescription
forwardForward pass with model inference and NMS post-processing.
Source code in ultralytics/utils/export/imx.pyView on GitHub
class NMSWrapper(torch.nn.Module):
    """Wrap PyTorch Module with multiclass_nms layer from sony_custom_layers."""

    def __init__(
        self,
        model: torch.nn.Module,
        score_threshold: float = 0.001,
        iou_threshold: float = 0.7,
        max_detections: int = 300,
        task: str = "detect",
    ):
        """Initialize NMSWrapper with PyTorch Module and NMS parameters.

        Args:
            model (torch.nn.Module): Model instance.
            score_threshold (float): Score threshold for non-maximum suppression.
            iou_threshold (float): Intersection over union threshold for non-maximum suppression.
            max_detections (int): The number of detections to return.
            task (str): Task type, either 'detect' or 'pose'.
        """
        super().__init__()
        self.model = model
        self.score_threshold = score_threshold
        self.iou_threshold = iou_threshold
        self.max_detections = max_detections
        self.task = task


method ultralytics.utils.export.imx.NMSWrapper.forward

def forward(self, images)

Forward pass with model inference and NMS post-processing.

Args

NameTypeDescriptionDefault
imagesrequired
Source code in ultralytics/utils/export/imx.pyView on GitHub
def forward(self, images):
    """Forward pass with model inference and NMS post-processing."""
    from sony_custom_layers.pytorch import multiclass_nms_with_indices

    # model inference
    outputs = self.model(images)
    boxes, scores = outputs[0], outputs[1]
    nms_outputs = multiclass_nms_with_indices(
        boxes=boxes,
        scores=scores,
        score_threshold=self.score_threshold,
        iou_threshold=self.iou_threshold,
        max_detections=self.max_detections,
    )
    if self.task == "pose":
        kpts = outputs[2]  # (bs, max_detections, kpts 17*3)
        out_kpts = torch.gather(kpts, 1, nms_outputs.indices.unsqueeze(-1).expand(-1, -1, kpts.size(-1)))
        return nms_outputs.boxes, nms_outputs.scores, nms_outputs.labels, out_kpts
    return nms_outputs.boxes, nms_outputs.scores, nms_outputs.labels, nms_outputs.n_valid





function ultralytics.utils.export.imx._inference

def _inference(self, x: list[torch.Tensor]) -> tuple[torch.Tensor]

Decode boxes and cls scores for imx object detection.

Args

NameTypeDescriptionDefault
selfrequired
xlist[torch.Tensor]required
Source code in ultralytics/utils/export/imx.pyView on GitHub
def _inference(self, x: list[torch.Tensor]) -> tuple[torch.Tensor]:
    """Decode boxes and cls scores for imx object detection."""
    x_cat = torch.cat([xi.view(x[0].shape[0], self.no, -1) for xi in x], 2)
    box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
    dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
    return dbox.transpose(1, 2), cls.sigmoid().permute(0, 2, 1)





function ultralytics.utils.export.imx.pose_forward

def pose_forward(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Forward pass for imx pose estimation, including keypoint decoding.

Args

NameTypeDescriptionDefault
selfrequired
xlist[torch.Tensor]required
Source code in ultralytics/utils/export/imx.pyView on GitHub
def pose_forward(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """Forward pass for imx pose estimation, including keypoint decoding."""
    bs = x[0].shape[0]  # batch size
    kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)  # (bs, 17*3, h*w)
    x = Detect.forward(self, x)
    pred_kpt = self.kpts_decode(bs, kpt)
    return (*x, pred_kpt.permute(0, 2, 1))





function ultralytics.utils.export.imx.torch2imx

def torch2imx(
    model: torch.nn.Module,
    file: Path | str,
    conf: float,
    iou: float,
    max_det: int,
    metadata: dict | None = None,
    gptq: bool = False,
    dataset=None,
    prefix: str = "",
)

Export YOLO model to IMX format for deployment on Sony IMX500 devices.

This function quantizes a YOLO model using Model Compression Toolkit (MCT) and exports it to IMX format compatible with Sony IMX500 edge devices. It supports both YOLOv8n and YOLO11n models for detection and pose estimation tasks.

Args

NameTypeDescriptionDefault
modeltorch.nn.ModuleThe YOLO model to export. Must be YOLOv8n or YOLO11n.required
filePath | strOutput file path for the exported model.required
conffloatConfidence threshold for NMS post-processing.required
ioufloatIoU threshold for NMS post-processing.required
max_detintMaximum number of detections to return.required
metadatadict | None, optionalMetadata to embed in the ONNX model. Defaults to None.None
gptqbool, optionalWhether to use Gradient-Based Post Training Quantization. If False, uses standard Post Training Quantization. Defaults to False.False
datasetoptionalRepresentative dataset for quantization calibration. Defaults to None.None
prefixstr, optionalLogging prefix string. Defaults to "".""

Returns

TypeDescription
f (Path)Path to the exported IMX model directory

Examples

>>> from ultralytics import YOLO
>>> model = YOLO("yolo11n.pt")
>>> path, _ = export_imx(model, "model.imx", conf=0.25, iou=0.45, max_det=300)

Notes

  • Requires model_compression_toolkit, onnx, edgemdt_tpc, and sony_custom_layers packages
  • Only supports YOLOv8n and YOLO11n models (detection and pose tasks)
  • Output includes quantized ONNX model, IMX binary, and labels.txt file

Raises

TypeDescription
ValueErrorIf the model is not a supported YOLOv8n or YOLO11n variant.
Source code in ultralytics/utils/export/imx.pyView on GitHub
def torch2imx(
    model: torch.nn.Module,
    file: Path | str,
    conf: float,
    iou: float,
    max_det: int,
    metadata: dict | None = None,
    gptq: bool = False,
    dataset=None,
    prefix: str = "",
):
    """Export YOLO model to IMX format for deployment on Sony IMX500 devices.

