Перейти к содержимому

YOLO-Модель мира

Модель YOLO-World Model представляет собой продвинутую, работающую в режиме реального времени Ultralytics YOLOv8-подход к решению задач по обнаружению открытых словарей. Эта инновация позволяет обнаружить любой объект на изображении на основе описательных текстов. Благодаря значительному снижению вычислительных требований при сохранении конкурентоспособной производительности, YOLO-World становится универсальным инструментом для множества приложений, основанных на зрении.



Смотри: YOLO Всемирный процесс обучения на пользовательском наборе данных

YOLO-Обзор архитектуры модели мира

Обзор

YOLO-World решает проблемы, с которыми сталкиваются традиционные модели обнаружения открытой лексики, которые часто опираются на громоздкие модели трансформеров, требующие больших вычислительных ресурсов. Зависимость этих моделей от заранее определенных категорий объектов также ограничивает их полезность в динамических сценариях. YOLO-World возрождает фреймворк YOLOv8 с возможностями обнаружения объектов с открытым словарем, используя моделирование языка зрения и предварительное обучение на обширных наборах данных, чтобы с непревзойденной эффективностью идентифицировать широкий спектр объектов в сценариях с нулевыми кадрами.

Основные характеристики

  1. Решение в реальном времени: Используя скорость вычислений CNN, YOLO-World обеспечивает быстрое решение для обнаружения открытого словаря, удовлетворяя отрасли, нуждающиеся в немедленных результатах.

  2. Эффективность и производительность: YOLO-World снижает требования к вычислениям и ресурсам без ущерба для производительности, предлагая надежную альтернативу таким моделям, как SAM , но с меньшими вычислительными затратами, что позволяет использовать приложения в реальном времени.

  3. Inference with Offline Vocabulary: YOLO-World представляет стратегию "prompt-then-detect", использующую оффлайн-словарь для дальнейшего повышения эффективности. Этот подход позволяет использовать пользовательские подсказки, вычисленные apriori, включая подписи или категории, которые кодируются и хранятся как вкрапления офлайн-словаря, что упрощает процесс обнаружения.

  4. Powered by YOLOv8: Built upon Ultralytics YOLOv8YOLO-World использует последние достижения в области обнаружения объектов в реальном времени, чтобы обеспечить обнаружение открытых словарей с непревзойденной точностью и скоростью.

  5. Превосходство в бенчмарках: YOLO-World превосходит существующие детекторы открытого словаря, включая MDETR и серию GLIP, по скорости и эффективности на стандартных бенчмарках, демонстрируя YOLOv8'превосходные возможности на одном NVIDIA V100 GPU.

  6. Универсальные приложения: YOLO Инновационный подход -World открывает новые возможности для множества задач технического зрения, обеспечивая повышение скорости на порядки по сравнению с существующими методами.

Доступные модели, поддерживаемые задачи и режимы работы

В этом разделе подробно описаны доступные модели с их конкретными предварительно обученными весами, задачи, которые они поддерживают, и их совместимость с различными режимами работы, такими как Inference, Validation, Training и Export, обозначенными ✅ для поддерживаемых режимов и ❌ для неподдерживаемых режимов.

Примечание

Все веса YOLOv8-World были напрямую перенесены из официального репозитория YOLO-World, что подчеркивает их отличный вклад.

Тип модели Предварительно обученные веса Поддерживаемые задачи Заключение Валидация Тренировка Экспорт
YOLOv8s-world yolov8s-world.pt Обнаружение объектов
YOLOv8s-worldv2 yolov8s-worldv2.pt Обнаружение объектов
YOLOv8m-world yolov8m-world.pt Обнаружение объектов
YOLOv8m-worldv2 yolov8m-worldv2.pt Обнаружение объектов
YOLOv8l-world yolov8l-world.pt Обнаружение объектов
YOLOv8l-worldv2 yolov8l-worldv2.pt Обнаружение объектов
YOLOv8x-world yolov8x-world.pt Обнаружение объектов
YOLOv8x-worldv2 yolov8x-worldv2.pt Обнаружение объектов

Передача нуля на наборе данных COCO

Тип модели mAP mAP50 mAP75
yolov8s-world 37.4 52.0 40.6
yolov8s-worldv2 37.7 52.2 41.0
yolov8m-world 42.0 57.0 45.6
yolov8m-worldv2 43.0 58.4 46.8
yolov8l-world 45.7 61.3 49.8
yolov8l-worldv2 45.8 61.3 49.8
yolov8x-world 47.0 63.0 51.2
yolov8x-worldv2 47.1 62.8 51.4

Примеры использования

Модели YOLO-World легко интегрировать в твои Python-приложения. Ultralytics предоставляет удобный Python API и CLI-команды, чтобы упростить разработку.

