Skip to content

Reference for ultralytics/utils/instance.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/instance.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.utils.instance.Bboxes

Bboxes(bboxes, format='xyxy')

A class for handling bounding boxes.

The class supports various bounding box formats like 'xyxy', 'xywh', and 'ltwh'. Bounding box data should be provided in numpy arrays.

Attributes:

Name Type Description
bboxes ndarray

The bounding boxes stored in a 2D numpy array.

format str

The format of the bounding boxes ('xyxy', 'xywh', or 'ltwh').

Note

This class does not handle normalization or denormalization of bounding boxes.

Source code in ultralytics/utils/instance.py
def __init__(self, bboxes, format="xyxy") -> None:
    """Initializes the Bboxes class with bounding box data in a specified format."""
    assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
    bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
    assert bboxes.ndim == 2
    assert bboxes.shape[1] == 4
    self.bboxes = bboxes
    self.format = format

__getitem__

__getitem__(index) -> Bboxes

Retrieve a specific bounding box or a set of bounding boxes using indexing.

Parameters:

Name Type Description Default
index int, slice, or np.ndarray

The index, slice, or boolean array to select the desired bounding boxes.

required

Returns:

Name Type Description
Bboxes Bboxes

A new Bboxes object containing the selected bounding boxes.

Raises:

Type Description
AssertionError

If the indexed bounding boxes do not form a 2-dimensional matrix.

Note

When using boolean indexing, make sure to provide a boolean array with the same length as the number of bounding boxes.

Source code in ultralytics/utils/instance.py
def __getitem__(self, index) -> "Bboxes":
    """
    Retrieve a specific bounding box or a set of bounding boxes using indexing.

    Args:
        index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                           the desired bounding boxes.

    Returns:
        Bboxes: A new Bboxes object containing the selected bounding boxes.

    Raises:
        AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.

    Note:
        When using boolean indexing, make sure to provide a boolean array with the same
        length as the number of bounding boxes.
    """
    if isinstance(index, int):
        return Bboxes(self.bboxes[index].reshape(1, -1))
    b = self.bboxes[index]
    assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
    return Bboxes(b)

__len__

__len__()

Return the number of boxes.

Source code in ultralytics/utils/instance.py
def __len__(self):
    """Return the number of boxes."""
    return len(self.bboxes)

add

add(offset)

Add offset to bounding box coordinates.

Parameters:

Name Type Description Default
offset int | tuple | list

Offset(s) for four coordinates. If int, the same offset is applied to all coordinates.

required
Source code in ultralytics/utils/instance.py
def add(self, offset):
    """
    Add offset to bounding box coordinates.

    Args:
        offset (int | tuple | list): Offset(s) for four coordinates.
            If int, the same offset is applied to all coordinates.
    """
    if isinstance(offset, Number):
        offset = to_4tuple(offset)
    assert isinstance(offset, (tuple, list))
    assert len(offset) == 4
    self.bboxes[:, 0] += offset[0]
    self.bboxes[:, 1] += offset[1]
    self.bboxes[:, 2] += offset[2]
    self.bboxes[:, 3] += offset[3]

areas

areas()

Return box areas.

Source code in ultralytics/utils/instance.py
def areas(self):
    """Return box areas."""
    return (
        (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # format xyxy
        if self.format == "xyxy"
        else self.bboxes[:, 3] * self.bboxes[:, 2]  # format xywh or ltwh
    )

concatenate classmethod

concatenate(boxes_list: List[Bboxes], axis=0) -> Bboxes

Concatenate a list of Bboxes objects into a single Bboxes object.

Parameters:

Name Type Description Default
boxes_list List[Bboxes]

A list of Bboxes objects to concatenate.

required
axis int

The axis along which to concatenate the bounding boxes. Defaults to 0.

0

Returns:

Name Type Description
Bboxes Bboxes

A new Bboxes object containing the concatenated bounding boxes.

Note

The input should be a list or tuple of Bboxes objects.

Source code in ultralytics/utils/instance.py
@classmethod
def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
    """
    Concatenate a list of Bboxes objects into a single Bboxes object.

    Args:
        boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
        axis (int, optional): The axis along which to concatenate the bounding boxes.
                               Defaults to 0.

    Returns:
        Bboxes: A new Bboxes object containing the concatenated bounding boxes.

