Skip to content

Reference for ultralytics/models/sam/predict.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/predict.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


Summary

class ultralytics.models.sam.predict.Predictor

Predictor(self, cfg = DEFAULT_CFG, overrides = None, _callbacks = None)

Bases: BasePredictor

Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.

This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image segmentation tasks. It supports various input prompts like points, bounding boxes, and masks for fine-grained control over segmentation results.

Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True for optimal results.

Args

NameTypeDescriptionDefault
cfgdictConfiguration dictionary containing default settings.DEFAULT_CFG
overridesdict | NoneDictionary of values to override default configuration.None
_callbacksdict | NoneDictionary of callback functions to customize behavior.None

Attributes

NameTypeDescription
argsSimpleNamespaceConfiguration arguments for the predictor.
modeltorch.nn.ModuleThe loaded SAM model.
devicetorch.deviceThe device (CPU or GPU) on which the model is loaded.
imtorch.TensorThe preprocessed input image.
featurestorch.TensorExtracted image features.
promptsdict[str, Any]Dictionary to store various types of prompts (e.g., bboxes, points, masks).
segment_allboolFlag to indicate if full image segmentation should be performed.
meantorch.TensorMean values for image normalization.
stdtorch.TensorStandard deviation values for image normalization.

Methods

NameDescription
_inference_featuresPerform inference on image features using the SAM model.
_prepare_promptsPrepare and transform the input prompts for processing based on the destination shape.
generatePerform image segmentation using the Segment Anything Model (SAM).
get_im_featuresExtract image features using the SAM model's image encoder for subsequent mask prediction.
get_modelRetrieve or build the Segment Anything Model (SAM) for image segmentation tasks.
inferencePerform image segmentation inference based on the given input cues, using the currently loaded image.
inference_featuresPerform prompts preprocessing and inference on provided image features using the SAM model.
postprocessPost-process SAM's inference outputs to generate object detection masks and bounding boxes.
pre_transformPerform initial transformations on the input image for preprocessing.
preprocessPreprocess the input image for model inference.
prompt_inferencePerform image segmentation inference based on input cues using SAM's specialized architecture.
remove_small_regionsRemove small disconnected regions and holes from segmentation masks.
reset_imageReset the current image and its features, clearing them for subsequent inference.
set_imagePreprocess and set a single image for inference.
set_promptsSet prompts for subsequent inference operations.
setup_modelInitialize the Segment Anything Model (SAM) for inference.
setup_sourceSet up the data source for SAM inference.

Examples

>>> predictor = Predictor()
>>> predictor.setup_model(model_path="sam_model.pt")
>>> predictor.set_image("image.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> results = predictor(bboxes=bboxes)
Source code in ultralytics/models/sam/predict.pyView on GitHub
class Predictor(BasePredictor):
    """Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.

    This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image segmentation
    tasks. It supports various input prompts like points, bounding boxes, and masks for fine-grained control over
    segmentation results.

    Attributes:
        args (SimpleNamespace): Configuration arguments for the predictor.
        model (torch.nn.Module): The loaded SAM model.
        device (torch.device): The device (CPU or GPU) on which the model is loaded.
        im (torch.Tensor): The preprocessed input image.
        features (torch.Tensor): Extracted image features.
        prompts (dict[str, Any]): Dictionary to store various types of prompts (e.g., bboxes, points, masks).
        segment_all (bool): Flag to indicate if full image segmentation should be performed.
        mean (torch.Tensor): Mean values for image normalization.
        std (torch.Tensor): Standard deviation values for image normalization.

    Methods:
        preprocess: Prepare input images for model inference.
        pre_transform: Perform initial transformations on the input image.
        inference: Perform segmentation inference based on input prompts.
        prompt_inference: Internal function for prompt-based segmentation inference.
        generate: Generate segmentation masks for an entire image.
        setup_model: Initialize the SAM model for inference.
        get_model: Build and return a SAM model.
        postprocess: Post-process model outputs to generate final results.
        setup_source: Set up the data source for inference.
        set_image: Set and preprocess a single image for inference.
        get_im_features: Extract image features using the SAM image encoder.
        set_prompts: Set prompts for subsequent inference.
        reset_image: Reset the current image and its features.
        remove_small_regions: Remove small disconnected regions and holes from masks.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_model(model_path="sam_model.pt")
        >>> predictor.set_image("image.jpg")
        >>> bboxes = [[100, 100, 200, 200]]
        >>> results = predictor(bboxes=bboxes)
    """

    stride = 16

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize the Predictor with configuration, overrides, and callbacks.

        Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or
        callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True for
        optimal results.

        Args:
            cfg (dict): Configuration dictionary containing default settings.
            overrides (dict | None): Dictionary of values to override default configuration.
            _callbacks (dict | None): Dictionary of callback functions to customize behavior.
        """
        if overrides is None:
            overrides = {}
        overrides.update(dict(task="segment", mode="predict", batch=1))
        super().__init__(cfg, overrides, _callbacks)
        self.args.retina_masks = True
        self.im = None
        self.features = None
        self.prompts = {}
        self.segment_all = False


method ultralytics.models.sam.predict.Predictor._inference_features

def _inference_features(
    self,
    features,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
)

Perform inference on image features using the SAM model.

Args

NameTypeDescriptionDefault
featurestorch.TensorExtracted image features with shape (B, C, H, W) from the SAM model image encoder.required
bboxesnp.ndarray | list[list[float]] | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list[list[float]] | NoneObject location points with shape (N, 2), in pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N,). 1 = foreground, 0 = background.None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False

Returns

TypeDescription
pred_masks (torch.Tensor)Output masks with shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)Quality scores for each mask, with length C.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _inference_features(
    self,
    features,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
):
    """Perform inference on image features using the SAM model.

    Args:
        features (torch.Tensor): Extracted image features with shape (B, C, H, W) from the SAM model image encoder.
        bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list[list[float]] | None): Object location points with shape (N, 2), in pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

    Returns:
        pred_masks (torch.Tensor): Output masks with shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): Quality scores for each mask, with length C.
    """
    points = (points, labels) if points is not None else None
    # Embed prompts
    sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)

    # Predict masks
    pred_masks, pred_scores = self.model.mask_decoder(
        image_embeddings=features,
        image_pe=self.model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=multimask_output,
    )

    # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
    # `d` could be 1 or 3 depends on `multimask_output`.
    return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)


method ultralytics.models.sam.predict.Predictor._prepare_prompts

def _prepare_prompts(self, dst_shape, src_shape, bboxes = None, points = None, labels = None, masks = None)

Prepare and transform the input prompts for processing based on the destination shape.

Args

NameTypeDescriptionDefault
dst_shapetuple[int, int]The target shape (height, width) for the prompts.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
bboxesnp.ndarray | list | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.None
labelsnp.ndarray | list | NonePoint prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array with shape (H, W).None

Returns

TypeDescription
bboxes (torch.Tensor | None)Transformed bounding boxes.
points (torch.Tensor | None)Transformed points.
labels (torch.Tensor | None)Transformed labels.
masks (torch.Tensor | None)Transformed masks.

Raises

TypeDescription
AssertionErrorIf the number of points don't match the number of labels, in case labels were passed.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_prompts(self, dst_shape, src_shape, bboxes=None, points=None, labels=None, masks=None):
    """Prepare and transform the input prompts for processing based on the destination shape.

    Args:
        dst_shape (tuple[int, int]): The target shape (height, width) for the prompts.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
            2), in pixels.
        labels (np.ndarray | list | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground,
            0 for background.
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array with
            shape (H, W).

    Returns:
        bboxes (torch.Tensor | None): Transformed bounding boxes.
        points (torch.Tensor | None): Transformed points.
        labels (torch.Tensor | None): Transformed labels.
        masks (torch.Tensor | None): Transformed masks.

    Raises:
        AssertionError: If the number of points don't match the number of labels, in case labels were passed.
    """
    r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
    # Transform input prompts
    if points is not None:
        points = torch.as_tensor(points, dtype=self.torch_dtype, device=self.device)
        points = points[None] if points.ndim == 1 else points
        # Assuming labels are all positive if users don't pass labels.
        if labels is None:
            labels = np.ones(points.shape[:-1])
        labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
        assert points.shape[-2] == labels.shape[-1], (
            f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}."
        )
        points *= r
        if points.ndim == 2:
            # (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
            points, labels = points[:, None, :], labels[:, None]
    if bboxes is not None:
        bboxes = torch.as_tensor(bboxes, dtype=self.torch_dtype, device=self.device)
        bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
        bboxes *= r
    if masks is not None:
        masks = np.asarray(masks, dtype=np.uint8)
        masks = masks[None] if masks.ndim == 2 else masks
        letterbox = LetterBox(dst_shape, auto=False, center=False, padding_value=0, interpolation=cv2.INTER_NEAREST)
        masks = np.stack([letterbox(image=x).squeeze() for x in masks], axis=0)
        masks = torch.tensor(masks, dtype=self.torch_dtype, device=self.device)
    return bboxes, points, labels, masks


method ultralytics.models.sam.predict.Predictor.generate

def generate(
    self,
    im,
    crop_n_layers=0,
    crop_overlap_ratio=512 / 1500,
    crop_downscale_factor=1,
    point_grids=None,
    points_stride=32,
    points_batch_size=64,
    conf_thres=0.88,
    stability_score_thresh=0.95,
    stability_score_offset=0.95,
    crop_nms_thresh=0.7,
)

Perform image segmentation using the Segment Anything Model (SAM).

This method segments an entire image into constituent parts by leveraging SAM's advanced architecture and real-time performance capabilities. It can optionally work on image crops for finer segmentation.

Args

NameTypeDescriptionDefault
imtorch.TensorInput tensor representing the preprocessed image with shape (N, C, H, W).required
crop_n_layersintNumber of layers for additional mask predictions on image crops.0
crop_overlap_ratiofloatOverlap between crops, scaled down in subsequent layers.512 / 1500
crop_downscale_factorintScaling factor for sampled points-per-side in each layer.1
point_gridslist[np.ndarray] | NoneCustom grids for point sampling normalized to [0,1].None
points_strideintNumber of points to sample along each side of the image.32
points_batch_sizeintBatch size for the number of points processed simultaneously.64
conf_thresfloatConfidence threshold [0,1] for filtering based on mask quality prediction.0.88
stability_score_threshfloatStability threshold [0,1] for mask filtering based on stability.0.95
stability_score_offsetfloatOffset value for calculating stability score.0.95
crop_nms_threshfloatIoU cutoff for NMS to remove duplicate masks between crops.0.7

Returns

TypeDescription
pred_masks (torch.Tensor)Segmented masks with shape (N, H, W).
pred_scores (torch.Tensor)Confidence scores for each mask with shape (N,).
pred_bboxes (torch.Tensor)Bounding boxes for each mask with shape (N, 4).

Examples

>>> predictor = Predictor()
>>> im = torch.rand(1, 3, 1024, 1024)  # Example input image
>>> masks, scores, boxes = predictor.generate(im)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def generate(
    self,
    im,
    crop_n_layers=0,
    crop_overlap_ratio=512 / 1500,
    crop_downscale_factor=1,
    point_grids=None,
    points_stride=32,
    points_batch_size=64,
    conf_thres=0.88,
    stability_score_thresh=0.95,
    stability_score_offset=0.95,
    crop_nms_thresh=0.7,
):
    """Perform image segmentation using the Segment Anything Model (SAM).

    This method segments an entire image into constituent parts by leveraging SAM's advanced architecture and
    real-time performance capabilities. It can optionally work on image crops for finer segmentation.

    Args:
        im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W).
        crop_n_layers (int): Number of layers for additional mask predictions on image crops.
        crop_overlap_ratio (float): Overlap between crops, scaled down in subsequent layers.
        crop_downscale_factor (int): Scaling factor for sampled points-per-side in each layer.
        point_grids (list[np.ndarray] | None): Custom grids for point sampling normalized to [0,1].
        points_stride (int): Number of points to sample along each side of the image.
        points_batch_size (int): Batch size for the number of points processed simultaneously.
        conf_thres (float): Confidence threshold [0,1] for filtering based on mask quality prediction.
        stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on stability.
        stability_score_offset (float): Offset value for calculating stability score.
        crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.

    Returns:
        pred_masks (torch.Tensor): Segmented masks with shape (N, H, W).
        pred_scores (torch.Tensor): Confidence scores for each mask with shape (N,).
        pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 4).

    Examples:
        >>> predictor = Predictor()
        >>> im = torch.rand(1, 3, 1024, 1024)  # Example input image
        >>> masks, scores, boxes = predictor.generate(im)
    """
    import torchvision  # scope for faster 'import ultralytics'

    self.segment_all = True
    ih, iw = im.shape[2:]
    crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio)
    if point_grids is None:
        point_grids = build_all_layer_point_grids(points_stride, crop_n_layers, crop_downscale_factor)
    pred_masks, pred_scores, pred_bboxes, region_areas = [], [], [], []
    for crop_region, layer_idx in zip(crop_regions, layer_idxs):
        x1, y1, x2, y2 = crop_region
        w, h = x2 - x1, y2 - y1
        area = torch.tensor(w * h, device=im.device)
        points_scale = np.array([[w, h]])  # w, h
        # Crop image and interpolate to input size
        crop_im = F.interpolate(im[..., y1:y2, x1:x2], (ih, iw), mode="bilinear", align_corners=False)
        # (num_points, 2)
        points_for_image = point_grids[layer_idx] * points_scale
        crop_masks, crop_scores, crop_bboxes = [], [], []
        for (points,) in batch_iterator(points_batch_size, points_for_image):
            pred_mask, pred_score = self.prompt_inference(crop_im, points=points, multimask_output=True)
            # Interpolate predicted masks to input size
            pred_mask = F.interpolate(pred_mask[None], (h, w), mode="bilinear", align_corners=False)[0]
            idx = pred_score > conf_thres
            pred_mask, pred_score = pred_mask[idx], pred_score[idx]

            stability_score = calculate_stability_score(
                pred_mask, self.model.mask_threshold, stability_score_offset
            )
            idx = stability_score > stability_score_thresh
            pred_mask, pred_score = pred_mask[idx], pred_score[idx]
            # Bool type is much more memory-efficient.
            pred_mask = pred_mask > self.model.mask_threshold
            # (N, 4)
            pred_bbox = batched_mask_to_box(pred_mask).float()
            keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih])
            if not torch.all(keep_mask):
                pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask]

            crop_masks.append(pred_mask)
            crop_bboxes.append(pred_bbox)
            crop_scores.append(pred_score)

        # Do nms within this crop
        crop_masks = torch.cat(crop_masks)
        crop_bboxes = torch.cat(crop_bboxes)
        crop_scores = torch.cat(crop_scores)
        keep = torchvision.ops.nms(crop_bboxes, crop_scores, self.args.iou)  # NMS
        crop_bboxes = uncrop_boxes_xyxy(crop_bboxes[keep], crop_region)
        crop_masks = uncrop_masks(crop_masks[keep], crop_region, ih, iw)
        crop_scores = crop_scores[keep]

        pred_masks.append(crop_masks)
        pred_bboxes.append(crop_bboxes)
        pred_scores.append(crop_scores)
        region_areas.append(area.expand(crop_masks.shape[0]))

    pred_masks = torch.cat(pred_masks)
    pred_bboxes = torch.cat(pred_bboxes)
    pred_scores = torch.cat(pred_scores)
    region_areas = torch.cat(region_areas)

    # Remove duplicate masks between crops
    if len(crop_regions) > 1:
        scores = 1 / region_areas
        keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh)
        pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep]

    return pred_masks, pred_scores, pred_bboxes


method ultralytics.models.sam.predict.Predictor.get_im_features

def get_im_features(self, im)

Extract image features using the SAM model's image encoder for subsequent mask prediction.