Использование поезда

Наконечник

Мы настоятельно рекомендуем использовать yolov8-worldv2 Модель для пользовательского обучения, потому что она поддерживает детерминированное обучение, а также легко экспортируется в другие форматы, например onnx/tensorrt.

Обнаружение объектов легко осуществляется с помощью train метод, как показано ниже:

Пример

PyTorch предварительно обученный *.pt модели, а также конфигурации *.yaml файлы могут быть переданы в YOLOWorld() класс, чтобы создать экземпляр модели в python:

from ultralytics import YOLOWorld

# Load a pretrained YOLOv8s-worldv2 model
model = YOLOWorld("yolov8s-worldv2.pt")

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

# Run inference with the YOLOv8n model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
# Load a pretrained YOLOv8s-worldv2 model and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolov8s-worldv2.yaml data=coco8.yaml epochs=100 imgsz=640

Предсказать использование

Обнаружение объектов легко осуществляется с помощью predict метод, как показано ниже:

Пример

from ultralytics import YOLOWorld

# Initialize a YOLO-World model
model = YOLOWorld("yolov8s-world.pt")  # or select yolov8m/l-world.pt for different sizes

# Execute inference with the YOLOv8s-world model on the specified image
results = model.predict("path/to/image.jpg")

# Show results
results[0].show()
# Perform object detection using a YOLO-World model
yolo predict model=yolov8s-world.pt source=path/to/image.jpg imgsz=640

Этот сниппет демонстрирует простоту загрузки предварительно обученной модели и выполнения предсказания на изображении.

Использование вала

Проверка модели на наборе данных проходит следующим образом:

Пример

from ultralytics import YOLO

# Create a YOLO-World model
model = YOLO("yolov8s-world.pt")  # or select yolov8m/l-world.pt for different sizes

# Conduct model validation on the COCO8 example dataset
metrics = model.val(data="coco8.yaml")
# Validate a YOLO-World model on the COCO8 dataset with a specified image size
yolo val model=yolov8s-world.pt data=coco8.yaml imgsz=640

Использование трека

Отслеживание объектов с помощью YOLO- модели мира на видео/изображениях упрощается следующим образом:

Пример

from ultralytics import YOLO

# Create a YOLO-World model
model = YOLO("yolov8s-world.pt")  # or select yolov8m/l-world.pt for different sizes

# Track with a YOLO-World model on a video
results = model.track(source="path/to/video.mp4")
# Track with a YOLO-World model on the video with a specified image size
yolo track model=yolov8s-world.pt imgsz=640 source="path/to/video/file.mp4"

Примечание

Модели YOLO-World, предоставляемые сайтом Ultralytics , поставляются с предварительно настроенными категориями из набора данных COCO в качестве части их автономного словаря, что повышает эффективность для немедленного применения. Эта интеграция позволяет моделям YOLOv8-World напрямую распознавать и предсказывать 80 стандартных категорий, определенных в наборе данных COCO, не требуя дополнительной настройки или кастомизации.

Установите подсказки

YOLO-Обзор имен классов оперативной связи в мире

Фреймворк YOLO-World позволяет динамически задавать классы с помощью пользовательских подсказок, что дает пользователям возможность адаптировать модель под свои конкретные нужды без переобучения. Эта возможность особенно полезна для адаптации модели к новым доменам или специфическим задачам, которые изначально не были частью обучающих данных. Задавая пользовательские подсказки, пользователи могут по сути направлять внимание модели на интересующие их объекты, повышая релевантность и точность результатов обнаружения.

