Zum Inhalt springen

COCO128-Datensatz

Einführung

Ultralytics COCO128 ist ein kleiner, aber vielseitiger Objekterkennungsdatensatz, der aus den ersten 128 Bildern des COCO-Train-Sets 2017 besteht. Dieser Datensatz ist ideal zum Testen und Debuggen von Objekterkennungsmodellen oder zum Experimentieren mit neuen Erkennungsansätzen. Mit 128 Bildern ist er klein genug, um leicht verwaltet werden zu können, und dennoch vielfältig genug, um Trainings-Pipelines auf Fehler zu testen und als Sicherheitsprüfung vor dem Training größerer Datensätze zu dienen.



Beobachten: Ultralytics COCO-Datensatz Übersicht

Dieser Datensatz ist für die Verwendung mit Ultralytics HUB und YOLO11.

Datensatz YAML

Eine YAML-Datei (Yet Another Markup Language) wird zur Definition der Dataset-Konfiguration verwendet. Sie enthält Informationen über die Pfade, Klassen und andere relevante Informationen des Datasets. Im Falle des COCO128-Datensatzes ist die Datei coco128.yaml Datei wird verwaltet unter https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco128.yaml.

ultralytics.yaml

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip

Verwendung

Um ein YOLO11n-Modell auf dem COCO128-Datensatz für 100 Epochen mit einer Bildgröße von 640 zu trainieren, können Sie die folgenden Codeschnipsel verwenden. Eine umfassende Liste der verfügbaren Argumente finden Sie auf der Seite Modelltraining.

Beispiel für einen Zug

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco128.yaml model=yolo11n.pt epochs=100 imgsz=640

Beispielbilder und -kommentare

Hier sind einige Beispiele von Bildern aus dem COCO128-Datensatz mit den entsprechenden Anmerkungen:

Datensatz Beispielbild

  • Mosaikbild: Dieses Bild zeigt einen Trainingsstapel, der aus Mosaikbildern des Datensatzes besteht. Das Mosaikieren ist eine Technik, bei der während des Trainings mehrere Bilder zu einem einzigen Bild kombiniert werden, um die Vielfalt der Objekte und Szenen in jedem Trainingsstapel zu erhöhen. Dies trägt dazu bei, die Fähigkeit des Modells zur Generalisierung auf verschiedene Objektgrößen, Seitenverhältnisse und Kontexte zu verbessern.

Das Beispiel verdeutlicht die Vielfalt und Komplexität der Bilder im COCO128-Datensatz und die Vorteile der Mosaikbildung während des Trainingsprozesses.

Zitate und Danksagungen

Wenn Sie den COCO-Datensatz in Ihrer Forschungs- oder Entwicklungsarbeit verwenden, zitieren Sie bitte das folgende Papier:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Wir möchten dem COCO-Konsortium für die Erstellung und Pflege dieser wertvollen Ressource für die Computer Vision Community danken. Weitere Informationen über den COCO-Datensatz und seine Ersteller finden Sie auf der Website des COCO-Datensatzes.

FAQ

Wofür wird der Ultralytics COCO128-Datensatz verwendet?

Der Ultralytics COCO128-Datensatz ist eine kompakte Teilmenge, die die ersten 128 Bilder des COCO train 2017-Datensatzes enthält. Er wird hauptsächlich zum Testen und Debuggen von Objekterkennungsmodellen, zum Experimentieren mit neuen Erkennungsansätzen und zur Validierung von Trainingspipelines vor der Skalierung auf größere Datensätze verwendet. Dank seiner überschaubaren Größe eignet er sich perfekt für schnelle Iterationen und bietet dennoch genug Vielfalt, um ein aussagekräftiger Testfall zu sein.

Wie trainiere ich ein YOLO11 unter Verwendung des COCO128-Datensatzes?

Um ein YOLO11 auf dem COCO128-Datensatz zu trainieren, können Sie entweder Python oder CLI verwenden. So geht's:

from ultralytics import YOLO

    # Load a pretrained model
    model = YOLO("yolo11n.pt")

    # Train the model
    results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
    ```

=== "CLI"

`bash
    yolo detect train data=coco128.yaml model=yolo11n.pt epochs=100 imgsz=640
    `

For more training options and parameters, refer to the [Training](../../modes/train.md) documentation.

### What are the benefits of using mosaic augmentation with COCO128?

Mosaic augmentation, as shown in the sample images, combines multiple training images into a single composite image. This technique offers several benefits when training with COCO128:

- Increases the variety of objects and contexts within each training batch
- Improves model generalization across different object sizes and aspect ratios
- Enhances detection performance for objects at various scales
- Maximizes the utility of a small dataset by creating more diverse training samples

This technique is particularly valuable for smaller datasets like COCO128, helping models learn more robust features from limited data.

### How does COCO128 compare to other COCO dataset variants?

COCO128 (128 images) sits between [COCO8](../detect/coco8.md) (8 images) and the full [COCO](../detect/coco.md) dataset (118K+ images) in terms of size:

- **COCO8**: Contains just 8 images (4 train, 4 val) - ideal for quick tests and debugging
- **COCO128**: Contains 128 images - balanced between size and diversity
- **Full COCO**: Contains 118K+ training images - comprehensive but resource-intensive

COCO128 provides a good middle ground, offering more diversity than COCO8 while remaining much more manageable than the full COCO dataset for experimentation and initial model development.

### Can I use COCO128 for tasks other than object detection?

While COCO128 is primarily designed for object detection, the dataset's annotations can be adapted for other computer vision tasks:

- **Instance segmentation**: Using the segmentation masks provided in the annotations
- **Keypoint detection**: For images containing people with keypoint annotations
- **Transfer learning**: As a starting point for fine-tuning models for custom tasks

For specialized tasks like [segmentation](../../tasks/segment.md), consider using purpose-built variants like [COCO8-seg](../segment/coco8-seg.md) which include the appropriate annotations.
📅 Erstellt vor 8 Tagen ✏️ Aktualisiert vor 0 Tagen

Kommentare