Args

NameTypeDescriptionDefault
imrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im):
    """Extract image features using the SAM model's image encoder for subsequent mask prediction."""
    return self.model.image_encoder(im)


method ultralytics.models.sam.predict.Predictor.get_model

def get_model(self)

Retrieve or build the Segment Anything Model (SAM) for image segmentation tasks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve or build the Segment Anything Model (SAM) for image segmentation tasks."""
    from .build import build_sam  # slow import

    return build_sam(self.args.model)


method ultralytics.models.sam.predict.Predictor.inference

def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs)

Perform image segmentation inference based on the given input cues, using the currently loaded image.

This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and mask decoder for real-time and promptable segmentation tasks.

Args

NameTypeDescriptionDefault
imtorch.TensorThe preprocessed input image in tensor format, with shape (N, C, H, W).required
bboxesnp.ndarray | list | NoneBounding boxes with shape (N, 4), in XYXY format.None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2), in pixels.None
labelsnp.ndarray | list | NoneLabels for point prompts, shape (N,). 1 = foreground, 0 = background.None
masksnp.ndarray | NoneLow-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.None
multimask_outputboolFlag to return multiple masks. Helpful for ambiguous prompts.False
*argsAnyAdditional positional arguments.required
**kwargsAnyAdditional keyword arguments.required

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)An array of length C containing quality scores predicted by the model for each

Examples

>>> predictor = Predictor()
>>> predictor.setup_model(model_path="sam_model.pt")
>>> predictor.set_image("image.jpg")
>>> results = predictor(bboxes=[[0, 0, 100, 100]])
Source code in ultralytics/models/sam/predict.pyView on GitHub
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
    """Perform image segmentation inference based on the given input cues, using the currently loaded image.

    This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder,
    and mask decoder for real-time and promptable segmentation tasks.

    Args:
        im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
        bboxes (np.ndarray | list | None): Bounding boxes with shape (N, 4), in XYXY format.
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2), in pixels.
        labels (np.ndarray | list | None): Labels for point prompts, shape (N,). 1 = foreground, 0 = background.
        masks (np.ndarray | None): Low-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.
        multimask_output (bool): Flag to return multiple masks. Helpful for ambiguous prompts.
        *args (Any): Additional positional arguments.
        **kwargs (Any): Additional keyword arguments.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): An array of length C containing quality scores predicted by the model for each
            mask.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_model(model_path="sam_model.pt")
        >>> predictor.set_image("image.jpg")
        >>> results = predictor(bboxes=[[0, 0, 100, 100]])
    """
    # Override prompts if any stored in self.prompts
    bboxes = self.prompts.pop("bboxes", bboxes)
    points = self.prompts.pop("points", points)
    masks = self.prompts.pop("masks", masks)
    labels = self.prompts.pop("labels", labels)

    if all(i is None for i in [bboxes, points, masks]):
        return self.generate(im, *args, **kwargs)

    return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)


method ultralytics.models.sam.predict.Predictor.inference_features

def inference_features(
    self,
    features,
    src_shape,
    dst_shape=None,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
)

Perform prompts preprocessing and inference on provided image features using the SAM model.

Args

NameTypeDescriptionDefault
featurestorch.Tensor | dict[str, Any]Extracted image features from the SAM/SAM2 model image encoder.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
dst_shapetuple[int, int] | NoneThe target shape (height, width) for the prompts. If None, defaults to (imgsz, imgsz).None
bboxesnp.ndarray | list[list[float]] | NoneBounding boxes in xyxy format with shape (N, 4).None
pointsnp.ndarray | list[list[float]] | NonePoints indicating object locations with shape (N, 2), in pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N, ).None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape (C, H, W), where C is the number of generated masks.
pred_bboxes (torch.Tensor)Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.

Notes

  • The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def inference_features(
    self,
    features,
    src_shape,
    dst_shape=None,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
):
    """Perform prompts preprocessing and inference on provided image features using the SAM model.

    Args:
        features (torch.Tensor | dict[str, Any]): Extracted image features from the SAM/SAM2 model image encoder.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        dst_shape (tuple[int, int] | None): The target shape (height, width) for the prompts. If None, defaults to
            (imgsz, imgsz).
        bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in xyxy format with shape (N, 4).
        points (np.ndarray | list[list[float]] | None): Points indicating object locations with shape (N, 2), in
            pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N, ).
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
        pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.
            Each box is in xyxy format with additional columns for score and class.

    Notes:
        - The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
    """
    dst_shape = dst_shape or (self.args.imgsz, self.args.imgsz)
    prompts = self._prepare_prompts(dst_shape, src_shape, bboxes, points, labels, masks)
    pred_masks, pred_scores = self._inference_features(features, *prompts, multimask_output)
    if pred_masks.shape[0] == 0:
        pred_masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
    else:
        pred_masks = ops.scale_masks(pred_masks[None].float(), src_shape, padding=False)[0]
        pred_masks = pred_masks > self.model.mask_threshold  # to bool
        pred_bboxes = batched_mask_to_box(pred_masks)
        # NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
        cls = torch.arange(pred_masks.shape[0], dtype=torch.int32, device=pred_masks.device)
        pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
    return pred_masks, pred_bboxes


method ultralytics.models.sam.predict.Predictor.postprocess

def postprocess(self, preds, img, orig_imgs)

Post-process SAM's inference outputs to generate object detection masks and bounding boxes.

This method scales masks and boxes to the original image size and applies a threshold to the mask predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.

Args

NameTypeDescriptionDefault
predstupleThe output from SAM model inference, containing: - pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W). - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1). - pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.required
imgtorch.TensorThe processed input image tensor with shape (C, H, W).required
orig_imgslist[np.ndarray] | torch.TensorThe original, unprocessed images.required

Returns

TypeDescription
list[Results]List of Results objects containing detection masks, bounding boxes, and other metadata for

Examples

>>> predictor = Predictor()
>>> preds = predictor.inference(img)
>>> results = predictor.postprocess(preds, img, orig_imgs)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def postprocess(self, preds, img, orig_imgs):
    """Post-process SAM's inference outputs to generate object detection masks and bounding boxes.

    This method scales masks and boxes to the original image size and applies a threshold to the mask
    predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.

    Args:
        preds (tuple): The output from SAM model inference, containing:
            - pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W).
            - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1).
            - pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.
        img (torch.Tensor): The processed input image tensor with shape (C, H, W).
        orig_imgs (list[np.ndarray] | torch.Tensor): The original, unprocessed images.

    Returns:
        (list[Results]): List of Results objects containing detection masks, bounding boxes, and other metadata for
            each processed image.

    Examples:
        >>> predictor = Predictor()
        >>> preds = predictor.inference(img)
        >>> results = predictor.postprocess(preds, img, orig_imgs)
    """
    # (N, 1, H, W), (N, 1)
    pred_masks, pred_scores = preds[:2]
    pred_bboxes = preds[2] if self.segment_all else None
    names = dict(enumerate(str(i) for i in range(pred_masks.shape[0])))

    if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
        orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)[..., ::-1]

    results = []
    for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
        if masks.shape[0] == 0:
            masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
        else:
            masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
            masks = masks > self.model.mask_threshold  # to bool
            if pred_bboxes is not None:
                pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
            else:
                pred_bboxes = batched_mask_to_box(masks)
            # NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
            cls = torch.arange(pred_masks.shape[0], dtype=torch.int32, device=pred_masks.device)
            idx = pred_scores > self.args.conf
            pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)[idx]
            masks = masks[idx]
        results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
    # Reset segment-all mode.
    self.segment_all = False
    return results


method ultralytics.models.sam.predict.Predictor.pre_transform

def pre_transform(self, im)

Perform initial transformations on the input image for preprocessing.

This method applies transformations such as resizing to prepare the image for further preprocessing. Currently, batched inference is not supported; hence the list length should be 1.

Args

NameTypeDescriptionDefault
imlist[np.ndarray]List containing a single image in HWC numpy array format.required

Returns

TypeDescription
list[np.ndarray]List containing the transformed image.

Examples

>>> predictor = Predictor()
>>> image = np.random.rand(480, 640, 3)  # Single HWC image
>>> transformed = predictor.pre_transform([image])
>>> print(len(transformed))
1

Raises

TypeDescription
AssertionErrorIf the input list contains more than one image.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def pre_transform(self, im):
    """Perform initial transformations on the input image for preprocessing.

    This method applies transformations such as resizing to prepare the image for further preprocessing. Currently,
    batched inference is not supported; hence the list length should be 1.

    Args:
        im (list[np.ndarray]): List containing a single image in HWC numpy array format.

    Returns:
        (list[np.ndarray]): List containing the transformed image.

    Raises:
        AssertionError: If the input list contains more than one image.

    Examples:
        >>> predictor = Predictor()
        >>> image = np.random.rand(480, 640, 3)  # Single HWC image
        >>> transformed = predictor.pre_transform([image])
        >>> print(len(transformed))
        1
    """
    assert len(im) == 1, "SAM model does not currently support batched inference"
    letterbox = LetterBox(self.imgsz, auto=False, center=False)
    return [letterbox(image=x) for x in im]


method ultralytics.models.sam.predict.Predictor.preprocess

def preprocess(self, im)

Preprocess the input image for model inference.

This method prepares the input image by applying transformations and normalization. It supports both torch.Tensor and list of np.ndarray as input formats.

Args

NameTypeDescriptionDefault
imtorch.Tensor | list[np.ndarray]Input image(s) in BCHW tensor format or list of HWC numpy arrays.required

Returns

TypeDescription
torch.TensorThe preprocessed image tensor, normalized and converted to the appropriate dtype.

Examples

>>> predictor = Predictor()
>>> image = torch.rand(1, 3, 640, 640)
>>> preprocessed_image = predictor.preprocess(image)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def preprocess(self, im):
    """Preprocess the input image for model inference.

    This method prepares the input image by applying transformations and normalization. It supports both
    torch.Tensor and list of np.ndarray as input formats.

    Args:
        im (torch.Tensor | list[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC numpy arrays.

    Returns:
        (torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype.

    Examples:
        >>> predictor = Predictor()
        >>> image = torch.rand(1, 3, 640, 640)
        >>> preprocessed_image = predictor.preprocess(image)
    """
    if self.im is not None:
        return self.im
    not_tensor = not isinstance(im, torch.Tensor)
    if not_tensor:
        im = np.stack(self.pre_transform(im))
        im = im[..., ::-1].transpose((0, 3, 1, 2))
        im = np.ascontiguousarray(im)
        im = torch.from_numpy(im)

    im = im.to(self.device)
    if not_tensor:
        im = (im - self.mean) / self.std
    im = im.half() if self.model.fp16 else im.float()
    return im


method ultralytics.models.sam.predict.Predictor.prompt_inference

def prompt_inference(self, im, bboxes = None, points = None, labels = None, masks = None, multimask_output = False)

Perform image segmentation inference based on input cues using SAM's specialized architecture.

This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation. It processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.

Args

NameTypeDescriptionDefault
imtorch.TensorPreprocessed input image tensor with shape (N, C, H, W).required
bboxesnp.ndarray | list | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.None
labelsnp.ndarray | list | NonePoint prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.None
masksnp.ndarray | NoneLow-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False

Returns

TypeDescription
pred_masks (torch.Tensor)Output masks with shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)Quality scores predicted by the model for each mask, with length C.

Examples

>>> predictor = Predictor()
>>> im = torch.rand(1, 3, 1024, 1024)
>>> bboxes = [[100, 100, 200, 200]]
>>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
    """Perform image segmentation inference based on input cues using SAM's specialized architecture.

    This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation. It
    processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.

    Args:
        im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
        bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
            2), in pixels.
        labels (np.ndarray | list | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground,
            0 for background.
        masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

    Returns:
        pred_masks (torch.Tensor): Output masks with shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): Quality scores predicted by the model for each mask, with length C.

    Examples:
        >>> predictor = Predictor()
        >>> im = torch.rand(1, 3, 1024, 1024)
        >>> bboxes = [[100, 100, 200, 200]]
        >>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)
    """
    features = self.get_im_features(im) if self.features is None else self.features

    prompts = self._prepare_prompts(im.shape[2:], self.batch[1][0].shape[:2], bboxes, points, labels, masks)
    return self._inference_features(features, *prompts, multimask_output)


method ultralytics.models.sam.predict.Predictor.remove_small_regions

def remove_small_regions(masks, min_area = 0, nms_thresh = 0.7)

Remove small disconnected regions and holes from segmentation masks.

This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM). It removes small disconnected regions and holes from the input masks, and then performs Non-Maximum Suppression (NMS) to eliminate any newly created duplicate boxes.

Args

NameTypeDescriptionDefault
maskstorch.TensorSegmentation masks to be processed, with shape (N, H, W) where N is the number of masks, H is height, and W is width.required
min_areaintMinimum area threshold for removing disconnected regions and holes. Regions smaller than this will be removed.0
nms_threshfloatIoU threshold for the NMS algorithm to remove duplicate boxes.0.7

Returns

TypeDescription
new_masks (torch.Tensor)Processed masks with small regions removed, shape (N, H, W).
keep (list[int])Indices of remaining masks after NMS, for filtering corresponding boxes.