Например, если в твоем приложении требуется обнаружить только объекты типа "человек" и "автобус", ты можешь указать эти классы напрямую:

Пример

from ultralytics import YOLO

# Initialize a YOLO-World model
model = YOLO("yolov8s-world.pt")  # or choose yolov8m/l-world.pt

# Define custom classes
model.set_classes(["person", "bus"])

# Execute prediction for specified categories on an image
results = model.predict("path/to/image.jpg")

# Show results
results[0].show()

Ты также можешь сохранить модель после установки пользовательских классов. Этим ты создашь версию модели YOLO-World, специализированную для твоего конкретного случая использования. Этот процесс встраивает определения твоих пользовательских классов прямо в файл модели, делая модель готовой к использованию с указанными тобой классами без дополнительных настроек. Выполни следующие шаги, чтобы сохранить и загрузить свою пользовательскую модель YOLOv8:

Пример

Сначала загрузи модель YOLO-World, установи для нее пользовательские классы и сохрани ее:

from ultralytics import YOLO

# Initialize a YOLO-World model
model = YOLO("yolov8s-world.pt")  # or select yolov8m/l-world.pt

# Define custom classes
model.set_classes(["person", "bus"])

# Save the model with the defined offline vocabulary
model.save("custom_yolov8s.pt")

После сохранения модель custom_yolov8s.pt ведет себя так же, как и любая другая предварительно обученная модель YOLOv8, но с ключевым отличием: теперь она оптимизирована для обнаружения только тех классов, которые ты определил. Такая настройка может значительно повысить производительность и эффективность обнаружения для твоих конкретных сценариев применения.

from ultralytics import YOLO

# Load your custom model
model = YOLO("custom_yolov8s.pt")

# Run inference to detect your custom classes
results = model.predict("path/to/image.jpg")

# Show results
results[0].show()

Преимущества экономии с помощью пользовательского словаря

  • Эффективность: Упрощает процесс обнаружения, фокусируясь на релевантных объектах, снижая вычислительные затраты и ускоряя вывод.
  • Гибкость: Позволяет легко адаптировать модель к новым или нишевым задачам обнаружения без необходимости обширного переобучения или сбора данных.
  • Простота: Упрощает развертывание, избавляя от необходимости многократно указывать пользовательские классы во время выполнения, делая модель непосредственно пригодной для использования с ее встроенным словарем.
  • Производительность: Повышает точность обнаружения заданных классов, фокусируя внимание и ресурсы модели на распознавании определенных объектов.

Такой подход дает мощное средство для настройки современных моделей обнаружения объектов под конкретные задачи, делая продвинутый ИИ более доступным и применимым для более широкого спектра практических приложений.

Воспроизведи официальные результаты с нуля(Экспериментально)

Подготовь наборы данных

  • Данные о поезде
Набор данных Тип Образцы Коробки Файлы с аннотациями
Объекты365v1 Обнаружение 609k 9621k objects365_train.json
GQA Заземление 621k 3681k final_mixed_train_no_coco.json
Flickr30k Заземление 149k 641k final_flickr_separateGT_train.json
  • Вал данных
Набор данных Тип Файлы с аннотациями
Лвис минивал Обнаружение minival.txt

Начни обучение с нуля

Примечание

WorldTrainerFromScratch очень хорошо настроен и позволяет тренировать yolo-world модели одновременно на наборах данных обнаружения и заземления. Более подробную информацию можно найти на сайте ultralytics.model.yolo.world.train_world.py.

Пример

from ultralytics import YOLOWorld
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch

data = dict(
    train=dict(
        yolo_data=["Objects365.yaml"],
        grounding_data=[
            dict(
                img_path="../datasets/flickr30k/images",
                json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
            ),
            dict(
                img_path="../datasets/GQA/images",
                json_file="../datasets/GQA/final_mixed_train_no_coco.json",
            ),
        ],
    ),
    val=dict(yolo_data=["lvis.yaml"]),
)
model = YOLOWorld("yolov8s-worldv2.yaml")
model.train(data=data, batch=128, epochs=100, trainer=WorldTrainerFromScratch)

Цитаты и благодарности

Мы выражаем благодарность центру компьютерного зрения Tencent AILab за их новаторскую работу по обнаружению объектов с открытой лексикой в реальном времени с помощью YOLO-World:

@article{cheng2024yolow,
title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
journal={arXiv preprint arXiv:2401.17270},
year={2024}
}

Для дальнейшего чтения оригинальная статья YOLO-World доступна на arXiv. Исходный код проекта и дополнительные ресурсы доступны через их репозиторий GitHub. Мы ценим их стремление развивать эту область и делиться своими ценными знаниями с сообществом.

ВОПРОСЫ И ОТВЕТЫ

Что такое модель YOLO-World и как она работает?

Модель YOLO-World - это продвинутый подход к обнаружению объектов в реальном времени, основанный на Ultralytics YOLOv8 фреймворк. Она отлично справляется с задачами обнаружения объектов с открытым словарем, идентифицируя объекты на изображении на основе описательных текстов. Используя моделирование языка зрения и предварительное обучение на больших наборах данных, YOLO-World достигает высокой эффективности и производительности при значительно сниженных вычислительных требованиях, что делает его идеальным для приложений реального времени в различных отраслях.

