Bỏ để qua phần nội dung

Python Sử dụng

Welcome to the YOLO11 Python Usage documentation! This guide is designed to help you seamlessly integrate YOLO11 into your Python projects for object detection, segmentation, and classification. Here, you'll learn how to load and use pretrained models, train new models, and perform predictions on images. The easy-to-use Python interface is a valuable resource for anyone looking to incorporate YOLO11 into their Python projects, allowing you to quickly implement advanced object detection capabilities. Let's get started!



Xem: Mastering Ultralytics YOLO11: Python

Ví dụ: người dùng có thể tải một mô hình, đào tạo nó, đánh giá hiệu suất của nó trên một bộ xác thực và thậm chí xuất nó sang ONNX định dạng chỉ với một vài dòng mã.

Python

from ultralytics import YOLO

# Create a new YOLO model from scratch
model = YOLO("yolo11n.yaml")

# Load a pretrained YOLO model (recommended for training)
model = YOLO("yolo11n.pt")

# Train the model using the 'coco8.yaml' dataset for 3 epochs
results = model.train(data="coco8.yaml", epochs=3)

# Evaluate the model's performance on the validation set
results = model.val()

# Perform object detection on an image using the model
results = model("https://ultralytics.com/images/bus.jpg")

# Export the model to ONNX format
success = model.export(format="onnx")

Xe lửa

Train mode is used for training a YOLO11 model on a custom dataset. In this mode, the model is trained using the specified dataset and hyperparameters. The training process involves optimizing the model's parameters so that it can accurately predict the classes and locations of objects in an image.

Xe lửa

from ultralytics import YOLO

model = YOLO("yolo11n.pt")  # pass any model type
results = model.train(epochs=5)
from ultralytics import YOLO

model = YOLO("yolo11n.yaml")
results = model.train(data="coco8.yaml", epochs=5)
model = YOLO("last.pt")
results = model.train(resume=True)

Ví dụ về tàu hỏa

Val

Val mode is used for validating a YOLO11 model after it has been trained. In this mode, the model is evaluated on a validation set to measure its accuracy and generalization performance. This mode can be used to tune the hyperparameters of the model to improve its performance.

Val

from ultralytics import YOLO

# Load a YOLO11 model
model = YOLO("yolo11n.yaml")

# Train the model
model.train(data="coco8.yaml", epochs=5)

# Validate on training data
model.val()
from ultralytics import YOLO

# Load a YOLO11 model
model = YOLO("yolo11n.yaml")

# Train the model
model.train(data="coco8.yaml", epochs=5)

# Validate on separate data
model.val(data="path/to/separate/data.yaml")

Ví dụ về Val

Dự đoán

Predict mode is used for making predictions using a trained YOLO11 model on new images or videos. In this mode, the model is loaded from a checkpoint file, and the user can provide images or videos to perform inference. The model predicts the classes and locations of objects in the input images or videos.

Dự đoán

import cv2
from PIL import Image

from ultralytics import YOLO

model = YOLO("model.pt")
# accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam
results = model.predict(source="0")
results = model.predict(source="folder", show=True)  # Display preds. Accepts all YOLO predict arguments

# from PIL
im1 = Image.open("bus.jpg")
results = model.predict(source=im1, save=True)  # save plotted images

# from ndarray
im2 = cv2.imread("bus.jpg")
results = model.predict(source=im2, save=True, save_txt=True)  # save predictions as labels

# from list of PIL/ndarray
results = model.predict(source=[im1, im2])
# results would be a list of Results object including all the predictions by default
# but be careful as it could occupy a lot memory when there're many images,
# especially the task is segmentation.
# 1. return as a list
results = model.predict(source="folder")

# results would be a generator which is more friendly to memory by setting stream=True
# 2. return as a generator
results = model.predict(source=0, stream=True)

for result in results:
    # Detection
    result.boxes.xyxy  # box with xyxy format, (N, 4)
    result.boxes.xywh  # box with xywh format, (N, 4)
    result.boxes.xyxyn  # box with xyxy format but normalized, (N, 4)
    result.boxes.xywhn  # box with xywh format but normalized, (N, 4)
    result.boxes.conf  # confidence score, (N, 1)
    result.boxes.cls  # cls, (N, 1)

    # Segmentation
    result.masks.data  # masks, (N, H, W)
    result.masks.xy  # x,y segments (pixels), List[segment] * N
    result.masks.xyn  # x,y segments (normalized), List[segment] * N

    # Classification
    result.probs  # cls prob, (num_class, )

# Each result is composed of torch.Tensor by default,
# in which you can easily use following functionality:
result = result.cuda()
result = result.cpu()
result = result.to("cpu")
result = result.numpy()

Dự đoán ví dụ

Xuất khẩu

Export mode is used for exporting a YOLO11 model to a format that can be used for deployment. In this mode, the model is converted to a format that can be used by other software applications or hardware devices. This mode is useful when deploying the model to production environments.

Xuất khẩu

Export an official YOLO11n model to ONNX with dynamic batch-size and image-size.

from ultralytics import YOLO

model = YOLO("yolo11n.pt")
model.export(format="onnx", dynamic=True)

Export an official YOLO11n model to TensorRT on device=0 để tăng tốc trên CUDA Thiết bị.

from ultralytics import YOLO

model = YOLO("yolo11n.pt")
model.export(format="onnx", device=0)

Ví dụ xuất khẩu

Rãnh

Track mode is used for tracking objects in real-time using a YOLO11 model. In this mode, the model is loaded from a checkpoint file, and the user can provide a live video stream to perform real-time object tracking. This mode is useful for applications such as surveillance systems or self-driving cars.