    Note:
        The input should be a list or tuple of Bboxes objects.
    """
    assert isinstance(boxes_list, (list, tuple))
    if not boxes_list:
        return cls(np.empty(0))
    assert all(isinstance(box, Bboxes) for box in boxes_list)

    if len(boxes_list) == 1:
        return boxes_list[0]
    return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

convert

convert(format)

Converts bounding box format from one type to another.

Source code in ultralytics/utils/instance.py
def convert(self, format):
    """Converts bounding box format from one type to another."""
    assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
    if self.format == format:
        return
    elif self.format == "xyxy":
        func = xyxy2xywh if format == "xywh" else xyxy2ltwh
    elif self.format == "xywh":
        func = xywh2xyxy if format == "xyxy" else xywh2ltwh
    else:
        func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
    self.bboxes = func(self.bboxes)
    self.format = format

mul

mul(scale)

Multiply bounding box coordinates by scale factor(s).

Parameters:

Name Type Description Default
scale int | tuple | list

Scale factor(s) for four coordinates. If int, the same scale is applied to all coordinates.

required
Source code in ultralytics/utils/instance.py
def mul(self, scale):
    """
    Multiply bounding box coordinates by scale factor(s).

    Args:
        scale (int | tuple | list): Scale factor(s) for four coordinates.
            If int, the same scale is applied to all coordinates.
    """
    if isinstance(scale, Number):
        scale = to_4tuple(scale)
    assert isinstance(scale, (tuple, list))
    assert len(scale) == 4
    self.bboxes[:, 0] *= scale[0]
    self.bboxes[:, 1] *= scale[1]
    self.bboxes[:, 2] *= scale[2]
    self.bboxes[:, 3] *= scale[3]





ultralytics.utils.instance.Instances

Instances(
    bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True
)

Container for bounding boxes, segments, and keypoints of detected objects in an image.

Attributes:

Name Type Description
_bboxes Bboxes

Internal object for handling bounding box operations.

keypoints ndarray

keypoints(x, y, visible) with shape [N, 17, 3]. Default is None.

normalized bool

Flag indicating whether the bounding box coordinates are normalized.

segments ndarray

Segments array with shape [N, 1000, 2] after resampling.

Parameters:

Name Type Description Default
bboxes ndarray

An array of bounding boxes with shape [N, 4].

required
segments list | ndarray

A list or array of object segments. Default is None.

None
keypoints ndarray

An array of keypoints with shape [N, 17, 3]. Default is None.

None
bbox_format str

The format of bounding boxes ('xywh' or 'xyxy'). Default is 'xywh'.

'xywh'
normalized bool

Whether the bounding box coordinates are normalized. Default is True.

True

Examples:

# Create an Instances object
instances = Instances(
    bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
    segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
    keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]]),
)
Note

The bounding box format is either 'xywh' or 'xyxy', and is determined by the bbox_format argument. This class does not perform input validation, and it assumes the inputs are well-formed.

Parameters:

Name Type Description Default
bboxes ndarray

Bounding boxes, shape [N, 4].

required
segments list | ndarray

Segmentation masks. Defaults to None.

None
keypoints ndarray

Keypoints, shape [N, 17, 3] and format (x, y, visible). Defaults to None.

None
bbox_format str

Format of bboxes. Defaults to "xywh".

'xywh'
normalized bool

Whether the coordinates are normalized. Defaults to True.

True
Source code in ultralytics/utils/instance.py
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
    """
    Initialize the object with bounding boxes, segments, and keypoints.

    Args:
        bboxes (np.ndarray): Bounding boxes, shape [N, 4].
        segments (list | np.ndarray, optional): Segmentation masks. Defaults to None.
        keypoints (np.ndarray, optional): Keypoints, shape [N, 17, 3] and format (x, y, visible). Defaults to None.
        bbox_format (str, optional): Format of bboxes. Defaults to "xywh".
        normalized (bool, optional): Whether the coordinates are normalized. Defaults to True.
    """
    self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
    self.keypoints = keypoints
    self.normalized = normalized
    self.segments = segments

bbox_areas property

bbox_areas

Calculate the area of bounding boxes.

bboxes property

bboxes

Return bounding boxes.

__getitem__

__getitem__(index) -> Instances

Retrieve a specific instance or a set of instances using indexing.