Examples

>>> masks = torch.rand(5, 640, 640) > 0.5  # 5 random binary masks
>>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)
>>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")
>>> print(f"Indices of kept masks: {keep}")
Source code in ultralytics/models/sam/predict.pyView on GitHub
@staticmethod
def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
    """Remove small disconnected regions and holes from segmentation masks.

    This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM). It
    removes small disconnected regions and holes from the input masks, and then performs Non-Maximum Suppression
    (NMS) to eliminate any newly created duplicate boxes.

    Args:
        masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of
            masks, H is height, and W is width.
        min_area (int): Minimum area threshold for removing disconnected regions and holes. Regions smaller than
            this will be removed.
        nms_thresh (float): IoU threshold for the NMS algorithm to remove duplicate boxes.

    Returns:
        new_masks (torch.Tensor): Processed masks with small regions removed, shape (N, H, W).
        keep (list[int]): Indices of remaining masks after NMS, for filtering corresponding boxes.

    Examples:
        >>> masks = torch.rand(5, 640, 640) > 0.5  # 5 random binary masks
        >>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)
        >>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")
        >>> print(f"Indices of kept masks: {keep}")
    """
    import torchvision  # scope for faster 'import ultralytics'

    if masks.shape[0] == 0:
        return masks

    # Filter small disconnected regions and holes
    new_masks = []
    scores = []
    for mask in masks:
        mask = mask.cpu().numpy().astype(np.uint8)
        mask, changed = remove_small_regions(mask, min_area, mode="holes")
        unchanged = not changed
        mask, changed = remove_small_regions(mask, min_area, mode="islands")
        unchanged = unchanged and not changed

        new_masks.append(torch.as_tensor(mask).unsqueeze(0))
        # Give score=0 to changed masks and 1 to unchanged masks so NMS prefers masks not needing postprocessing
        scores.append(float(unchanged))

    # Recalculate boxes and remove any new duplicates
    new_masks = torch.cat(new_masks, dim=0)
    boxes = batched_mask_to_box(new_masks)
    keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh)

    return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep


method ultralytics.models.sam.predict.Predictor.reset_image

def reset_image(self)

Reset the current image and its features, clearing them for subsequent inference.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def reset_image(self):
    """Reset the current image and its features, clearing them for subsequent inference."""
    self.im = None
    self.features = None


method ultralytics.models.sam.predict.Predictor.set_image

def set_image(self, image)

Preprocess and set a single image for inference.

This method prepares the model for inference on a single image by setting up the model if not already initialized, configuring the data source, and preprocessing the image for feature extraction. It ensures that only one image is set at a time and extracts image features for subsequent use.

Args

NameTypeDescriptionDefault
imagestr | np.ndarrayPath to the image file as a string, or a numpy array representing an image read by cv2.required

Examples

>>> predictor = Predictor()
>>> predictor.set_image("path/to/image.jpg")
>>> predictor.set_image(cv2.imread("path/to/image.jpg"))

Notes

  • This method should be called before performing inference on a new image.
  • The extracted features are stored in the self.features attribute for later use.

Raises

TypeDescription
AssertionErrorIf more than one image is attempted to be set.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def set_image(self, image):
    """Preprocess and set a single image for inference.

    This method prepares the model for inference on a single image by setting up the model if not already
    initialized, configuring the data source, and preprocessing the image for feature extraction. It ensures that
    only one image is set at a time and extracts image features for subsequent use.

    Args:
        image (str | np.ndarray): Path to the image file as a string, or a numpy array representing an image read by
            cv2.

    Raises:
        AssertionError: If more than one image is attempted to be set.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.set_image("path/to/image.jpg")
        >>> predictor.set_image(cv2.imread("path/to/image.jpg"))

    Notes:
        - This method should be called before performing inference on a new image.
        - The extracted features are stored in the `self.features` attribute for later use.
    """
    if self.model is None:
        self.setup_model()
    self.setup_source(image)
    assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
    for batch in self.dataset:
        im = self.preprocess(batch[1])
        self.features = self.get_im_features(im)
        break


method ultralytics.models.sam.predict.Predictor.set_prompts

def set_prompts(self, prompts)

Set prompts for subsequent inference operations.

Args

NameTypeDescriptionDefault
promptsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def set_prompts(self, prompts):
    """Set prompts for subsequent inference operations."""
    self.prompts = prompts


method ultralytics.models.sam.predict.Predictor.setup_model

def setup_model(self, model = None, verbose = True)

Initialize the Segment Anything Model (SAM) for inference.

This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary parameters for image normalization and other Ultralytics compatibility settings.

Args

NameTypeDescriptionDefault
modeltorch.nn.Module | NoneA pretrained SAM model. If None, a new model is built based on config.None
verboseboolIf True, prints selected device information.True

Examples

>>> predictor = Predictor()
>>> predictor.setup_model(model=sam_model, verbose=True)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_model(self, model=None, verbose=True):
    """Initialize the Segment Anything Model (SAM) for inference.

    This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary
    parameters for image normalization and other Ultralytics compatibility settings.

    Args:
        model (torch.nn.Module | None): A pretrained SAM model. If None, a new model is built based on config.
        verbose (bool): If True, prints selected device information.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_model(model=sam_model, verbose=True)
    """
    device = select_device(self.args.device, verbose=verbose)
    if model is None:
        model = self.get_model()
    model.eval()
    model = model.to(device)
    self.model = model.half() if self.args.half else model.float()
    self.device = device
    self.mean = torch.tensor([123.675, 116.28, 103.53]).view(-1, 1, 1).to(device)
    self.std = torch.tensor([58.395, 57.12, 57.375]).view(-1, 1, 1).to(device)

    # Ultralytics compatibility settings
    self.model.pt = False
    self.model.triton = False
    self.model.stride = 32
    self.model.fp16 = self.args.half
    self.done_warmup = True
    self.torch_dtype = torch.float16 if self.model.fp16 else torch.float32


method ultralytics.models.sam.predict.Predictor.setup_source

def setup_source(self, source)

Set up the data source for SAM inference.

Args

NameTypeDescriptionDefault
sourcerequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_source(self, source):
    """Set up the data source for SAM inference."""
    if source is None:  # handle the situation when set_imgsz in advance
        return
    super().setup_source(source, self.stride)
    assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
        f"SAM models only support square image size, but got {self.imgsz}."
    )
    self.model.set_imgsz(self.imgsz)





class ultralytics.models.sam.predict.SAM2Predictor

SAM2Predictor()

Bases: Predictor

SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.

This class extends the base Predictor class to implement SAM2-specific functionality for image segmentation tasks. It provides methods for model initialization, feature extraction, and prompt-based inference.

Attributes

NameTypeDescription
_bb_feat_sizeslist[tuple]Feature sizes for different backbone levels.
modeltorch.nn.ModuleThe loaded SAM2 model.
devicetorch.deviceThe device (CPU or GPU) on which the model is loaded.
featuresdictCached image features for efficient inference.
segment_allboolFlag to indicate if all segments should be predicted.
promptsdict[str, Any]Dictionary to store various types of prompts for inference.

Methods

NameDescription
_inference_featuresPerform inference on image features using the SAM2 model.
_prepare_promptsPrepare and transform the input prompts for processing based on the destination shape.
get_im_featuresExtract image features from the SAM image encoder for subsequent processing.
get_modelRetrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks.
setup_sourceSet up the data source and image size for SAM2 inference.

Examples

>>> predictor = SAM2Predictor(cfg)
>>> predictor.set_image("path/to/image.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> result = predictor(bboxes=bboxes)[0]
>>> print(f"Predicted {len(result.masks)} masks with average score {result.boxes.conf.mean():.2f}")
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM2Predictor(Predictor):


method ultralytics.models.sam.predict.SAM2Predictor._inference_features

def _inference_features(
    self,
    features,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
    img_idx=-1,
)

Perform inference on image features using the SAM2 model.

Args

NameTypeDescriptionDefault
featurestorch.Tensor | dict[str, Any]Extracted image features with shape (B, C, H, W) from the SAM2required
model image encoder, it could also be a dictionary including:<br> - image_embed (torch.Tensor): Image embedding with shape (B, C, H, W).<br> - high_res_feats (list[torch.Tensor]): List of high-resolution feature maps from the backbone, each with shape (B, C, H, W).required
pointsnp.ndarray | list[list[float]] | NoneObject location points with shape (N, 2), in pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N,). 1 = foreground, 0 = background.None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False
img_idxintIndex of the image in the batch to process.-1

Returns

TypeDescription
pred_masks (torch.Tensor)Output masks with shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)Quality scores for each mask, with length C.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _inference_features(
    self,
    features,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
    img_idx=-1,
):
    """Perform inference on image features using the SAM2 model.

    Args:
        features (torch.Tensor | dict[str, Any]): Extracted image features with shape (B, C, H, W) from the SAM2
        model image encoder, it could also be a dictionary including:
            - image_embed (torch.Tensor): Image embedding with shape (B, C, H, W).
            - high_res_feats (list[torch.Tensor]): List of high-resolution feature maps from the backbone, each with shape (B, C, H, W).
        points (np.ndarray | list[list[float]] | None): Object location points with shape (N, 2), in pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
        img_idx (int): Index of the image in the batch to process.

    Returns:
        pred_masks (torch.Tensor): Output masks with shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): Quality scores for each mask, with length C.
    """
    points = (points, labels) if points is not None else None
    sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
        points=points,
        boxes=None,
        masks=masks,
    )
    # Predict masks
    batched_mode = points is not None and points[0].shape[0] > 1  # multi object prediction
    high_res_features = None
    if isinstance(features, dict):
        high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]]
        features = features["image_embed"][[img_idx]]
    pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder(
        image_embeddings=features,
        image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=multimask_output,
        repeat_image=batched_mode,
        high_res_features=high_res_features,
    )
    # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
    # `d` could be 1 or 3 depends on `multimask_output`.
    return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)


method ultralytics.models.sam.predict.SAM2Predictor._prepare_prompts

def _prepare_prompts(self, dst_shape, src_shape, bboxes = None, points = None, labels = None, masks = None)

Prepare and transform the input prompts for processing based on the destination shape.

Args

NameTypeDescriptionDefault
dst_shapetuple[int, int]The target shape (height, width) for the prompts.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
bboxesnp.ndarray | list | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.None
labelsnp.ndarray | list | NonePoint prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.None
maskslist | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None

Returns

TypeDescription
points (torch.Tensor | None)Transformed points.
labels (torch.Tensor | None)Transformed labels.
masks (torch.Tensor | None)Transformed masks.

Raises

TypeDescription
AssertionErrorIf the number of points don't match the number of labels, in case labels were passed.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_prompts(self, dst_shape, src_shape, bboxes=None, points=None, labels=None, masks=None):
    """Prepare and transform the input prompts for processing based on the destination shape.

    Args:
        dst_shape (tuple[int, int]): The target shape (height, width) for the prompts.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
            2), in pixels.
        labels (np.ndarray | list | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground,
            0 for background.
        masks (list | np.ndarray | None): Masks for the objects, where each mask is a 2D array.

    Returns:
        points (torch.Tensor | None): Transformed points.
        labels (torch.Tensor | None): Transformed labels.
        masks (torch.Tensor | None): Transformed masks.

    Raises:
        AssertionError: If the number of points don't match the number of labels, in case labels were passed.
    """
    bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, src_shape, bboxes, points, labels, masks)
    if bboxes is not None:
        bboxes = bboxes.view(-1, 2, 2)
        bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(bboxes.shape[0], -1)
        # NOTE: merge "boxes" and "points" into a single "points" input
        # (where boxes are added at the beginning) to model.sam_prompt_encoder
        if points is not None:
            points = torch.cat([bboxes, points], dim=1)
            labels = torch.cat([bbox_labels, labels], dim=1)
        else:
            points, labels = bboxes, bbox_labels
    return points, labels, masks


method ultralytics.models.sam.predict.SAM2Predictor.get_im_features

def get_im_features(self, im)

Extract image features from the SAM image encoder for subsequent processing.

Args

NameTypeDescriptionDefault
imrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im):
    """Extract image features from the SAM image encoder for subsequent processing."""
    backbone_out = self.model.forward_image(im)
    _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
    if self.model.directly_add_no_mem_embed:
        vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
    feats = [
        feat.permute(1, 2, 0).view(1, -1, *feat_size) for feat, feat_size in zip(vision_feats, self._bb_feat_sizes)
    ]
    return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}


method ultralytics.models.sam.predict.SAM2Predictor.get_model

def get_model(self)

Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
    from .build import build_sam  # slow import

    return build_sam(self.args.model)


method ultralytics.models.sam.predict.SAM2Predictor.setup_source

def setup_source(self, source)

Set up the data source and image size for SAM2 inference.

Args

NameTypeDescriptionDefault
sourcerequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_source(self, source):
    """Set up the data source and image size for SAM2 inference."""
    super().setup_source(source)
    self._bb_feat_sizes = [[int(x / (self.stride * i)) for x in self.imgsz] for i in [1 / 4, 1 / 2, 1]]





class ultralytics.models.sam.predict.SAM2VideoPredictor

SAM2VideoPredictor(self, cfg = DEFAULT_CFG, overrides = None, _callbacks = None)

Bases: SAM2Predictor

SAM2VideoPredictor to handle user interactions with videos and manage inference states.

This class extends the functionality of SAM2Predictor to support video processing and maintains the state of inference operations. It includes configurations for managing non-overlapping masks, clearing memory for non-conditional inputs, and setting up callbacks for prediction events.

This constructor initializes the SAM2VideoPredictor with a given configuration, applies any specified overrides, and sets up the inference state along with certain flags that control the behavior of the predictor.

Args

NameTypeDescriptionDefault
cfgdictConfiguration dictionary containing default settings.DEFAULT_CFG
overridesdict | NoneDictionary of values to override default configuration.None
_callbacksdict | NoneDictionary of callback functions to customize behavior.None

Attributes

NameTypeDescription
inference_statedictA dictionary to store the current state of inference operations.
non_overlap_masksboolA flag indicating whether masks should be non-overlapping.
clear_non_cond_mem_around_inputboolA flag to control clearing non-conditional memory around inputs.
clear_non_cond_mem_for_multi_objboolA flag to control clearing non-conditional memory for multi-object scenarios.
callbacksdictA dictionary of callbacks for various prediction lifecycle events.

