Reference for ultralytics/models/nas/val.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/nas/val.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
class ultralytics.models.nas.val.NASValidator
NASValidator()
Bases: DetectionValidator
Ultralytics YOLO NAS Validator for object detection.
Extends DetectionValidator from the Ultralytics models package and is designed to post-process the raw predictions generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes, ultimately producing the final detections.
Attributes
| Name | Type | Description |
|---|---|---|
args | Namespace | Namespace containing various configurations for post-processing, such as confidence and IoU thresholds. |
lb | torch.Tensor | Optional tensor for multilabel NMS. |
Methods
| Name | Description |
|---|---|
postprocess | Apply Non-maximum suppression to prediction outputs. |
Examples
>>> from ultralytics import NAS
>>> model = NAS("yolo_nas_s")
>>> validator = model.validator
>>> # Assumes that raw_preds are available
>>> final_preds = validator.postprocess(raw_preds)
Notes
This class is generally not instantiated directly but is used internally within the NAS class.
method ultralytics.models.nas.val.NASValidator.postprocess
def postprocess(self, preds_in)
Apply Non-maximum suppression to prediction outputs.
Args
| Name | Type | Description | Default |
|---|---|---|---|
preds_in | required |
Source code in ultralytics/models/nas/val.py
View on GitHubdef postprocess(self, preds_in):
"""Apply Non-maximum suppression to prediction outputs."""
boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
return super().postprocess(preds)
📅 Created 2 years ago ✏️ Updated 2 days ago