Как YOLO-World обрабатывает умозаключения с пользовательскими подсказками?

YOLO-World поддерживает стратегию "подскажи - потом обнаружи", которая использует оффлайн-словарь для повышения эффективности. Пользовательские подсказки, такие как подписи или конкретные категории объектов, предварительно кодируются и хранятся в виде вкраплений офлайн-словаря. Такой подход упрощает процесс обнаружения без необходимости переобучения. Ты можешь динамически задавать эти подсказки внутри модели, чтобы адаптировать ее к конкретным задачам обнаружения, как показано ниже:

from ultralytics import YOLOWorld

# Initialize a YOLO-World model
model = YOLOWorld("yolov8s-world.pt")

# Define custom classes
model.set_classes(["person", "bus"])

# Execute prediction on an image
results = model.predict("path/to/image.jpg")

# Show results
results[0].show()

Почему я должен выбрать YOLO-World, а не традиционные модели обнаружения открытой лексики?

YOLO-World обеспечивает несколько преимуществ по сравнению с традиционными моделями обнаружения открытого словаря:

  • Производительность в реальном времени: Он использует вычислительную скорость CNN, чтобы предложить быстрое и эффективное обнаружение.
  • Эффективность и низкая требовательность к ресурсам: YOLO-World сохраняет высокую производительность при значительном снижении требований к вычислениям и ресурсам.
  • Настраиваемые подсказки: Модель поддерживает динамическую настройку подсказок, что позволяет пользователям задавать пользовательские классы обнаружения без переобучения.
  • Превосходство в бенчмарках: Он превосходит другие детекторы открытых словарей, такие как MDETR и GLIP, как по скорости, так и по эффективности на стандартных бенчмарках.

Как обучить модель YOLO-World на своем наборе данных?

Обучить модель YOLO-World на твоем наборе данных очень просто с помощью предоставленного API Python или команд CLI . Вот как начать обучение с помощью Python:

from ultralytics import YOLOWorld

# Load a pretrained YOLOv8s-worldv2 model
model = YOLOWorld("yolov8s-worldv2.pt")

# Train the model on the COCO8 dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

Или воспользуйся сайтом CLI:

yolo train model=yolov8s-worldv2.yaml data=coco8.yaml epochs=100 imgsz=640

Какие существуют предварительно обученные модели YOLO-World и поддерживаемые ими задачи?

Ultralytics предлагает несколько предварительно обученных моделей YOLO-World, поддерживающих различные задачи и режимы работы:

Тип модели Предварительно обученные веса Поддерживаемые задачи Заключение Валидация Тренировка Экспорт
YOLOv8s-world yolov8s-world.pt Обнаружение объектов
YOLOv8s-worldv2 yolov8s-worldv2.pt Обнаружение объектов
YOLOv8m-world yolov8m-world.pt Обнаружение объектов
YOLOv8m-worldv2 yolov8m-worldv2.pt Обнаружение объектов
YOLOv8l-world yolov8l-world.pt Обнаружение объектов
YOLOv8l-worldv2 yolov8l-worldv2.pt Обнаружение объектов
YOLOv8x-world yolov8x-world.pt Обнаружение объектов
YOLOv8x-worldv2 yolov8x-worldv2.pt Обнаружение объектов

Как воспроизвести официальные результаты YOLO-World с нуля?

Чтобы воспроизвести официальные результаты с нуля, тебе нужно подготовить наборы данных и запустить тренировку, используя предоставленный код. Процедура тренировки включает в себя создание словаря данных и запуск программы train метод с пользовательским тренером:

from ultralytics import YOLOWorld
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch

data = {
    "train": {
        "yolo_data": ["Objects365.yaml"],
        "grounding_data": [
            {
                "img_path": "../datasets/flickr30k/images",
                "json_file": "../datasets/flickr30k/final_flickr_separateGT_train.json",
            },
            {
                "img_path": "../datasets/GQA/images",
                "json_file": "../datasets/GQA/final_mixed_train_no_coco.json",
            },
        ],
    },
    "val": {"yolo_data": ["lvis.yaml"]},
}

model = YOLOWorld("yolov8s-worldv2.yaml")
model.train(data=data, batch=128, epochs=100, trainer=WorldTrainerFromScratch)

📅 Created 6 months ago ✏️ Updated 3 days ago

Комментарии