Methods

NameDescription
_add_output_per_objectSplit a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.
_clear_non_cond_mem_around_inputRemove the non-conditioning memory around the input frame.
_consolidate_temp_output_across_objConsolidate per-object temporary outputs into a single output for all objects.
_get_empty_mask_ptrGet a dummy object pointer based on an empty mask on the current frame.
_get_maskmem_pos_encCache and manage the positional encoding for mask memory across frames and objects.
_init_stateInitialize an inference state.
_obj_id_to_idxMap client-side object id to model-side object index.
_reset_tracking_resultsReset all tracking inputs and results across the videos.
_run_memory_encoderRun the memory encoder on masks.
_run_single_frame_inferenceRun tracking on a single frame based on current inputs and previous memory.
add_new_promptsAdd new points or masks to a specific frame for a given object ID.
clear_all_points_in_frameRemove all input points or mask in a specific frame for a given object.
clear_all_points_in_videoRemove all input points or mask in all frames throughout the video.
get_im_featuresExtract and process image features using SAM2's image encoder for subsequent segmentation tasks.
get_modelRetrieve and configure the model with binarization enabled.
inferencePerform image segmentation inference based on the given input cues, using the currently loaded image. This
init_stateInitialize an inference state for the predictor.
postprocessPost-process the predictions to apply non-overlapping constraints if required.
propagate_in_video_preflightPrepare inference_state and consolidate temporary outputs before tracking.
remove_objectRemove an object id from the tracking state. If strict is True, we check whether the object id actually

Examples

>>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
>>> predictor.set_image("path/to/video_frame.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> results = predictor(bboxes=bboxes)

Notes

The fill_hole_area attribute is defined but not used in the current implementation.

Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM2VideoPredictor(SAM2Predictor):
    """SAM2VideoPredictor to handle user interactions with videos and manage inference states.

    This class extends the functionality of SAM2Predictor to support video processing and maintains the state of
    inference operations. It includes configurations for managing non-overlapping masks, clearing memory for
    non-conditional inputs, and setting up callbacks for prediction events.

    Attributes:
        inference_state (dict): A dictionary to store the current state of inference operations.
        non_overlap_masks (bool): A flag indicating whether masks should be non-overlapping.
        clear_non_cond_mem_around_input (bool): A flag to control clearing non-conditional memory around inputs.
        clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object
            scenarios.
        callbacks (dict): A dictionary of callbacks for various prediction lifecycle events.

    Methods:
        get_model: Retrieve and configure the model with binarization enabled.
        inference: Perform image segmentation inference based on the given input cues.
        postprocess: Post-process the predictions to apply non-overlapping constraints if required.
        add_new_prompts: Add new points or masks to a specific frame for a given object ID.
        propagate_in_video_preflight: Prepare inference_state and consolidate temporary outputs before tracking.
        init_state: Initialize an inference state for the predictor.
        get_im_features: Extract image features using SAM2's image encoder for subsequent segmentation tasks.

    Examples:
        >>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
        >>> predictor.set_image("path/to/video_frame.jpg")
        >>> bboxes = [[100, 100, 200, 200]]
        >>> results = predictor(bboxes=bboxes)

    Notes:
        The `fill_hole_area` attribute is defined but not used in the current implementation.
    """

    # fill_hole_area = 8  # not used

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize the predictor with configuration and optional overrides.

        This constructor initializes the SAM2VideoPredictor with a given configuration, applies any specified overrides,
        and sets up the inference state along with certain flags that control the behavior of the predictor.

        Args:
            cfg (dict): Configuration dictionary containing default settings.
            overrides (dict | None): Dictionary of values to override default configuration.
            _callbacks (dict | None): Dictionary of callback functions to customize behavior.
        """
        super().__init__(cfg, overrides, _callbacks)
        self.inference_state = {}
        self.non_overlap_masks = True
        self.clear_non_cond_mem_around_input = False
        self.clear_non_cond_mem_for_multi_obj = False
        self.callbacks["on_predict_start"].append(self.init_state)


method ultralytics.models.sam.predict.SAM2VideoPredictor._add_output_per_object

def _add_output_per_object(self, frame_idx, current_out, storage_key, inference_state: dict[str, Any] | None = None)

Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.

The resulting slices share the same tensor storage.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the current frame.required
current_outdictThe current output dictionary containing multi-object outputs.required
storage_keystrThe key used to store the output in the per-object output dictionary.required
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _add_output_per_object(
    self, frame_idx, current_out, storage_key, inference_state: dict[str, Any] | None = None
):
    """Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.

    The resulting slices share the same tensor storage.

    Args:
        frame_idx (int): The index of the current frame.
        current_out (dict): The current output dictionary containing multi-object outputs.
        storage_key (str): The key used to store the output in the per-object output dictionary.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.
    """
    inference_state = inference_state or self.inference_state
    maskmem_features = current_out["maskmem_features"]
    assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)

    maskmem_pos_enc = current_out["maskmem_pos_enc"]
    assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)

    for obj_idx, obj_output_dict in inference_state["output_dict_per_obj"].items():
        obj_slice = slice(obj_idx, obj_idx + 1)
        obj_out = {
            "maskmem_features": None,
            "maskmem_pos_enc": None,
            "pred_masks": current_out["pred_masks"][obj_slice],
            "obj_ptr": current_out["obj_ptr"][obj_slice],
        }
        if maskmem_features is not None:
            obj_out["maskmem_features"] = maskmem_features[obj_slice]
        if maskmem_pos_enc is not None:
            obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
        obj_output_dict[storage_key][frame_idx] = obj_out


method ultralytics.models.sam.predict.SAM2VideoPredictor._clear_non_cond_mem_around_input

def _clear_non_cond_mem_around_input(self, frame_idx, inference_state: dict[str, Any] | None = None)

Remove the non-conditioning memory around the input frame.

When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated object appearance information and could confuse the model. This method clears those non-conditioning memories surrounding the interacted frame to avoid giving the model both old and new information about the object.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the current frame where user interaction occurred.required
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _clear_non_cond_mem_around_input(self, frame_idx, inference_state: dict[str, Any] | None = None):
    """Remove the non-conditioning memory around the input frame.

    When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain
    outdated object appearance information and could confuse the model. This method clears those non-conditioning
    memories surrounding the interacted frame to avoid giving the model both old and new information about the
    object.

    Args:
        frame_idx (int): The index of the current frame where user interaction occurred.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.
    """
    inference_state = inference_state or self.inference_state
    r = self.model.memory_temporal_stride_for_eval
    frame_idx_begin = frame_idx - r * self.model.num_maskmem
    frame_idx_end = frame_idx + r * self.model.num_maskmem
    for t in range(frame_idx_begin, frame_idx_end + 1):
        inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None)
        for obj_output_dict in inference_state["output_dict_per_obj"].values():
            obj_output_dict["non_cond_frame_outputs"].pop(t, None)


method ultralytics.models.sam.predict.SAM2VideoPredictor._consolidate_temp_output_across_obj

def _consolidate_temp_output_across_obj(
    self,
    frame_idx,
    is_cond=False,
    run_mem_encoder=False,
    inference_state: dict[str, Any] | None = None,
)

Consolidate per-object temporary outputs into a single output for all objects.

This method combines the temporary outputs for each object on a given frame into a unified output. It fills in any missing objects either from the main output dictionary or leaves placeholders if they do not exist in the main output. Optionally, it can re-run the memory encoder after applying non-overlapping constraints to the object scores.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the frame for which to consolidate outputs.required
is_condbool, optionalIndicates if the frame is considered a conditioning frame.False
run_mem_encoderbool, optionalSpecifies whether to run the memory encoder after consolidating the outputs.False
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
dictA consolidated output dictionary containing the combined results for all objects.

Notes

  • The method initializes the consolidated output with placeholder values for missing objects.
  • It searches for outputs in both the temporary and main output dictionaries.
  • If run_mem_encoder is True, it applies non-overlapping constraints and re-runs the memory encoder.
  • The maskmem_features and maskmem_pos_enc are only populated when run_mem_encoder is True.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _consolidate_temp_output_across_obj(
    self,
    frame_idx,
    is_cond=False,
    run_mem_encoder=False,
    inference_state: dict[str, Any] | None = None,
):
    """Consolidate per-object temporary outputs into a single output for all objects.

    This method combines the temporary outputs for each object on a given frame into a unified
    output. It fills in any missing objects either from the main output dictionary or leaves
    placeholders if they do not exist in the main output. Optionally, it can re-run the memory encoder after
    applying non-overlapping constraints to the object scores.

    Args:
        frame_idx (int): The index of the frame for which to consolidate outputs.
        is_cond (bool, optional): Indicates if the frame is considered a conditioning frame.
        run_mem_encoder (bool, optional): Specifies whether to run the memory encoder after consolidating the
            outputs.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        (dict): A consolidated output dictionary containing the combined results for all objects.

    Notes:
        - The method initializes the consolidated output with placeholder values for missing objects.
        - It searches for outputs in both the temporary and main output dictionaries.
        - If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder.
        - The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True.
    """
    inference_state = inference_state or self.inference_state
    batch_size = len(inference_state["obj_idx_to_id"])
    storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

    # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
    # will be added when rerunning the memory encoder after applying non-overlapping
    # constraints to object scores. Its "pred_masks" are prefilled with a large
    # negative value (NO_OBJ_SCORE) to represent missing objects.
    consolidated_out = {
        "maskmem_features": None,
        "maskmem_pos_enc": None,
        "pred_masks": torch.full(
            # size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
            size=(batch_size, 1, *self._bb_feat_sizes[0]),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "obj_ptr": torch.full(
            size=(batch_size, self.model.hidden_dim),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "object_score_logits": torch.full(
            size=(batch_size, 1),
            # default to 10.0 for object_score_logits, i.e. assuming the object is
            # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
            fill_value=10.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
    }
    for obj_idx in range(batch_size):
        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
        out = (
            obj_temp_output_dict[storage_key].get(frame_idx)
            # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
            # we fall back and look up its previous output in "output_dict_per_obj".
            # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
            # "output_dict_per_obj" to find a previous output for this object.
            or obj_output_dict["cond_frame_outputs"].get(frame_idx)
            or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
        )
        # If the object doesn't appear in "output_dict_per_obj" either, we skip it
        # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
        # placeholder above) and set its object pointer to be a dummy pointer.
        if out is None:
            # Fill in dummy object pointers for those objects without any inputs or
            # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
            # i.e. when we need to build the memory for tracking).
            if run_mem_encoder:
                # fill object pointer with a dummy pointer (based on an empty mask)
                consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = self._get_empty_mask_ptr(frame_idx)
            continue
        # Add the temporary object output mask to consolidated output mask
        consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = out["pred_masks"]
        consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]

    # Optionally, apply non-overlapping constraints on the consolidated scores and rerun the memory encoder
    if run_mem_encoder:
        high_res_masks = F.interpolate(
            consolidated_out["pred_masks"],
            size=self.imgsz,
            mode="bilinear",
            align_corners=False,
        )
        if self.model.non_overlap_masks_for_mem_enc:
            high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks)
        consolidated_out["maskmem_features"], consolidated_out["maskmem_pos_enc"] = self._run_memory_encoder(
            batch_size=batch_size,
            high_res_masks=high_res_masks,
            is_mask_from_pts=True,  # these frames are what the user interacted with
            object_score_logits=consolidated_out["object_score_logits"],
            inference_state=inference_state,
        )

    return consolidated_out


method ultralytics.models.sam.predict.SAM2VideoPredictor._get_empty_mask_ptr

def _get_empty_mask_ptr(self, frame_idx, inference_state: dict[str, Any] | None = None)

Get a dummy object pointer based on an empty mask on the current frame.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the current frame for which to generate the dummy object pointer.required
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
torch.TensorA tensor representing the dummy object pointer generated from the empty mask.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _get_empty_mask_ptr(self, frame_idx, inference_state: dict[str, Any] | None = None):
    """Get a dummy object pointer based on an empty mask on the current frame.

    Args:
        frame_idx (int): The index of the current frame for which to generate the dummy object pointer.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        (torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask.
    """
    inference_state = inference_state or self.inference_state
    # Retrieve correct image features
    current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(inference_state["im"])

    # Feed the empty mask and image feature above to get a dummy object pointer
    current_out = self.model.track_step(
        frame_idx=frame_idx,
        is_init_cond_frame=True,
        current_vision_feats=current_vision_feats,
        current_vision_pos_embeds=current_vision_pos_embeds,
        feat_sizes=feat_sizes,
        point_inputs=None,
        # A dummy (empty) mask with a single object
        mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=self.torch_dtype, device=self.device),
        output_dict={},
        num_frames=inference_state["num_frames"],
        track_in_reverse=False,
        run_mem_encoder=False,
        prev_sam_mask_logits=None,
    )
    return current_out["obj_ptr"]


method ultralytics.models.sam.predict.SAM2VideoPredictor._get_maskmem_pos_enc

def _get_maskmem_pos_enc(self, out_maskmem_pos_enc, inference_state: dict[str, Any] | None = None)

Cache and manage the positional encoding for mask memory across frames and objects.

This method optimizes storage by caching the positional encoding (maskmem_pos_enc) for mask memory, which is constant across frames and objects, thus reducing the amount of redundant information stored during an inference session. It checks if the positional encoding has already been cached; if not, it caches a slice of the provided encoding. If the batch size is greater than one, it expands the cached positional encoding to match the current batch size.

Args

NameTypeDescriptionDefault
out_maskmem_pos_enclist[torch.Tensor] | NoneThe positional encoding for mask memory. Should be a list of tensors or None.required
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
list[torch.Tensor]The positional encoding for mask memory, either cached or expanded.

Notes

  • The method assumes that out_maskmem_pos_enc is a list of tensors or None.
  • Only a single object's slice is cached since the encoding is the same across objects.
  • The method checks if the positional encoding has already been cached in the session's constants.
  • If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc, inference_state: dict[str, Any] | None = None):
    """Cache and manage the positional encoding for mask memory across frames and objects.

    This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for mask memory, which is
    constant across frames and objects, thus reducing the amount of redundant information stored during an inference
    session. It checks if the positional encoding has already been cached; if not, it caches a slice of the provided
    encoding. If the batch size is greater than one, it expands the cached positional encoding to match the current
    batch size.

