Skip to content

Reference for ultralytics/solutions/object_counter.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_counter.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.solutions.object_counter.ObjectCounter

ObjectCounter(self, **kwargs: Any) -> None

Bases: BaseSolution

A class to manage the counting of objects in a real-time video stream based on their tracks.

This class extends the BaseSolution class and provides functionality for counting objects moving in and out of a specified region in a video stream. It supports both polygonal and linear regions for counting.

Args

NameTypeDescriptionDefault
**kwargsAnyrequired

Attributes

NameTypeDescription
in_countintCounter for objects moving inward.
out_countintCounter for objects moving outward.
counted_idslist[int]List of IDs of objects that have been counted.
classwise_countsdict[str, dict[str, int]]Dictionary for counts, categorized by object class.
region_initializedboolFlag indicating whether the counting region has been initialized.
show_inboolFlag to control display of inward count.
show_outboolFlag to control display of outward count.
marginintMargin for background rectangle size to display counts properly.

Methods

NameDescription
count_objectsCount objects within a polygonal or linear region based on their tracks.
display_countsDisplay object counts on the input image or frame.
processProcess input data (frames or object tracks) and update object counts.

Examples

>>> counter = ObjectCounter()
>>> frame = cv2.imread("frame.jpg")
>>> results = counter.process(frame)
>>> print(f"Inward count: {counter.in_count}, Outward count: {counter.out_count}")
Source code in ultralytics/solutions/object_counter.pyView on GitHub
class ObjectCounter(BaseSolution):
    """A class to manage the counting of objects in a real-time video stream based on their tracks.

    This class extends the BaseSolution class and provides functionality for counting objects moving in and out of a
    specified region in a video stream. It supports both polygonal and linear regions for counting.

    Attributes:
        in_count (int): Counter for objects moving inward.
        out_count (int): Counter for objects moving outward.
        counted_ids (list[int]): List of IDs of objects that have been counted.
        classwise_counts (dict[str, dict[str, int]]): Dictionary for counts, categorized by object class.
        region_initialized (bool): Flag indicating whether the counting region has been initialized.
        show_in (bool): Flag to control display of inward count.
        show_out (bool): Flag to control display of outward count.
        margin (int): Margin for background rectangle size to display counts properly.

    Methods:
        count_objects: Count objects within a polygonal or linear region based on their tracks.
        display_counts: Display object counts on the frame.
        process: Process input data and update counts.

    Examples:
        >>> counter = ObjectCounter()
        >>> frame = cv2.imread("frame.jpg")
        >>> results = counter.process(frame)
        >>> print(f"Inward count: {counter.in_count}, Outward count: {counter.out_count}")
    """

    def __init__(self, **kwargs: Any) -> None:
        """Initialize the ObjectCounter class for real-time object counting in video streams."""
        super().__init__(**kwargs)

        self.in_count = 0  # Counter for objects moving inward
        self.out_count = 0  # Counter for objects moving outward
        self.counted_ids = []  # List of IDs of objects that have been counted
        self.classwise_count = defaultdict(lambda: {"IN": 0, "OUT": 0})  # Dictionary for counts, categorized by class
        self.region_initialized = False  # Flag indicating whether the region has been initialized

        self.show_in = self.CFG["show_in"]
        self.show_out = self.CFG["show_out"]
        self.margin = self.line_width * 2  # Scales the background rectangle size to display counts properly


method ultralytics.solutions.object_counter.ObjectCounter.count_objects

def count_objects(
    self,
    current_centroid: tuple[float, float],
    track_id: int,
    prev_position: tuple[float, float] | None,
    cls: int,
) -> None

Count objects within a polygonal or linear region based on their tracks.

Args

NameTypeDescriptionDefault
current_centroidtuple[float, float]Current centroid coordinates (x, y) in the current frame.required
track_idintUnique identifier for the tracked object.required
prev_positiontuple[float, float], optionalLast frame position coordinates (x, y) of the track.required
clsintClass index for classwise count updates.required

Examples

>>> counter = ObjectCounter()
>>> track_line = {1: [100, 200], 2: [110, 210], 3: [120, 220]}
>>> box = [130, 230, 150, 250]
>>> track_id_num = 1
>>> previous_position = (120, 220)
>>> class_to_count = 0  # In COCO model, class 0 = person
>>> counter.count_objects((140, 240), track_id_num, previous_position, class_to_count)
Source code in ultralytics/solutions/object_counter.pyView on GitHub
def count_objects(
    self,
    current_centroid: tuple[float, float],
    track_id: int,
    prev_position: tuple[float, float] | None,
    cls: int,
) -> None:
    """Count objects within a polygonal or linear region based on their tracks.

    Args:
        current_centroid (tuple[float, float]): Current centroid coordinates (x, y) in the current frame.
        track_id (int): Unique identifier for the tracked object.
        prev_position (tuple[float, float], optional): Last frame position coordinates (x, y) of the track.
        cls (int): Class index for classwise count updates.