Parameters:

Name Type Description Default
index int, slice, or np.ndarray

The index, slice, or boolean array to select the desired instances.

required

Returns:

Name Type Description
Instances Instances

A new Instances object containing the selected bounding boxes, segments, and keypoints if present.

Note

When using boolean indexing, make sure to provide a boolean array with the same length as the number of instances.

Source code in ultralytics/utils/instance.py
def __getitem__(self, index) -> "Instances":
    """
    Retrieve a specific instance or a set of instances using indexing.

    Args:
        index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                           the desired instances.

    Returns:
        Instances: A new Instances object containing the selected bounding boxes,
                   segments, and keypoints if present.

    Note:
        When using boolean indexing, make sure to provide a boolean array with the same
        length as the number of instances.
    """
    segments = self.segments[index] if len(self.segments) else self.segments
    keypoints = self.keypoints[index] if self.keypoints is not None else None
    bboxes = self.bboxes[index]
    bbox_format = self._bboxes.format
    return Instances(
        bboxes=bboxes,
        segments=segments,
        keypoints=keypoints,
        bbox_format=bbox_format,
        normalized=self.normalized,
    )

__len__

__len__()

Return the length of the instance list.

Source code in ultralytics/utils/instance.py
def __len__(self):
    """Return the length of the instance list."""
    return len(self.bboxes)

add_padding

add_padding(padw, padh)

Handle rect and mosaic situation.

Source code in ultralytics/utils/instance.py
def add_padding(self, padw, padh):
    """Handle rect and mosaic situation."""
    assert not self.normalized, "you should add padding with absolute coordinates."
    self._bboxes.add(offset=(padw, padh, padw, padh))
    self.segments[..., 0] += padw
    self.segments[..., 1] += padh
    if self.keypoints is not None:
        self.keypoints[..., 0] += padw
        self.keypoints[..., 1] += padh

clip

clip(w, h)

Clips bounding boxes, segments, and keypoints values to stay within image boundaries.

Source code in ultralytics/utils/instance.py
def clip(self, w, h):
    """Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
    ori_format = self._bboxes.format
    self.convert_bbox(format="xyxy")
    self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
    self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
    if ori_format != "xyxy":
        self.convert_bbox(format=ori_format)
    self.segments[..., 0] = self.segments[..., 0].clip(0, w)
    self.segments[..., 1] = self.segments[..., 1].clip(0, h)
    if self.keypoints is not None:
        self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
        self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

concatenate classmethod

concatenate(instances_list: List[Instances], axis=0) -> Instances

Concatenates a list of Instances objects into a single Instances object.

Parameters:

Name Type Description Default
instances_list List[Instances]

A list of Instances objects to concatenate.

required
axis int

The axis along which the arrays will be concatenated. Defaults to 0.

0

Returns:

Name Type Description
Instances Instances

A new Instances object containing the concatenated bounding boxes, segments, and keypoints if present.

Note

The Instances objects in the list should have the same properties, such as the format of the bounding boxes, whether keypoints are present, and if the coordinates are normalized.

Source code in ultralytics/utils/instance.py
@classmethod
def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
    """
    Concatenates a list of Instances objects into a single Instances object.

    Args:
        instances_list (List[Instances]): A list of Instances objects to concatenate.
        axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.

    Returns:
        Instances: A new Instances object containing the concatenated bounding boxes,
                   segments, and keypoints if present.

    Note:
        The `Instances` objects in the list should have the same properties, such as
        the format of the bounding boxes, whether keypoints are present, and if the
        coordinates are normalized.
    """
    assert isinstance(instances_list, (list, tuple))
    if not instances_list:
        return cls(np.empty(0))
    assert all(isinstance(instance, Instances) for instance in instances_list)

    if len(instances_list) == 1:
        return instances_list[0]

    use_keypoint = instances_list[0].keypoints is not None
    bbox_format = instances_list[0]._bboxes.format
    normalized = instances_list[0].normalized

    cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
    seg_len = [b.segments.shape[1] for b in instances_list]
    if len(set(seg_len)) > 1:  # resample segments if there's different length
        max_len = max(seg_len)
        cat_segments = np.concatenate(
            [
                resample_segments(list(b.segments), max_len)
                if len(b.segments)
                else np.zeros((0, max_len, 2), dtype=np.float32)  # re-generating empty segments
                for b in instances_list
            ],
            axis=axis,
        )
    else:
        cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
    cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
    return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

convert_bbox

convert_bbox(format)

Convert bounding box format.