    Args:
        out_maskmem_pos_enc (list[torch.Tensor] | None): The positional encoding for mask memory. Should be a list
            of tensors or None.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        (list[torch.Tensor]): The positional encoding for mask memory, either cached or expanded.

    Notes:
        - The method assumes that `out_maskmem_pos_enc` is a list of tensors or None.
        - Only a single object's slice is cached since the encoding is the same across objects.
        - The method checks if the positional encoding has already been cached in the session's constants.
        - If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
    """
    inference_state = inference_state or self.inference_state
    model_constants = inference_state["constants"]
    # "out_maskmem_pos_enc" should be either a list of tensors or None
    if out_maskmem_pos_enc is not None:
        if "maskmem_pos_enc" not in model_constants:
            assert isinstance(out_maskmem_pos_enc, list)
            # only take the slice for one object, since it's same across objects
            maskmem_pos_enc = [x[:1].clone() for x in out_maskmem_pos_enc]
            model_constants["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            maskmem_pos_enc = model_constants["maskmem_pos_enc"]
        # expand the cached maskmem_pos_enc to the actual batch size
        batch_size = out_maskmem_pos_enc[0].shape[0]
        if batch_size > 1:
            out_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
    return out_maskmem_pos_enc


method ultralytics.models.sam.predict.SAM2VideoPredictor._init_state

def _init_state(num_frames)

Initialize an inference state.

This function sets up the initial state required for performing inference on video data. It includes initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata relevant to the tracking process.

Args

NameTypeDescriptionDefault
num_framesintThe number of frames in the video.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
@staticmethod
def _init_state(num_frames):
    """Initialize an inference state.

    This function sets up the initial state required for performing inference on video data. It includes
    initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
    relevant to the tracking process.

    Args:
        num_frames (int): The number of frames in the video.
    """
    inference_state = {
        "num_frames": num_frames,  # TODO: see if there's any chance to remove it
        "point_inputs_per_obj": {},  # inputs points on each frame
        "mask_inputs_per_obj": {},  # inputs mask on each frame
        "constants": {},  # values that don't change across frames (so we only need to hold one copy of them)
        # mapping between client-side object id and model-side object index
        "obj_id_to_idx": OrderedDict(),
        "obj_idx_to_id": OrderedDict(),
        "obj_ids": [],
        # A storage to hold the model's tracking results and states on each frame
        "output_dict": {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        },
        # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
        "output_dict_per_obj": {},
        # A temporary storage to hold new outputs when user interact with a frame
        # to add clicks or mask (it's merged into "output_dict" before propagation starts)
        "temp_output_dict_per_obj": {},
        # Frames that already holds consolidated outputs from click or mask inputs
        # (we directly use their consolidated outputs during tracking)
        "consolidated_frame_inds": {
            "cond_frame_outputs": set(),  # set containing frame indices
            "non_cond_frame_outputs": set(),  # set containing frame indices
        },
        # metadata for each tracking frame (e.g. which direction it's tracked)
        "tracking_has_started": False,
        "frames_already_tracked": [],
    }
    return inference_state


method ultralytics.models.sam.predict.SAM2VideoPredictor._obj_id_to_idx

def _obj_id_to_idx(self, obj_id, inference_state: dict[str, Any] | None = None)

Map client-side object id to model-side object index.

Args

NameTypeDescriptionDefault
obj_idintThe unique identifier of the object provided by the client side.required
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
intThe index of the object on the model side.

Notes

  • The method updates or retrieves mappings between object IDs and indices stored in inference_state.
  • It ensures that new objects can only be added before tracking commences.
  • It maintains two-way mappings between IDs and indices (obj_id_to_idx and obj_idx_to_id).
  • Additional data structures are initialized for the new object to store inputs and outputs.

Raises

TypeDescription
RuntimeErrorIf an attempt is made to add a new object after tracking has started.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _obj_id_to_idx(self, obj_id, inference_state: dict[str, Any] | None = None):
    """Map client-side object id to model-side object index.

    Args:
        obj_id (int): The unique identifier of the object provided by the client side.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        (int): The index of the object on the model side.

    Raises:
        RuntimeError: If an attempt is made to add a new object after tracking has started.

    Notes:
        - The method updates or retrieves mappings between object IDs and indices stored in
          `inference_state`.
        - It ensures that new objects can only be added before tracking commences.
        - It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`).
        - Additional data structures are initialized for the new object to store inputs and outputs.
    """
    inference_state = inference_state or self.inference_state
    obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
    if obj_idx is not None:
        return obj_idx

    # This is a new object id not sent to the server before. We only allow adding
    # new objects *before* the tracking starts.
    allow_new_object = not inference_state["tracking_has_started"]
    if allow_new_object:
        # get the next object slot
        obj_idx = len(inference_state["obj_id_to_idx"])
        inference_state["obj_id_to_idx"][obj_id] = obj_idx
        inference_state["obj_idx_to_id"][obj_idx] = obj_id
        inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
        # set up input and output structures for this object
        inference_state["point_inputs_per_obj"][obj_idx] = {}
        inference_state["mask_inputs_per_obj"][obj_idx] = {}
        inference_state["output_dict_per_obj"][obj_idx] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        inference_state["temp_output_dict_per_obj"][obj_idx] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        return obj_idx
    else:
        raise RuntimeError(
            f"Cannot add new object id {obj_id} after tracking starts. "
            f"All existing object ids: {inference_state['obj_ids']}. "
            f"Please call 'reset_state' to restart from scratch."
        )


method ultralytics.models.sam.predict.SAM2VideoPredictor._reset_tracking_results

def _reset_tracking_results(self, inference_state)

Reset all tracking inputs and results across the videos.

Args

NameTypeDescriptionDefault
inference_staterequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _reset_tracking_results(self, inference_state):
    """Reset all tracking inputs and results across the videos."""
    for v in inference_state["point_inputs_per_obj"].values():
        v.clear()
    for v in inference_state["mask_inputs_per_obj"].values():
        v.clear()
    for v in inference_state["output_dict_per_obj"].values():
        v["cond_frame_outputs"].clear()
        v["non_cond_frame_outputs"].clear()
    for v in inference_state["temp_output_dict_per_obj"].values():
        v["cond_frame_outputs"].clear()
        v["non_cond_frame_outputs"].clear()
    inference_state["output_dict"]["cond_frame_outputs"].clear()
    inference_state["output_dict"]["non_cond_frame_outputs"].clear()
    inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
    inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
    inference_state["tracking_has_started"] = False
    inference_state["frames_already_tracked"].clear()
    inference_state["first_ann_frame_idx"] = None


method ultralytics.models.sam.predict.SAM2VideoPredictor._run_memory_encoder

def _run_memory_encoder(
    self,
    batch_size,
    high_res_masks,
    object_score_logits,
    is_mask_from_pts,
    inference_state: dict[str, Any] | None = None,
)

Run the memory encoder on masks.

This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their memory also needs to be computed again with the memory encoder.

Args

NameTypeDescriptionDefault
batch_sizeintThe batch size for processing the frame.required
high_res_maskstorch.TensorHigh-resolution masks for which to compute the memory.required
object_score_logitstorch.TensorLogits representing the object scores.required
is_mask_from_ptsboolIndicates if the mask is derived from point interactions.required
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
maskmem_features (torch.Tensor)The encoded mask features.
maskmem_pos_enc (torch.Tensor)The positional encoding.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _run_memory_encoder(
    self,
    batch_size,
    high_res_masks,
    object_score_logits,
    is_mask_from_pts,
    inference_state: dict[str, Any] | None = None,
):
    """Run the memory encoder on masks.

    This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their
    memory also needs to be computed again with the memory encoder.

    Args:
        batch_size (int): The batch size for processing the frame.
        high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory.
        object_score_logits (torch.Tensor): Logits representing the object scores.
        is_mask_from_pts (bool): Indicates if the mask is derived from point interactions.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        maskmem_features (torch.Tensor): The encoded mask features.
        maskmem_pos_enc (torch.Tensor): The positional encoding.
    """
    inference_state = inference_state or self.inference_state
    # Retrieve correct image features
    current_vision_feats, _, feat_sizes = self.get_im_features(inference_state["im"], batch_size)
    maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
        current_vision_feats=current_vision_feats,
        feat_sizes=feat_sizes,
        pred_masks_high_res=high_res_masks,
        is_mask_from_pts=is_mask_from_pts,
        object_score_logits=object_score_logits,
    )

    # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
    maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc, inference_state)
    return maskmem_features.to(
        dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
    ), maskmem_pos_enc


method ultralytics.models.sam.predict.SAM2VideoPredictor._run_single_frame_inference

def _run_single_frame_inference(
    self,
    output_dict,
    frame_idx,
    batch_size,
    is_init_cond_frame,
    point_inputs,
    mask_inputs,
    reverse,
    run_mem_encoder,
    prev_sam_mask_logits=None,
    inference_state: dict[str, Any] | None = None,
)

Run tracking on a single frame based on current inputs and previous memory.

Args

NameTypeDescriptionDefault
output_dictdictThe dictionary containing the output states of the tracking process.required
frame_idxintThe index of the current frame.required
batch_sizeintThe batch size for processing the frame.required
is_init_cond_frameboolIndicates if the current frame is an initial conditioning frame.required
point_inputsdict | NoneInput points and their labels.required
mask_inputstorch.Tensor | NoneInput binary masks.required
reverseboolIndicates if the tracking should be performed in reverse order.required
run_mem_encoderboolIndicates if the memory encoder should be executed.required
prev_sam_mask_logitstorch.Tensor | NonePrevious mask logits for the current object.None
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
dictA dictionary containing the output of the tracking step, including updated features and predictions.

Notes

  • The method assumes that point_inputs and mask_inputs are mutually exclusive.
  • The method retrieves image features using the get_im_features method.
  • The maskmem_pos_enc is assumed to be constant across frames, hence only one copy is stored.
  • The fill_holes_in_mask_scores function is commented out and currently unsupported due to CUDA extension requirements.

Raises

TypeDescription
AssertionErrorIf both point_inputs and mask_inputs are provided, or neither is provided.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _run_single_frame_inference(
    self,
    output_dict,
    frame_idx,
    batch_size,
    is_init_cond_frame,
    point_inputs,
    mask_inputs,
    reverse,
    run_mem_encoder,
    prev_sam_mask_logits=None,
    inference_state: dict[str, Any] | None = None,
):
    """Run tracking on a single frame based on current inputs and previous memory.

    Args:
        output_dict (dict): The dictionary containing the output states of the tracking process.
        frame_idx (int): The index of the current frame.
        batch_size (int): The batch size for processing the frame.
        is_init_cond_frame (bool): Indicates if the current frame is an initial conditioning frame.
        point_inputs (dict | None): Input points and their labels.
        mask_inputs (torch.Tensor | None): Input binary masks.
        reverse (bool): Indicates if the tracking should be performed in reverse order.
        run_mem_encoder (bool): Indicates if the memory encoder should be executed.
        prev_sam_mask_logits (torch.Tensor | None): Previous mask logits for the current object.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        (dict): A dictionary containing the output of the tracking step, including updated features and predictions.

    Raises:
        AssertionError: If both `point_inputs` and `mask_inputs` are provided, or neither is provided.

    Notes:
        - The method assumes that `point_inputs` and `mask_inputs` are mutually exclusive.
        - The method retrieves image features using the `get_im_features` method.
        - The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored.
        - The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements.
    """
    inference_state = inference_state or self.inference_state
    # Retrieve correct image features
    current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
        inference_state["im"], batch_size
    )

    # point and mask should not appear as input simultaneously on the same frame
    assert point_inputs is None or mask_inputs is None
    current_out = self.model.track_step(
        frame_idx=frame_idx,
        is_init_cond_frame=is_init_cond_frame,
        current_vision_feats=current_vision_feats,
        current_vision_pos_embeds=current_vision_pos_embeds,
        feat_sizes=feat_sizes,
        point_inputs=point_inputs,
        mask_inputs=mask_inputs,
        output_dict=output_dict,
        num_frames=inference_state["num_frames"],
        track_in_reverse=reverse,
        run_mem_encoder=run_mem_encoder,
        prev_sam_mask_logits=prev_sam_mask_logits,
    )

    maskmem_features = current_out["maskmem_features"]
    if maskmem_features is not None:
        current_out["maskmem_features"] = maskmem_features.to(
            dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
        )
    # NOTE: Do not support the `fill_holes_in_mask_scores` function since it needs cuda extensions
    # potentially fill holes in the predicted masks
    # if self.fill_hole_area > 0:
    #     pred_masks = current_out["pred_masks"].to(self.device, non_blocking=self.device.type == "cuda")
    #     pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area)

    # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
    current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"], inference_state)
    return current_out


method ultralytics.models.sam.predict.SAM2VideoPredictor.add_new_prompts

def add_new_prompts(
    self,
    obj_id,
    points=None,
    labels=None,
    masks=None,
    frame_idx=0,
    inference_state: dict[str, Any] | None = None,
)

Add new points or masks to a specific frame for a given object ID.

This method updates the inference state with new prompts (points or masks) for a specified object and frame index. It ensures that the prompts are either points or masks, but not both, and updates the internal state accordingly. It also handles the generation of new segmentations based on the provided prompts and the existing state.

Args

NameTypeDescriptionDefault
obj_idintThe ID of the object to which the prompts are associated.required
pointstorch.Tensor, optionalThe coordinates of the points of interest.None
labelstorch.Tensor, optionalThe labels corresponding to the points.None
maskstorch.Tensor, optionalBinary masks for the object.None
frame_idxint, optionalThe index of the frame to which the prompts are applied.0
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None

Returns

TypeDescription
pred_masks (torch.Tensor)The flattened predicted masks.
pred_scores (torch.Tensor)A tensor of ones indicating the number of objects.

Notes

  • Only one type of prompt (either points or masks) can be added per call.
  • If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
  • The method handles the consolidation of outputs and resizing of masks to the original video resolution.

Raises

TypeDescription
AssertionErrorIf both masks and points are provided, or neither is provided.
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def add_new_prompts(
    self,
    obj_id,
    points=None,
    labels=None,
    masks=None,
    frame_idx=0,
    inference_state: dict[str, Any] | None = None,
):
    """Add new points or masks to a specific frame for a given object ID.