    This function quantizes a YOLO model using Model Compression Toolkit (MCT) and exports it to IMX format compatible
    with Sony IMX500 edge devices. It supports both YOLOv8n and YOLO11n models for detection and pose estimation tasks.

    Args:
        model (torch.nn.Module): The YOLO model to export. Must be YOLOv8n or YOLO11n.
        file (Path | str): Output file path for the exported model.
        conf (float): Confidence threshold for NMS post-processing.
        iou (float): IoU threshold for NMS post-processing.
        max_det (int): Maximum number of detections to return.
        metadata (dict | None, optional): Metadata to embed in the ONNX model. Defaults to None.
        gptq (bool, optional): Whether to use Gradient-Based Post Training Quantization. If False, uses standard Post
            Training Quantization. Defaults to False.
        dataset (optional): Representative dataset for quantization calibration. Defaults to None.
        prefix (str, optional): Logging prefix string. Defaults to "".

    Returns:
        f (Path): Path to the exported IMX model directory

    Raises:
        ValueError: If the model is not a supported YOLOv8n or YOLO11n variant.

    Examples:
        >>> from ultralytics import YOLO
        >>> model = YOLO("yolo11n.pt")
        >>> path, _ = export_imx(model, "model.imx", conf=0.25, iou=0.45, max_det=300)

    Notes:
        - Requires model_compression_toolkit, onnx, edgemdt_tpc, and sony_custom_layers packages
        - Only supports YOLOv8n and YOLO11n models (detection and pose tasks)
        - Output includes quantized ONNX model, IMX binary, and labels.txt file
    """
    import model_compression_toolkit as mct
    import onnx
    from edgemdt_tpc import get_target_platform_capabilities

    LOGGER.info(f"\n{prefix} starting export with model_compression_toolkit {mct.__version__}...")

    def representative_dataset_gen(dataloader=dataset):
        for batch in dataloader:
            img = batch["img"]
            img = img / 255.0
            yield [img]

    tpc = get_target_platform_capabilities(tpc_version="4.0", device_type="imx500")

    bit_cfg = mct.core.BitWidthConfig()
    mct_config = MCT_CONFIG["YOLO11" if "C2PSA" in model.__str__() else "YOLOv8"][model.task]

    # Check if the model has the expected number of layers
    if len(list(model.modules())) != mct_config["n_layers"]:
        raise ValueError("IMX export only supported for YOLOv8n and YOLO11n models.")

    for layer_name in mct_config["layer_names"]:
        bit_cfg.set_manual_activation_bit_width([mct.core.common.network_editors.NodeNameFilter(layer_name)], 16)

    config = mct.core.CoreConfig(
        mixed_precision_config=mct.core.MixedPrecisionQuantizationConfig(num_of_images=10),
        quantization_config=mct.core.QuantizationConfig(concat_threshold_update=True),
        bit_width_config=bit_cfg,
    )

    resource_utilization = mct.core.ResourceUtilization(weights_memory=mct_config["weights_memory"])

    quant_model = (
        mct.gptq.pytorch_gradient_post_training_quantization(  # Perform Gradient-Based Post Training Quantization
            model=model,
            representative_data_gen=representative_dataset_gen,
            target_resource_utilization=resource_utilization,
            gptq_config=mct.gptq.get_pytorch_gptq_config(
                n_epochs=1000, use_hessian_based_weights=False, use_hessian_sample_attention=False
            ),
            core_config=config,
            target_platform_capabilities=tpc,
        )[0]
        if gptq
        else mct.ptq.pytorch_post_training_quantization(  # Perform post training quantization
            in_module=model,
            representative_data_gen=representative_dataset_gen,
            target_resource_utilization=resource_utilization,
            core_config=config,
            target_platform_capabilities=tpc,
        )[0]
    )

    if model.task != "classify":
        quant_model = NMSWrapper(
            model=quant_model,
            score_threshold=conf or 0.001,
            iou_threshold=iou,
            max_detections=max_det,
            task=model.task,
        )

    f = Path(str(file).replace(file.suffix, "_imx_model"))
    f.mkdir(exist_ok=True)
    onnx_model = f / Path(str(file.name).replace(file.suffix, "_imx.onnx"))  # js dir
    mct.exporter.pytorch_export_model(
        model=quant_model, save_model_path=onnx_model, repr_dataset=representative_dataset_gen
    )

    model_onnx = onnx.load(onnx_model)  # load onnx model
    for k, v in metadata.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)

    onnx.save(model_onnx, onnx_model)

    subprocess.run(
        ["imxconv-pt", "-i", str(onnx_model), "-o", str(f), "--no-input-persistency", "--overwrite-output"],
        check=True,
    )

    # Needed for imx models.
    with open(f / "labels.txt", "w", encoding="utf-8") as file:
        file.writelines([f"{name}\n" for _, name in model.names.items()])

    return f





📅 Created 2 months ago ✏️ Updated 2 days ago
glenn-jocherLaughing-q