Source code in ultralytics/utils/instance.py
def convert_bbox(self, format):
    """Convert bounding box format."""
    self._bboxes.convert(format=format)

denormalize

denormalize(w, h)

Denormalizes boxes, segments, and keypoints from normalized coordinates.

Source code in ultralytics/utils/instance.py
def denormalize(self, w, h):
    """Denormalizes boxes, segments, and keypoints from normalized coordinates."""
    if not self.normalized:
        return
    self._bboxes.mul(scale=(w, h, w, h))
    self.segments[..., 0] *= w
    self.segments[..., 1] *= h
    if self.keypoints is not None:
        self.keypoints[..., 0] *= w
        self.keypoints[..., 1] *= h
    self.normalized = False

fliplr

fliplr(w)

Reverses the order of the bounding boxes and segments horizontally.

Source code in ultralytics/utils/instance.py
def fliplr(self, w):
    """Reverses the order of the bounding boxes and segments horizontally."""
    if self._bboxes.format == "xyxy":
        x1 = self.bboxes[:, 0].copy()
        x2 = self.bboxes[:, 2].copy()
        self.bboxes[:, 0] = w - x2
        self.bboxes[:, 2] = w - x1
    else:
        self.bboxes[:, 0] = w - self.bboxes[:, 0]
    self.segments[..., 0] = w - self.segments[..., 0]
    if self.keypoints is not None:
        self.keypoints[..., 0] = w - self.keypoints[..., 0]

flipud

flipud(h)

Flips the coordinates of bounding boxes, segments, and keypoints vertically.

Source code in ultralytics/utils/instance.py
def flipud(self, h):
    """Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
    if self._bboxes.format == "xyxy":
        y1 = self.bboxes[:, 1].copy()
        y2 = self.bboxes[:, 3].copy()
        self.bboxes[:, 1] = h - y2
        self.bboxes[:, 3] = h - y1
    else:
        self.bboxes[:, 1] = h - self.bboxes[:, 1]
    self.segments[..., 1] = h - self.segments[..., 1]
    if self.keypoints is not None:
        self.keypoints[..., 1] = h - self.keypoints[..., 1]

normalize

normalize(w, h)

Normalize bounding boxes, segments, and keypoints to image dimensions.

Source code in ultralytics/utils/instance.py
def normalize(self, w, h):
    """Normalize bounding boxes, segments, and keypoints to image dimensions."""
    if self.normalized:
        return
    self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
    self.segments[..., 0] /= w
    self.segments[..., 1] /= h
    if self.keypoints is not None:
        self.keypoints[..., 0] /= w
        self.keypoints[..., 1] /= h
    self.normalized = True

remove_zero_area_boxes

remove_zero_area_boxes()

Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height.

Source code in ultralytics/utils/instance.py
def remove_zero_area_boxes(self):
    """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height."""
    good = self.bbox_areas > 0
    if not all(good):
        self._bboxes = self._bboxes[good]
        if len(self.segments):
            self.segments = self.segments[good]
        if self.keypoints is not None:
            self.keypoints = self.keypoints[good]
    return good

scale

scale(scale_w, scale_h, bbox_only=False)

Similar to denormalize func but without normalized sign.

Source code in ultralytics/utils/instance.py
def scale(self, scale_w, scale_h, bbox_only=False):
    """Similar to denormalize func but without normalized sign."""
    self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
    if bbox_only:
        return
    self.segments[..., 0] *= scale_w
    self.segments[..., 1] *= scale_h
    if self.keypoints is not None:
        self.keypoints[..., 0] *= scale_w
        self.keypoints[..., 1] *= scale_h

update

update(bboxes, segments=None, keypoints=None)

Updates instance variables.

Source code in ultralytics/utils/instance.py
def update(self, bboxes, segments=None, keypoints=None):
    """Updates instance variables."""
    self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
    if segments is not None:
        self.segments = segments
    if keypoints is not None:
        self.keypoints = keypoints





ultralytics.utils.instance._ntuple

_ntuple(n)

From PyTorch internals.

Source code in ultralytics/utils/instance.py
def _ntuple(n):
    """From PyTorch internals."""

    def parse(x):
        """Parse bounding boxes format between XYWH and LTWH."""
        return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))

    return parse



📅 Created 1 year ago ✏️ Updated 3 months ago