    This method updates the inference state with new prompts (points or masks) for a specified object and frame
    index. It ensures that the prompts are either points or masks, but not both, and updates the internal state
    accordingly. It also handles the generation of new segmentations based on the provided prompts and the existing
    state.

    Args:
        obj_id (int): The ID of the object to which the prompts are associated.
        points (torch.Tensor, optional): The coordinates of the points of interest.
        labels (torch.Tensor, optional): The labels corresponding to the points.
        masks (torch.Tensor, optional): Binary masks for the object.
        frame_idx (int, optional): The index of the frame to which the prompts are applied.
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.

    Returns:
        pred_masks (torch.Tensor): The flattened predicted masks.
        pred_scores (torch.Tensor): A tensor of ones indicating the number of objects.

    Raises:
        AssertionError: If both `masks` and `points` are provided, or neither is provided.

    Notes:
        - Only one type of prompt (either points or masks) can be added per call.
        - If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
        - The method handles the consolidation of outputs and resizing of masks to the original video resolution.
    """
    inference_state = inference_state or self.inference_state
    assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other."
    obj_idx = self._obj_id_to_idx(obj_id, inference_state)

    point_inputs = None
    pop_key = "point_inputs_per_obj"
    if points is not None:
        point_inputs = {"point_coords": points, "point_labels": labels}
        inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs
        pop_key = "mask_inputs_per_obj"
    inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks
    inference_state[pop_key][obj_idx].pop(frame_idx, None)
    # If this frame hasn't been tracked before, we treat it as an initial conditioning
    # frame, meaning that the inputs points are to generate segments on this frame without
    # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
    # the input points will be used to correct the already tracked masks.
    is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
    obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
    obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
    # Add a frame to conditioning output if it's an initial conditioning frame or
    # if the model sees all frames receiving clicks/mask as conditioning frames.
    is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond
    storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

    # Get any previously predicted mask logits on this object and feed it along with
    # the new clicks into the SAM mask decoder.
    prev_sam_mask_logits = None
    # lookup temporary output dict first, which contains the most recent output
    # (if not found, then lookup conditioning and non-conditioning frame output)
    if point_inputs is not None:
        prev_out = (
            obj_temp_output_dict[storage_key].get(frame_idx)
            or obj_output_dict["cond_frame_outputs"].get(frame_idx)
            or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
        )

        if prev_out is not None and prev_out.get("pred_masks") is not None:
            prev_sam_mask_logits = prev_out["pred_masks"].to(
                device=self.device, non_blocking=self.device.type == "cuda"
            )
            # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
            prev_sam_mask_logits.clamp_(-32.0, 32.0)
    current_out = self._run_single_frame_inference(
        output_dict=obj_output_dict,  # run on the slice of a single object
        frame_idx=frame_idx,
        batch_size=1,  # run on the slice of a single object
        is_init_cond_frame=is_init_cond_frame,
        point_inputs=point_inputs,
        mask_inputs=masks,
        reverse=False,
        # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
        # at the beginning of `propagate_in_video` (after user finalize their clicks). This
        # allows us to enforce non-overlapping constraints on all objects before encoding
        # them into memory.
        run_mem_encoder=False,
        prev_sam_mask_logits=prev_sam_mask_logits,
        inference_state=inference_state,
    )
    # Add the output to the output dict (to be used as future memory)
    obj_temp_output_dict[storage_key][frame_idx] = current_out

    # Resize the output mask to the original video resolution
    consolidated_out = self._consolidate_temp_output_across_obj(
        frame_idx,
        is_cond=is_cond,
        run_mem_encoder=False,
        inference_state=inference_state,
    )
    pred_masks = consolidated_out["pred_masks"].flatten(0, 1)
    return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device)


method ultralytics.models.sam.predict.SAM2VideoPredictor.clear_all_points_in_frame

def clear_all_points_in_frame(self, inference_state, frame_idx, obj_id)

Remove all input points or mask in a specific frame for a given object.

Args

NameTypeDescriptionDefault
inference_staterequired
frame_idxrequired
obj_idrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def clear_all_points_in_frame(self, inference_state, frame_idx, obj_id):
    """Remove all input points or mask in a specific frame for a given object."""
    obj_idx = self._obj_id_to_idx(obj_id, inference_state)

    # Clear the conditioning information on the given frame
    inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
    inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)

    temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
    temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
    temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)

    # Check and see if there are still any inputs left on this frame
    batch_size = len(inference_state["obj_idx_to_id"])
    frame_has_input = False
    for obj_idx2 in range(batch_size):
        if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
            frame_has_input = True
            break
        if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
            frame_has_input = True
            break

    # If this frame has no remaining inputs for any objects, we further clear its
    # conditioning frame status
    if not frame_has_input:
        output_dict = inference_state["output_dict"]
        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
        consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
        consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
        # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
        out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
        if out is not None:
            # The frame is not a conditioning frame anymore since it's not receiving inputs,
            # so we "downgrade" its output (if exists) to a non-conditioning frame output.
            output_dict["non_cond_frame_outputs"][frame_idx] = out
            inference_state["frames_already_tracked"].pop(frame_idx, None)
        # Similarly, do it for the sliced output on each object.
        for obj_idx2 in range(batch_size):
            obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
            obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
            if obj_out is not None:
                obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out

        # If all the conditioning frames have been removed, we also clear the tracking outputs
        if len(output_dict["cond_frame_outputs"]) == 0:
            self._reset_tracking_results(inference_state)


method ultralytics.models.sam.predict.SAM2VideoPredictor.clear_all_points_in_video

def clear_all_points_in_video(self, inference_state)

Remove all input points or mask in all frames throughout the video.

Args

NameTypeDescriptionDefault
inference_staterequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def clear_all_points_in_video(self, inference_state):
    """Remove all input points or mask in all frames throughout the video."""
    self._reset_tracking_results(inference_state)
    # Remove all object ids
    inference_state["obj_id_to_idx"].clear()
    inference_state["obj_idx_to_id"].clear()
    inference_state["obj_ids"].clear()
    inference_state["point_inputs_per_obj"].clear()
    inference_state["mask_inputs_per_obj"].clear()
    inference_state["output_dict_per_obj"].clear()
    inference_state["temp_output_dict_per_obj"].clear()


method ultralytics.models.sam.predict.SAM2VideoPredictor.get_im_features

def get_im_features(self, im, batch = 1)

Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.

Args

NameTypeDescriptionDefault
imtorch.TensorThe input image tensor.required
batchint, optionalThe batch size for expanding features if there are multiple prompts.1

Returns

TypeDescription
vis_feats (torch.Tensor)The visual features extracted from the image.
vis_pos_embed (torch.Tensor)The positional embeddings for the visual features.
feat_sizes (list[tuple])A list containing the sizes of the extracted features.

Notes

  • If batch is greater than 1, the features are expanded to fit the batch size.
  • The method leverages the model's _prepare_backbone_features method to prepare the backbone features.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im, batch=1):
    """Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.

    Args:
        im (torch.Tensor): The input image tensor.
        batch (int, optional): The batch size for expanding features if there are multiple prompts.

    Returns:
        vis_feats (torch.Tensor): The visual features extracted from the image.
        vis_pos_embed (torch.Tensor): The positional embeddings for the visual features.
        feat_sizes (list[tuple]): A list containing the sizes of the extracted features.

    Notes:
        - If `batch` is greater than 1, the features are expanded to fit the batch size.
        - The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features.
    """
    backbone_out = self.model.forward_image(im)
    if batch > 1:  # expand features if there's more than one prompt
        for i, feat in enumerate(backbone_out["backbone_fpn"]):
            backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1)
        for i, pos in enumerate(backbone_out["vision_pos_enc"]):
            pos = pos.expand(batch, -1, -1, -1)
            backbone_out["vision_pos_enc"][i] = pos
    _, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
    return vis_feats, vis_pos_embed, feat_sizes


method ultralytics.models.sam.predict.SAM2VideoPredictor.get_model

def get_model(self)

Retrieve and configure the model with binarization enabled.

Notes

This method overrides the base class implementation to set the binarize flag to True.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve and configure the model with binarization enabled.

    Notes:
        This method overrides the base class implementation to set the binarize flag to True.
    """
    model = super().get_model()
    model.set_binarize(True)
    return model


method ultralytics.models.sam.predict.SAM2VideoPredictor.inference

def inference(self, im, bboxes = None, points = None, labels = None, masks = None)

Perform image segmentation inference based on the given input cues, using the currently loaded image. This

method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and mask decoder for real-time and promptable segmentation tasks.

Args

NameTypeDescriptionDefault
imtorch.TensorThe preprocessed input image in tensor format, with shape (N, C, H, W).required
bboxesnp.ndarray | list, optionalBounding boxes with shape (N, 4), in XYXY format.None
pointsnp.ndarray | list, optionalPoints indicating object locations with shape (N, 2), in pixels.None
labelsnp.ndarray | list, optionalLabels for point prompts, shape (N, ). 1 = foreground, 0 = background.None
masksnp.ndarray, optionalLow-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.None

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape CxHxW, where C is the number of generated masks.
pred_scores (torch.Tensor)An array of length C containing predicted quality scores for each mask.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def inference(self, im, bboxes=None, points=None, labels=None, masks=None):
    """Perform image segmentation inference based on the given input cues, using the currently loaded image. This
    method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
    encoder, and mask decoder for real-time and promptable segmentation tasks.

    Args:
        im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
        bboxes (np.ndarray | list, optional): Bounding boxes with shape (N, 4), in XYXY format.
        points (np.ndarray | list, optional): Points indicating object locations with shape (N, 2), in pixels.
        labels (np.ndarray | list, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
        masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape CxHxW, where C is the number of generated masks.
        pred_scores (torch.Tensor): An array of length C containing predicted quality scores for each mask.
    """
    # Override prompts if any stored in self.prompts
    bboxes = self.prompts.pop("bboxes", bboxes)
    points = self.prompts.pop("points", points)
    masks = self.prompts.pop("masks", masks)

    frame = self.dataset.frame
    self.inference_state["im"] = im
    output_dict = self.inference_state["output_dict"]
    if len(output_dict["cond_frame_outputs"]) == 0:  # initialize prompts
        points, labels, masks = self._prepare_prompts(
            im.shape[2:], self.batch[1][0].shape[:2], bboxes, points, labels, masks
        )
        if points is not None:
            for i in range(len(points)):
                self.add_new_prompts(obj_id=i, points=points[[i]], labels=labels[[i]], frame_idx=frame)
        elif masks is not None:
            for i in range(len(masks)):
                self.add_new_prompts(obj_id=i, masks=masks[[i]], frame_idx=frame)
    self.propagate_in_video_preflight()

    consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
    batch_size = len(self.inference_state["obj_idx_to_id"])
    if len(output_dict["cond_frame_outputs"]) == 0:
        raise RuntimeError("No points are provided; please add points first")

    if frame in consolidated_frame_inds["cond_frame_outputs"]:
        storage_key = "cond_frame_outputs"
        current_out = output_dict[storage_key][frame]
        if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
            # clear non-conditioning memory of the surrounding frames
            self._clear_non_cond_mem_around_input(frame)
    elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
        storage_key = "non_cond_frame_outputs"
        current_out = output_dict[storage_key][frame]
    else:
        storage_key = "non_cond_frame_outputs"
        current_out = self._run_single_frame_inference(
            output_dict=output_dict,
            frame_idx=frame,
            batch_size=batch_size,
            is_init_cond_frame=False,
            point_inputs=None,
            mask_inputs=None,
            reverse=False,
            run_mem_encoder=True,
        )
        output_dict[storage_key][frame] = current_out
    # Create slices of per-object outputs for subsequent interaction with each
    # individual object after tracking.
    self._add_output_per_object(frame, current_out, storage_key)
    self.inference_state["frames_already_tracked"].append(frame)
    pred_masks = current_out["pred_masks"].flatten(0, 1)
    pred_masks = pred_masks[(pred_masks > self.model.mask_threshold).sum((1, 2)) > 0]  # filter blank masks

    return pred_masks, torch.ones(pred_masks.shape[0], dtype=pred_masks.dtype, device=pred_masks.device)


method ultralytics.models.sam.predict.SAM2VideoPredictor.init_state

def init_state(predictor)

Initialize an inference state for the predictor.

This function sets up the initial state required for performing inference on video data. It includes initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata relevant to the tracking process.

Args

NameTypeDescriptionDefault
predictorSAM2VideoPredictorThe predictor object for which to initialize the state.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
@staticmethod
def init_state(predictor):
    """Initialize an inference state for the predictor.

    This function sets up the initial state required for performing inference on video data. It includes
    initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
    relevant to the tracking process.

    Args:
        predictor (SAM2VideoPredictor): The predictor object for which to initialize the state.
    """
    if len(predictor.inference_state) > 0:  # means initialized
        return
    assert predictor.dataset is not None
    assert predictor.dataset.mode == "video"
    predictor.inference_state = predictor._init_state(predictor.dataset.frames)


method ultralytics.models.sam.predict.SAM2VideoPredictor.postprocess

def postprocess(self, preds, img, orig_imgs)

Post-process the predictions to apply non-overlapping constraints if required.

This method extends the post-processing functionality by applying non-overlapping constraints to the predicted masks if the non_overlap_masks flag is set to True. This ensures that the masks do not overlap, which can be useful for certain applications.

Args

NameTypeDescriptionDefault
predstuple[torch.Tensor, torch.Tensor]The predicted masks and scores from the model.required
imgtorch.TensorThe processed image tensor.required
orig_imgslist[np.ndarray]The original images before processing.required

Returns

TypeDescription
listThe post-processed predictions.

Notes

If non_overlap_masks is True, the method applies constraints to ensure non-overlapping masks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def postprocess(self, preds, img, orig_imgs):
    """Post-process the predictions to apply non-overlapping constraints if required.

    This method extends the post-processing functionality by applying non-overlapping constraints to the predicted
    masks if the `non_overlap_masks` flag is set to True. This ensures that the masks do not overlap, which can be
    useful for certain applications.

    Args:
        preds (tuple[torch.Tensor, torch.Tensor]): The predicted masks and scores from the model.
        img (torch.Tensor): The processed image tensor.
        orig_imgs (list[np.ndarray]): The original images before processing.

    Returns:
        (list): The post-processed predictions.

