Skip to content

Instance Segmentation

Instance segmentation examples

Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.

The output of an instance segmentation model is a set of masks or contours that outline each object in the image, along with class labels and confidence scores for each object. Instance segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.



Watch: Run Segmentation with Pre-Trained Ultralytics YOLO Model in Python.

Tip

YOLO11 Segment models use the -seg suffix, i.e. yolo11n-seg.pt and are pretrained on COCO.

Models

YOLO11 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the COCO dataset, while Classify models are pretrained on the ImageNet dataset.

Models download automatically from the latest Ultralytics release on first use.

Model size
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
T4 TensorRT10
(ms)
params
(M)
FLOPs
(B)
YOLO11n-seg 640 38.9 32.0 65.9 ± 1.1 1.8 ± 0.0 2.9 10.4
YOLO11s-seg 640 46.6 37.8 117.6 ± 4.9 2.9 ± 0.0 10.1 35.5
YOLO11m-seg 640 51.5 41.5 281.6 ± 1.2 6.3 ± 0.1 22.4 123.3
YOLO11l-seg 640 53.4 42.9 344.2 ± 3.2 7.8 ± 0.2 27.6 142.2
YOLO11x-seg 640 54.7 43.8 664.5 ± 3.2 15.8 ± 0.7 62.1 319.0
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by yolo val segment data=coco.yaml device=0
  • Speed averaged over COCO val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val segment data=coco.yaml batch=1 device=0|cpu

Train

Train YOLO11n-seg on the COCO8-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.

Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.yaml")  # build a new model from YAML
model = YOLO("yolo11n-seg.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n-seg.yaml").load("yolo11n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml pretrained=yolo11n-seg.pt epochs=100 imgsz=640

Dataset format

YOLO segmentation dataset format can be found in detail in the Dataset Guide. To convert your existing dataset from other formats (like COCO etc.) to YOLO format, please use JSON2YOLO tool by Ultralytics.

Val

Validate trained YOLO11n-seg model accuracy on the COCO8-seg dataset. No arguments are needed as the model retains its training data and arguments as model attributes.

Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95(B)
metrics.box.map50  # map50(B)
metrics.box.map75  # map75(B)
metrics.box.maps  # a list contains map50-95(B) of each category
metrics.seg.map  # map50-95(M)
metrics.seg.map50  # map50(M)
metrics.seg.map75  # map75(M)
metrics.seg.maps  # a list contains map50-95(M) of each category
yolo segment val model=yolo11n-seg.pt  # val official model
yolo segment val model=path/to/best.pt  # val custom model

Predict

Use a trained YOLO11n-seg model to run predictions on images.

Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo segment predict model=yolo11n-seg.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

See full predict mode details in the Predict page.

Export

Export a YOLO11n-seg model to a different format like ONNX, CoreML, etc.

Example

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n-seg.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Available YOLO11-seg export formats are in the table below. You can export to any format using the format argument, i.e. format='onnx' or format='engine'. You can predict or validate directly on exported models, i.e. yolo predict model=yolo11n-seg.onnx. Usage examples are shown for your model after export completes.

Format format Argument Model Metadata Arguments
PyTorch - yolo11n-seg.pt -
TorchScript torchscript yolo11n-seg.torchscript imgsz, optimize, batch
ONNX onnx yolo11n-seg.onnx imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolo11n-seg_openvino_model/ imgsz, half, int8, batch
TensorRT engine yolo11n-seg.engine imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolo11n-seg.mlpackage imgsz, half, int8, nms, batch
TF SavedModel saved_model yolo11n-seg_saved_model/ imgsz, keras, int8, batch
TF GraphDef pb yolo11n-seg.pb imgsz, batch
TF Lite tflite yolo11n-seg.tflite imgsz, half, int8, batch
TF Edge TPU edgetpu yolo11n-seg_edgetpu.tflite imgsz
TF.js tfjs yolo11n-seg_web_model/ imgsz, half, int8, batch
PaddlePaddle paddle yolo11n-seg_paddle_model/ imgsz, batch
MNN mnn yolo11n-seg.mnn imgsz, batch, int8, half
NCNN ncnn yolo11n-seg_ncnn_model/ imgsz, half, batch
IMX500 imx yolo11n-seg_imx_model/ imgsz, int8

See full export details in the Export page.

FAQ

How do I train a YOLO11 segmentation model on a custom dataset?

To train a YOLO11 segmentation model on a custom dataset, you first need to prepare your dataset in the YOLO segmentation format. You can use tools like JSON2YOLO to convert datasets from other formats. Once your dataset is ready, you can train the model using Python or CLI commands:

Example

from ultralytics import YOLO

# Load a pretrained YOLO11 segment model
model = YOLO("yolo11n-seg.pt")

# Train the model
results = model.train(data="path/to/your_dataset.yaml", epochs=100, imgsz=640)
yolo segment train data=path/to/your_dataset.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

Check the Configuration page for more available arguments.

What is the difference between object detection and instance segmentation in YOLO11?

Object detection identifies and localizes objects within an image by drawing bounding boxes around them, whereas instance segmentation not only identifies the bounding boxes but also delineates the exact shape of each object. YOLO11 instance segmentation models provide masks or contours that outline each detected object, which is particularly useful for tasks where knowing the precise shape of objects is important, such as medical imaging or autonomous driving.

Why use YOLO11 for instance segmentation?

Ultralytics YOLO11 is a state-of-the-art model recognized for its high accuracy and real-time performance, making it ideal for instance segmentation tasks. YOLO11 Segment models come pretrained on the COCO dataset, ensuring robust performance across a variety of objects. Additionally, YOLO supports training, validation, prediction, and export functionalities with seamless integration, making it highly versatile for both research and industry applications.

How do I load and validate a pretrained YOLO segmentation model?

Loading and validating a pretrained YOLO segmentation model is straightforward. Here's how you can do it using both Python and CLI:

Example

from ultralytics import YOLO

# Load a pretrained model
model = YOLO("yolo11n-seg.pt")

# Validate the model
metrics = model.val()
print("Mean Average Precision for boxes:", metrics.box.map)
print("Mean Average Precision for masks:", metrics.seg.map)
yolo segment val model=yolo11n-seg.pt

These steps will provide you with validation metrics like Mean Average Precision (mAP), crucial for assessing model performance.

How can I export a YOLO segmentation model to ONNX format?

Exporting a YOLO segmentation model to ONNX format is simple and can be done using Python or CLI commands:

Example

from ultralytics import YOLO

# Load a pretrained model
model = YOLO("yolo11n-seg.pt")

# Export the model to ONNX format
model.export(format="onnx")
yolo export model=yolo11n-seg.pt format=onnx

For more details on exporting to various formats, refer to the Export page.

📅 Created 1 year ago ✏️ Updated 18 days ago

Comments