Rãnh

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official detection model
model = YOLO("yolo11n-seg.pt")  # load an official segmentation model
model = YOLO("path/to/best.pt")  # load a custom model

# Track with the model
results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True)
results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml")

Ví dụ theo dõi

Chuẩn

Benchmark mode is used to profile the speed and accuracy of various export formats for YOLO11. The benchmarks provide information on the size of the exported format, its mAP50-95 số liệu (để phát hiện và phân đoạn đối tượng) hoặc accuracy_top5 số liệu (để phân loại) và thời gian suy luận tính bằng mili giây trên mỗi hình ảnh trên các định dạng xuất khác nhau như ONNX, OpenVINO, TensorRT và những người khác. Thông tin này có thể giúp người dùng chọn định dạng xuất tối ưu cho trường hợp sử dụng cụ thể của họ dựa trên yêu cầu của họ về tốc độ và độ chính xác.

Chuẩn

Benchmark an official YOLO11n model across all export formats.

from ultralytics.utils.benchmarks import benchmark

# Benchmark
benchmark(model="yolo11n.pt", data="coco8.yaml", imgsz=640, half=False, device=0)

Ví dụ điểm chuẩn

Sử dụng giảng viên

YOLO lớp mô hình là một wrapper cấp cao trên các lớp Trainer. Mỗi YOLO Nhiệm vụ có huấn luyện viên riêng kế thừa từ BaseTrainer.

Ví dụ về máy bay huấn luyện phát hiện

from ultralytics.models.yolo import DetectionPredictor, DetectionTrainer, DetectionValidator

# trainer
trainer = DetectionTrainer(overrides={})
trainer.train()
trained_model = trainer.best

# Validator
val = DetectionValidator(args=...)
val(model=trained_model)

# predictor
pred = DetectionPredictor(overrides={})
pred(source=SOURCE, model=trained_model)

# resume from last weight
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)

Bạn có thể dễ dàng tùy chỉnh Giảng viên để hỗ trợ các tác vụ tùy chỉnh hoặc khám phá các ý tưởng R &D. Tìm hiểu thêm về Tùy chỉnh Trainers, ValidatorsPredictors để phù hợp với nhu cầu dự án của bạn trong Phần Tùy chỉnh.

Hướng dẫn tùy chỉnh

FAQ

How can I integrate YOLO11 into my Python project for object detection?

Integrating Ultralytics YOLO11 into your Python projects is simple. You can load a pre-trained model or train a new model from scratch. Here's how to get started:

from ultralytics import YOLO

# Load a pretrained YOLO model
model = YOLO("yolo11n.pt")

# Perform object detection on an image
results = model("https://ultralytics.com/images/bus.jpg")

# Visualize the results
for result in results:
    result.show()

Xem các ví dụ chi tiết hơn trong phần Chế độ dự đoán của chúng tôi.

What are the different modes available in YOLO11?

Ultralytics YOLO11 provides various modes to cater to different machine learning workflows. These include:

  • Đào tạo: Đào tạo mô hình bằng bộ dữ liệu tùy chỉnh.
  • Val: Xác thực hiệu suất mô hình trên một nhóm xác thực.
  • Dự đoán: Đưa ra dự đoán về hình ảnh hoặc luồng video mới.
  • Xuất: Xuất mô hình sang các định dạng khác nhau như ONNX, TensorRT.
  • Theo dõi: Theo dõi đối tượng thời gian thực trong luồng video.
  • Điểm chuẩn: Hiệu suất mô hình điểm chuẩn trên các cấu hình khác nhau.

Mỗi chế độ được thiết kế để cung cấp các chức năng toàn diện cho các giai đoạn phát triển và triển khai mô hình khác nhau.

How do I train a custom YOLO11 model using my dataset?

To train a custom YOLO11 model, you need to specify your dataset and other hyperparameters. Here's a quick example:

from ultralytics import YOLO

# Load the YOLO model
model = YOLO("yolo11n.yaml")

# Train the model with custom dataset
model.train(data="path/to/your/dataset.yaml", epochs=10)

Để biết thêm chi tiết về đào tạo và siêu liên kết để sử dụng ví dụ, hãy truy cập trang Chế độ tàu của chúng tôi.

How do I export YOLO11 models for deployment?

Exporting YOLO11 models in a format suitable for deployment is straightforward with the export chức năng. Ví dụ: bạn có thể xuất mô hình sang ONNX định dạng:

from ultralytics import YOLO

# Load the YOLO model
model = YOLO("yolo11n.pt")

# Export the model to ONNX format
model.export(format="onnx")

Để biết các tùy chọn xuất khác nhau, hãy tham khảo tài liệu Chế độ xuất .

Can I validate my YOLO11 model on different datasets?

Yes, validating YOLO11 models on different datasets is possible. After training, you can use the validation mode to evaluate the performance:

from ultralytics import YOLO

# Load a YOLO11 model
model = YOLO("yolo11n.yaml")

# Train the model
model.train(data="coco8.yaml", epochs=5)

# Validate the model on a different dataset
model.val(data="path/to/separate/data.yaml")

Kiểm tra trang Chế độ Val để biết các ví dụ chi tiết và cách sử dụng.


📅 Created 11 months ago ✏️ Updated 1 day ago

Ý kiến