    Notes:
        If `non_overlap_masks` is True, the method applies constraints to ensure non-overlapping masks.
    """
    results = super().postprocess(preds, img, orig_imgs)
    if self.non_overlap_masks:
        for result in results:
            if result.masks is None or len(result.masks) == 0:
                continue
            result.masks.data = self.model._apply_non_overlapping_constraints(result.masks.data.unsqueeze(0))[0]
    return results


method ultralytics.models.sam.predict.SAM2VideoPredictor.propagate_in_video_preflight

def propagate_in_video_preflight(self, inference_state: dict[str, Any] | None = None)

Prepare inference_state and consolidate temporary outputs before tracking.

This method marks the start of tracking, disallowing the addition of new objects until the session is reset. It consolidates temporary outputs from temp_output_dict_per_obj and merges them into output_dict. Additionally, it clears non-conditioning memory around input frames and ensures that the state is consistent with the provided inputs.

Args

NameTypeDescriptionDefault
inference_statedict[str, Any], optionalThe current inference state. If None, uses the instance's inference state.None
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def propagate_in_video_preflight(self, inference_state: dict[str, Any] | None = None):
    """Prepare inference_state and consolidate temporary outputs before tracking.

    This method marks the start of tracking, disallowing the addition of new objects until the session is reset. It
    consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`. Additionally,
    it clears non-conditioning memory around input frames and ensures that the state is consistent with the provided
    inputs.

    Args:
        inference_state (dict[str, Any], optional): The current inference state. If None, uses the instance's
            inference state.
    """
    inference_state = inference_state or self.inference_state
    # Tracking has started and we don't allow adding new objects until session is reset.
    inference_state["tracking_has_started"] = True
    batch_size = len(inference_state["obj_idx_to_id"])

    # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
    # add them into "output_dict".
    temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
    output_dict = inference_state["output_dict"]
    # "consolidated_frame_inds" contains indices of those frames where consolidated
    # temporary outputs have been added (either in this call or any previous calls
    # to `propagate_in_video_preflight`).
    consolidated_frame_inds = inference_state["consolidated_frame_inds"]
    for is_cond in {False, True}:
        # Separately consolidate conditioning and non-conditioning temp outputs
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
        # Find all the frames that contain temporary outputs for any objects
        # (these should be the frames that have just received clicks for mask inputs
        # via `add_new_points` or `add_new_mask`)
        temp_frame_inds = set()
        for obj_temp_output_dict in temp_output_dict_per_obj.values():
            temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
        consolidated_frame_inds[storage_key].update(temp_frame_inds)
        # consolidate the temporary output across all objects on this frame
        for frame_idx in temp_frame_inds:
            consolidated_out = self._consolidate_temp_output_across_obj(
                frame_idx, is_cond=is_cond, run_mem_encoder=True, inference_state=inference_state
            )
            # merge them into "output_dict" and also create per-object slices
            output_dict[storage_key][frame_idx] = consolidated_out
            self._add_output_per_object(frame_idx, consolidated_out, storage_key, inference_state=inference_state)
            if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
                # clear non-conditioning memory of the surrounding frames
                self._clear_non_cond_mem_around_input(frame_idx)

        # clear temporary outputs in `temp_output_dict_per_obj`
        for obj_temp_output_dict in temp_output_dict_per_obj.values():
            obj_temp_output_dict[storage_key].clear()

    # edge case: if an output is added to "cond_frame_outputs", we remove any prior
    # output on the same frame in "non_cond_frame_outputs"
    for frame_idx in output_dict["cond_frame_outputs"]:
        output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
    for obj_output_dict in inference_state["output_dict_per_obj"].values():
        for frame_idx in obj_output_dict["cond_frame_outputs"]:
            obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
    for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
        assert frame_idx in output_dict["cond_frame_outputs"]
        consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)

    # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
    # with either points or mask inputs (which should be true under a correct workflow).
    all_consolidated_frame_inds = (
        consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"]
    )
    input_frames_inds = set()
    for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
        input_frames_inds.update(point_inputs_per_frame.keys())
    for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
        input_frames_inds.update(mask_inputs_per_frame.keys())
    assert all_consolidated_frame_inds == input_frames_inds


method ultralytics.models.sam.predict.SAM2VideoPredictor.remove_object

def remove_object(self, inference_state, obj_id, strict = False)

Remove an object id from the tracking state. If strict is True, we check whether the object id actually

exists and raise an error if it doesn't exist.

Args

NameTypeDescriptionDefault
inference_staterequired
obj_idrequired
strictFalse
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def remove_object(self, inference_state, obj_id, strict=False):
    """Remove an object id from the tracking state. If strict is True, we check whether the object id actually
    exists and raise an error if it doesn't exist.
    """
    old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
    # Check whether this object_id to remove actually exists and possibly raise an error.
    if old_obj_idx_to_rm is None:
        if not strict:
            return inference_state["obj_ids"]
        raise RuntimeError(
            f"Cannot remove object id {obj_id} as it doesn't exist. "
            f"All existing object ids: {inference_state['obj_ids']}."
        )

    # If this is the only remaining object id, we simply reset the state.
    if len(inference_state["obj_id_to_idx"]) == 1:
        self.clear_all_points_in_video(inference_state)
        return inference_state["obj_ids"]

    # There are still remaining objects after removing this object id. In this case,
    # we need to delete the object storage from inference state tensors.
    # Step 0: clear the input on those frames where this object id has point or mask input
    # (note that this step is required as it might downgrade conditioning frames to
    # non-conditioning ones)
    obj_input_frames_inds = set()
    obj_input_frames_inds.update(inference_state["point_inputs_per_obj"][old_obj_idx_to_rm])
    obj_input_frames_inds.update(inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm])
    for frame_idx in obj_input_frames_inds:
        self.clear_all_points_in_frame(inference_state, frame_idx, obj_id)

    # Step 1: Update the object id mapping (note that it must be done after Step 0,
    # since Step 0 still requires the old object id mappings in inference_state)
    old_obj_ids = inference_state["obj_ids"]
    old_obj_inds = list(range(len(old_obj_ids)))
    remain_old_obj_inds = old_obj_inds.copy()
    remain_old_obj_inds.remove(old_obj_idx_to_rm)
    new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
    new_obj_inds = list(range(len(new_obj_ids)))
    # build new mappings
    old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
    inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
    inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
    inference_state["obj_ids"] = new_obj_ids

    # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
    # (note that "consolidated_frame_inds" doesn't need to be updated in this step as
    # it's already handled in Step 0)
    def _map_keys(container):
        new_kvs = []
        for k in old_obj_inds:
            v = container.pop(k)
            if k in old_idx_to_new_idx:
                new_kvs.append((old_idx_to_new_idx[k], v))
        container.update(new_kvs)

    _map_keys(inference_state["point_inputs_per_obj"])
    _map_keys(inference_state["mask_inputs_per_obj"])
    _map_keys(inference_state["output_dict_per_obj"])
    _map_keys(inference_state["temp_output_dict_per_obj"])

    # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
    def _slice_state(output_dict, storage_key):
        for frame_idx, out in output_dict[storage_key].items():
            out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
            out["maskmem_pos_enc"] = [x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]]
            # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
            out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(out["maskmem_pos_enc"], inference_state)
            out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
            out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
            out["object_score_logits"] = out["object_score_logits"][remain_old_obj_inds]
            # also update the per-object slices
            self._add_output_per_object(frame_idx, out, storage_key, inference_state=inference_state)

    _slice_state(inference_state["output_dict"], "cond_frame_outputs")
    _slice_state(inference_state["output_dict"], "non_cond_frame_outputs")

    return inference_state["obj_ids"]





class ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor

def __init__(
    self,
    cfg: Any = DEFAULT_CFG,
    overrides: dict[str, Any] | None = None,
    max_obj_num: int = 3,
    _callbacks: dict[str, Any] | None = None,
) -> None

Bases: SAM2Predictor

SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a

sequence of images.

This constructor initializes the SAM2DynamicInteractivePredictor with a given configuration, applies any specified overrides

Args

NameTypeDescriptionDefault
cfgdict[str, Any]Configuration dictionary containing default settings.DEFAULT_CFG
overridesdict[str, Any] | NoneDictionary of values to override default configuration.None
max_obj_numintMaximum number of objects to track. Default is 3. this is set to keep fix feature size for the model.3
_callbacksdict[str, Any] | NoneDictionary of callback functions to customize behavior.None

Attributes

NameTypeDescription
memory_banklistOrderedDict: Stores the states of each image with prompts.
obj_idx_setsetA set to keep track of the object indices that have been added.
obj_id_to_idxOrderedDictMaps object IDs to their corresponding indices.
obj_idx_to_idOrderedDictMaps object indices to their corresponding IDs.

Methods

NameDescription
_obj_id_to_idxMap client-side object id to model-side object index.
_prepare_memory_conditioned_featuresPrepare the memory-conditioned features for the current image state. If obj_idx is provided, it supposes to
get_im_featuresInitialize the image state by processing the input image and extracting features.
get_maskmem_encGet memory and positional encoding from memory, which is used to condition the current image features.
inferencePerform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two
track_stepTracking step for the current image state to predict masks.
update_memoryAppend the imgState to the memory_bank and update the memory for the model.

Examples

>>> predictor = SAM2DynamicInteractivePredictor(cfg=DEFAULT_CFG)
>>> predictor(source=support_img1, bboxes=bboxes1, obj_ids=labels1, update_memory=True)
>>> results1 = predictor(source=query_img1)
>>> predictor(source=support_img2, bboxes=bboxes2, obj_ids=labels2, update_memory=True)
>>> results2 = predictor(source=query_img2)
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM2DynamicInteractivePredictor(SAM2Predictor):
    """SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a
    sequence of images.

    Attributes:
        memory_bank (list): OrderedDict: Stores the states of each image with prompts.
        obj_idx_set (set): A set to keep track of the object indices that have been added.
        obj_id_to_idx (OrderedDict): Maps object IDs to their corresponding indices.
        obj_idx_to_id (OrderedDict): Maps object indices to their corresponding IDs.

    Methods:
        get_model: Retrieves and configures the model with binarization enabled.
        inference: Performs inference on a single image with optional prompts and object IDs.
        postprocess: Post-processes the predictions to apply non-overlapping constraints if required.
        update_memory: Append the imgState to the memory_bank and update the memory for the model.
        track_step: Tracking step for the current image state to predict masks.
        get_maskmem_enc: Get memory and positional encoding from the memory bank.

    Examples:
            >>> predictor = SAM2DynamicInteractivePredictor(cfg=DEFAULT_CFG)
            >>> predictor(source=support_img1, bboxes=bboxes1, obj_ids=labels1, update_memory=True)
            >>> results1 = predictor(source=query_img1)
            >>> predictor(source=support_img2, bboxes=bboxes2, obj_ids=labels2, update_memory=True)
            >>> results2 = predictor(source=query_img2)
    """

    def __init__(
        self,
        cfg: Any = DEFAULT_CFG,
        overrides: dict[str, Any] | None = None,
        max_obj_num: int = 3,
        _callbacks: dict[str, Any] | None = None,
    ) -> None:
        """Initialize the predictor with configuration and optional overrides.

        This constructor initializes the SAM2DynamicInteractivePredictor with a given configuration, applies any
        specified overrides

        Args:
            cfg (dict[str, Any]): Configuration dictionary containing default settings.
            overrides (dict[str, Any] | None): Dictionary of values to override default configuration.
            max_obj_num (int): Maximum number of objects to track. Default is 3. this is set to keep fix feature size
                for the model.
            _callbacks (dict[str, Any] | None): Dictionary of callback functions to customize behavior.
        """
        super().__init__(cfg, overrides, _callbacks)
        self.non_overlap_masks = True

        # Initialize the memory bank to store image states
        # NOTE: probably need to use dict for better query
        self.memory_bank = []

        # Initialize the object index set and mappings
        self.obj_idx_set = set()
        self.obj_id_to_idx = self.obj_idx_to_id = OrderedDict(enumerate(range(max_obj_num)))
        self._max_obj_num = max_obj_num


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor._obj_id_to_idx

def _obj_id_to_idx(self, obj_id: int) -> int | None

Map client-side object id to model-side object index.

Args

NameTypeDescriptionDefault
obj_idintThe client-side object ID.required

Returns

TypeDescription
intThe model-side object index, or None if not found.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _obj_id_to_idx(self, obj_id: int) -> int | None:
    """Map client-side object id to model-side object index.

    Args:
        obj_id (int): The client-side object ID.

    Returns:
        (int): The model-side object index, or None if not found.
    """
    return self.obj_id_to_idx.get(obj_id, None)


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor._prepare_memory_conditioned_features

def _prepare_memory_conditioned_features(self, obj_idx: int | None) -> torch.Tensor

Prepare the memory-conditioned features for the current image state. If obj_idx is provided, it supposes to

prepare features for a specific prompted object in the image. If obj_idx is None, it prepares features for all objects in the image. If there is no memory, it will directly add a no-memory embedding to the current vision features. If there is memory, it will use the memory features from previous frames to condition the current vision features using a transformer attention mechanism.

Args

NameTypeDescriptionDefault
obj_idxint | NoneThe index of the object for which to prepare the features.required

Returns

TypeDescription
pix_feat_with_mem (torch.Tensor)The memory-conditioned pixel features.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_memory_conditioned_features(self, obj_idx: int | None) -> torch.Tensor:
    """Prepare the memory-conditioned features for the current image state. If obj_idx is provided, it supposes to
    prepare features for a specific prompted object in the image. If obj_idx is None, it prepares features
    for all objects in the image. If there is no memory, it will directly add a no-memory embedding to the
    current vision features. If there is memory, it will use the memory features from previous frames to
    condition the current vision features using a transformer attention mechanism.

    Args:
        obj_idx (int | None): The index of the object for which to prepare the features.

    Returns:
        pix_feat_with_mem (torch.Tensor): The memory-conditioned pixel features.
    """
    if len(self.memory_bank) == 0 or isinstance(obj_idx, int):
        # for initial conditioning frames with, encode them without using any previous memory
        # directly add no-mem embedding (instead of using the transformer encoder)
        pix_feat_with_mem = self.vision_feats[-1] + self.model.no_mem_embed
    else:
        # for inference frames, use the memory features from previous frames
        memory, memory_pos_embed = self.get_maskmem_enc()
        pix_feat_with_mem = self.model.memory_attention(
            curr=self.vision_feats[-1:],
            curr_pos=self.vision_pos_embeds[-1:],
            memory=memory,
            memory_pos=memory_pos_embed,
            num_obj_ptr_tokens=0,  # num_obj_ptr_tokens
        )
    # reshape the output (HW)BC => BCHW
    return pix_feat_with_mem.permute(1, 2, 0).view(
        self._max_obj_num,
        self.model.memory_attention.d_model,
        *self.feat_sizes[-1],
    )


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.get_im_features

def get_im_features(self, img: torch.Tensor | np.ndarray) -> None

Initialize the image state by processing the input image and extracting features.