    Examples:
        >>> counter = ObjectCounter()
        >>> track_line = {1: [100, 200], 2: [110, 210], 3: [120, 220]}
        >>> box = [130, 230, 150, 250]
        >>> track_id_num = 1
        >>> previous_position = (120, 220)
        >>> class_to_count = 0  # In COCO model, class 0 = person
        >>> counter.count_objects((140, 240), track_id_num, previous_position, class_to_count)
    """
    if prev_position is None or track_id in self.counted_ids:
        return

    if len(self.region) == 2:  # Linear region (defined as a line segment)
        if self.r_s.intersects(self.LineString([prev_position, current_centroid])):
            # Determine orientation of the region (vertical or horizontal)
            if abs(self.region[0][0] - self.region[1][0]) < abs(self.region[0][1] - self.region[1][1]):
                # Vertical region: Compare x-coordinates to determine direction
                if current_centroid[0] > prev_position[0]:  # Moving right
                    self.in_count += 1
                    self.classwise_count[self.names[cls]]["IN"] += 1
                else:  # Moving left
                    self.out_count += 1
                    self.classwise_count[self.names[cls]]["OUT"] += 1
            # Horizontal region: Compare y-coordinates to determine direction
            elif current_centroid[1] > prev_position[1]:  # Moving downward
                self.in_count += 1
                self.classwise_count[self.names[cls]]["IN"] += 1
            else:  # Moving upward
                self.out_count += 1
                self.classwise_count[self.names[cls]]["OUT"] += 1
            self.counted_ids.append(track_id)

    elif len(self.region) > 2:  # Polygonal region
        if self.r_s.contains(self.Point(current_centroid)):
            # Determine motion direction for vertical or horizontal polygons
            region_width = max(p[0] for p in self.region) - min(p[0] for p in self.region)
            region_height = max(p[1] for p in self.region) - min(p[1] for p in self.region)

            if (region_width < region_height and current_centroid[0] > prev_position[0]) or (
                region_width >= region_height and current_centroid[1] > prev_position[1]
            ):  # Moving right or downward
                self.in_count += 1
                self.classwise_count[self.names[cls]]["IN"] += 1
            else:  # Moving left or upward
                self.out_count += 1
                self.classwise_count[self.names[cls]]["OUT"] += 1
            self.counted_ids.append(track_id)


method ultralytics.solutions.object_counter.ObjectCounter.display_counts

def display_counts(self, plot_im) -> None

Display object counts on the input image or frame.

Args

NameTypeDescriptionDefault
plot_imnp.ndarrayThe image or frame to display counts on.required

Examples

>>> counter = ObjectCounter()
>>> frame = cv2.imread("image.jpg")
>>> counter.display_counts(frame)
Source code in ultralytics/solutions/object_counter.pyView on GitHub
def display_counts(self, plot_im) -> None:
    """Display object counts on the input image or frame.

    Args:
        plot_im (np.ndarray): The image or frame to display counts on.

    Examples:
        >>> counter = ObjectCounter()
        >>> frame = cv2.imread("image.jpg")
        >>> counter.display_counts(frame)
    """
    labels_dict = {
        str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} "
        f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip()
        for key, value in self.classwise_count.items()
        if value["IN"] != 0 or (value["OUT"] != 0 and (self.show_in or self.show_out))
    }
    if labels_dict:
        self.annotator.display_analytics(plot_im, labels_dict, (104, 31, 17), (255, 255, 255), self.margin)


method ultralytics.solutions.object_counter.ObjectCounter.process

def process(self, im0) -> SolutionResults

Process input data (frames or object tracks) and update object counts.

This method initializes the counting region, extracts tracks, draws bounding boxes and regions, updates object counts, and displays the results on the input image.

Args

NameTypeDescriptionDefault
im0np.ndarrayThe input image or frame to be processed.required

Returns

TypeDescription
SolutionResultsContains processed image im0, 'in_count' (int, count of objects entering the region),

Examples

>>> counter = ObjectCounter()
>>> frame = cv2.imread("path/to/image.jpg")
>>> results = counter.process(frame)
Source code in ultralytics/solutions/object_counter.pyView on GitHub
def process(self, im0) -> SolutionResults:
    """Process input data (frames or object tracks) and update object counts.

    This method initializes the counting region, extracts tracks, draws bounding boxes and regions, updates object
    counts, and displays the results on the input image.

    Args:
        im0 (np.ndarray): The input image or frame to be processed.

    Returns:
        (SolutionResults): Contains processed image `im0`, 'in_count' (int, count of objects entering the region),
            'out_count' (int, count of objects exiting the region), 'classwise_count' (dict, per-class object
            count), and 'total_tracks' (int, total number of tracked objects).

    Examples:
        >>> counter = ObjectCounter()
        >>> frame = cv2.imread("path/to/image.jpg")
        >>> results = counter.process(frame)
    """
    if not self.region_initialized:
        self.initialize_region()
        self.region_initialized = True

    self.extract_tracks(im0)  # Extract tracks
    self.annotator = SolutionAnnotator(im0, line_width=self.line_width)  # Initialize annotator

    self.annotator.draw_region(
        reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
    )  # Draw region

    # Iterate over bounding boxes, track ids and classes index
    for box, track_id, cls, conf in zip(self.boxes, self.track_ids, self.clss, self.confs):
        # Draw bounding box and counting region
        self.annotator.box_label(box, label=self.adjust_box_label(cls, conf, track_id), color=colors(cls, True))
        self.store_tracking_history(track_id, box)  # Store track history

        # Store previous position of track for object counting
        prev_position = None
        if len(self.track_history[track_id]) > 1:
            prev_position = self.track_history[track_id][-2]
        self.count_objects(self.track_history[track_id][-1], track_id, prev_position, cls)  # object counting

    plot_im = self.annotator.result()
    self.display_counts(plot_im)  # Display the counts on the frame
    self.display_output(plot_im)  # Display output with base class function

    # Return SolutionResults
    return SolutionResults(
        plot_im=plot_im,
        in_count=self.in_count,
        out_count=self.out_count,
        classwise_count=dict(self.classwise_count),
        total_tracks=len(self.track_ids),
    )





📅 Created 1 year ago ✏️ Updated 0 days ago
glenn.jocher@ultralytics.comjk4eBurhan-QRizwanMunawar