Args

NameTypeDescriptionDefault
imgtorch.Tensor | np.ndarrayThe input image tensor or numpy array.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, img: torch.Tensor | np.ndarray) -> None:
    """Initialize the image state by processing the input image and extracting features.

    Args:
        img (torch.Tensor | np.ndarray): The input image tensor or numpy array.
    """
    vis_feats, vis_pos_embed, feat_sizes = SAM2VideoPredictor.get_im_features(self, img, batch=self._max_obj_num)
    self.high_res_features = [
        feat.permute(1, 2, 0).view(*feat.shape[1:], *feat_size)
        for feat, feat_size in zip(vis_feats[:-1], feat_sizes[:-1])
    ]

    self.vision_feats = vis_feats
    self.vision_pos_embeds = vis_pos_embed
    self.feat_sizes = feat_sizes


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.get_maskmem_enc

def get_maskmem_enc(self) -> tuple[torch.Tensor, torch.Tensor]

Get memory and positional encoding from memory, which is used to condition the current image features.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_maskmem_enc(self) -> tuple[torch.Tensor, torch.Tensor]:
    """Get memory and positional encoding from memory, which is used to condition the current image features."""
    to_cat_memory, to_cat_memory_pos_embed = [], []
    for consolidated_out in self.memory_bank:
        to_cat_memory.append(consolidated_out["maskmem_features"].flatten(2).permute(2, 0, 1))  # (H*W, B, C)
        maskmem_enc = consolidated_out["maskmem_pos_enc"][-1].flatten(2).permute(2, 0, 1)
        maskmem_enc = maskmem_enc + self.model.maskmem_tpos_enc[self.model.num_maskmem - 1]
        to_cat_memory_pos_embed.append(maskmem_enc)

    memory = torch.cat(to_cat_memory, dim=0)
    memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
    return memory, memory_pos_embed


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.inference

def inference(
    self,
    im: torch.Tensor | np.ndarray,
    bboxes: list[list[float]] | None = None,
    masks: torch.Tensor | np.ndarray | None = None,
    points: list[list[float]] | None = None,
    labels: list[int] | None = None,
    obj_ids: list[int] | None = None,
    update_memory: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]

Perform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two

modes: one is to run inference on a single image without updating the memory, and the other is to update the memory with the provided prompts and object IDs. When update_memory is True, it will update the memory with the provided prompts and obj_ids. When update_memory is False, it will only run inference on the provided image without updating the memory.

Args

NameTypeDescriptionDefault
imtorch.Tensor | np.ndarrayThe input image tensor or numpy array.required
bboxeslist[list[float]] | NoneOptional list of bounding boxes to update the memory.None
maskslist[torch.Tensor | np.ndarray] | NoneOptional masks to update the memory.None
pointslist[list[float]] | NoneOptional list of points to update the memory, each point is [x, y].None
labelslist[int] | NoneOptional list of object IDs corresponding to the points (>0 for positive, 0 for negative).None
obj_idslist[int] | NoneOptional list of object IDs corresponding to the prompts.None
update_memoryboolFlag to indicate whether to update the memory with new objects.False

Returns

TypeDescription
res_masks (torch.Tensor)The output masks in shape (C, H, W)
object_score_logits (torch.Tensor)Quality scores for each mask
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def inference(
    self,
    im: torch.Tensor | np.ndarray,
    bboxes: list[list[float]] | None = None,
    masks: torch.Tensor | np.ndarray | None = None,
    points: list[list[float]] | None = None,
    labels: list[int] | None = None,
    obj_ids: list[int] | None = None,
    update_memory: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
    """Perform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two
    modes: one is to run inference on a single image without updating the memory, and the other is to update
    the memory with the provided prompts and object IDs. When update_memory is True, it will update the
    memory with the provided prompts and obj_ids. When update_memory is False, it will only run inference on
    the provided image without updating the memory.

    Args:
        im (torch.Tensor | np.ndarray): The input image tensor or numpy array.
        bboxes (list[list[float]] | None): Optional list of bounding boxes to update the memory.
        masks (list[torch.Tensor | np.ndarray] | None): Optional masks to update the memory.
        points (list[list[float]] | None): Optional list of points to update the memory, each point is [x, y].
        labels (list[int] | None): Optional list of object IDs corresponding to the points (>0 for positive, 0 for
            negative).
        obj_ids (list[int] | None): Optional list of object IDs corresponding to the prompts.
        update_memory (bool): Flag to indicate whether to update the memory with new objects.

    Returns:
        res_masks (torch.Tensor): The output masks in shape (C, H, W)
        object_score_logits (torch.Tensor): Quality scores for each mask
    """
    self.get_im_features(im)
    points, labels, masks = self._prepare_prompts(
        dst_shape=self.imgsz,
        src_shape=self.batch[1][0].shape[:2],
        points=points,
        bboxes=bboxes,
        labels=labels,
        masks=masks,
    )

    if update_memory:
        if isinstance(obj_ids, int):
            obj_ids = [obj_ids]
        assert obj_ids is not None, "obj_ids must be provided when update_memory is True"
        assert masks is not None or points is not None, (
            "bboxes, masks, or points must be provided when update_memory is True"
        )
        if points is None:  # placeholder
            points = torch.zeros((len(obj_ids), 0, 2), dtype=self.torch_dtype, device=self.device)
            labels = torch.zeros((len(obj_ids), 0), dtype=torch.int32, device=self.device)
        if masks is not None:
            assert len(masks) == len(obj_ids), "masks and obj_ids must have the same length."
        assert len(points) == len(obj_ids), "points and obj_ids must have the same length."
        self.update_memory(obj_ids, points, labels, masks)

    current_out = self.track_step()
    pred_masks, pred_scores = current_out["pred_masks"], current_out["object_score_logits"]
    # filter the masks and logits based on the object indices
    if len(self.obj_idx_set) == 0:
        raise RuntimeError("No objects have been added to the state. Please add objects before inference.")
    idx = list(self.obj_idx_set)  # cls id
    pred_masks, pred_scores = pred_masks[idx], pred_scores[idx]
    # the original score are in [-32,32], and a object score larger than 0 means the object is present, we map it to [-1,1] range,
    # and use a activate function to make sure the object score logits are non-negative, so that we can use it as a mask
    pred_scores = torch.clamp_(pred_scores / 32, min=0)
    return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.track_step

def track_step(
    self,
    obj_idx: int | None = None,
    point: torch.Tensor | None = None,
    label: torch.Tensor | None = None,
    mask: torch.Tensor | None = None,
) -> dict[str, Any]

Tracking step for the current image state to predict masks.

This method processes the image features and runs the SAM heads to predict masks. If obj_idx is provided, it processes the features for a specific prompted object in the image. If obj_idx is None, it processes the features for all objects in the image. The method supports both mask-based output without SAM and full SAM processing with memory-conditioned features.

Args

NameTypeDescriptionDefault
obj_idxint | NoneThe index of the object for which to predict masks. If None, it processes all objects.None
pointtorch.Tensor | NoneThe coordinates of the points of interest with shape (N, 2).None
labeltorch.Tensor | NoneThe labels corresponding to the points where 1 means positive clicks, 0 means negative clicks.None
masktorch.Tensor | NoneThe mask input for the object with shape (H, W).None

Returns

TypeDescription
current_out (dict[str, Any])A dictionary containing the current output with mask predictions and object
Source code in ultralytics/models/sam/predict.pyView on GitHub
def track_step(
    self,
    obj_idx: int | None = None,
    point: torch.Tensor | None = None,
    label: torch.Tensor | None = None,
    mask: torch.Tensor | None = None,
) -> dict[str, Any]:
    """Tracking step for the current image state to predict masks.

    This method processes the image features and runs the SAM heads to predict masks. If obj_idx is provided, it
    processes the features for a specific prompted object in the image. If obj_idx is None, it processes the
    features for all objects in the image. The method supports both mask-based output without SAM and full SAM
    processing with memory-conditioned features.

    Args:
        obj_idx (int | None): The index of the object for which to predict masks. If None, it processes all objects.
        point (torch.Tensor | None): The coordinates of the points of interest with shape (N, 2).
        label (torch.Tensor | None): The labels corresponding to the points where 1 means positive clicks, 0 means
            negative clicks.
        mask (torch.Tensor | None): The mask input for the object with shape (H, W).

    Returns:
        current_out (dict[str, Any]): A dictionary containing the current output with mask predictions and object
            pointers. Keys include 'point_inputs', 'mask_inputs', 'pred_masks', 'pred_masks_high_res',
            'obj_ptr', 'object_score_logits'.
    """
    if mask is not None and self.model.use_mask_input_as_output_without_sam:
        # When use_mask_input_as_output_without_sam=True, we directly output the mask input
        # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
        pix_feat = self.vision_feats[-1].permute(1, 2, 0)
        pix_feat = pix_feat.view(-1, self.model.memory_attention.d_model, *self.feat_sizes[-1])
        _, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = self.model._use_mask_as_output(mask)
    else:
        # fused the visual feature with previous memory features in the memory bank
        pix_feat_with_mem = self._prepare_memory_conditioned_features(obj_idx)
        # calculate the first feature if adding obj_idx exists(means adding prompts)
        pix_feat_with_mem = pix_feat_with_mem[:1] if obj_idx is not None else pix_feat_with_mem
        _, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = self.model._forward_sam_heads(
            backbone_features=pix_feat_with_mem,
            point_inputs={"point_coords": point, "point_labels": label} if obj_idx is not None else None,
            mask_inputs=mask,
            multimask_output=False,
            high_res_features=[feat[: pix_feat_with_mem.shape[0]] for feat in self.high_res_features],
        )
    return {
        "pred_masks": low_res_masks,
        "pred_masks_high_res": high_res_masks,
        "obj_ptr": obj_ptr,
        "object_score_logits": object_score_logits,
    }


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.update_memory

def update_memory(
    self,
    obj_ids: list[int] | None = None,
    points: torch.Tensor | None = None,
    labels: torch.Tensor | None = None,
    masks: torch.Tensor | None = None,
) -> None

Append the imgState to the memory_bank and update the memory for the model.

Args

NameTypeDescriptionDefault
obj_idslist[int]List of object IDs corresponding to the prompts.None
pointstorch.Tensor | NoneTensor of shape (B, N, 2) representing the input points for N objects.None
labelstorch.Tensor | NoneTensor of shape (B, N) representing the labels for the input points.None
maskstorch.Tensor | NoneOptional tensor of shape (N, H, W) representing the input masks for N objects.None
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def update_memory(
    self,
    obj_ids: list[int] | None = None,
    points: torch.Tensor | None = None,
    labels: torch.Tensor | None = None,
    masks: torch.Tensor | None = None,
) -> None:
    """Append the imgState to the memory_bank and update the memory for the model.

    Args:
        obj_ids (list[int]): List of object IDs corresponding to the prompts.
        points (torch.Tensor | None): Tensor of shape (B, N, 2) representing the input points for N objects.
        labels (torch.Tensor | None): Tensor of shape (B, N) representing the labels for the input points.
        masks (torch.Tensor | None): Optional tensor of shape (N, H, W) representing the input masks for N objects.
    """
    consolidated_out = {
        "maskmem_features": None,
        "maskmem_pos_enc": None,
        "pred_masks": torch.full(
            size=(self._max_obj_num, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "obj_ptr": torch.full(
            size=(self._max_obj_num, self.model.hidden_dim),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "object_score_logits": torch.full(
            size=(self._max_obj_num, 1),
            # default to 10.0 for object_score_logits, i.e. assuming the object is
            # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
            fill_value=-32,  # 10.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
    }

    for i, obj_id in enumerate(obj_ids):
        assert obj_id < self._max_obj_num
        obj_idx = self._obj_id_to_idx(int(obj_id))
        self.obj_idx_set.add(obj_idx)
        point, label = points[[i]], labels[[i]]
        mask = masks[[i]][None] if masks is not None else None
        # Currently, only bbox prompt or mask prompt is supported, so we assert that bbox is not None.
        assert point is not None or mask is not None, "Either bbox, points or mask is required"
        out = self.track_step(obj_idx, point, label, mask)
        if out is not None:
            obj_mask = out["pred_masks"]
            assert obj_mask.shape[-2:] == consolidated_out["pred_masks"].shape[-2:], (
                f"Expected mask shape {consolidated_out['pred_masks'].shape[-2:]} but got {obj_mask.shape[-2:]} for object {obj_idx}."
            )
            consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = obj_mask
            consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]

            if "object_score_logits" in out.keys():
                consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out["object_score_logits"]

    high_res_masks = F.interpolate(
        consolidated_out["pred_masks"].to(self.device, non_blocking=self.device.type == "cuda"),
        size=self.imgsz,
        mode="bilinear",
        align_corners=False,
    )

    if self.model.non_overlap_masks_for_mem_enc:
        high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks)
    maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
        current_vision_feats=self.vision_feats,
        feat_sizes=self.feat_sizes,
        pred_masks_high_res=high_res_masks,
        object_score_logits=consolidated_out["object_score_logits"],
        is_mask_from_pts=True,
    )
    consolidated_out["maskmem_features"] = maskmem_features
    consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
    self.memory_bank.append(consolidated_out)





class ultralytics.models.sam.predict.SAM3Predictor

SAM3Predictor()

Bases: SAM2Predictor

Segment Anything Model 3 (SAM3) Interactive Predictor for image segmentation tasks.

Methods

NameDescription
get_modelRetrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks.
setup_modelSetup the SAM3 model with appropriate mean and standard deviation for preprocessing.
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM3Predictor(SAM2Predictor):


method ultralytics.models.sam.predict.SAM3Predictor.get_model

def get_model(self)

Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
    from .build_sam3 import build_interactive_sam3  # slow import

    return build_interactive_sam3(self.args.model, compile=self.args.compile)


method ultralytics.models.sam.predict.SAM3Predictor.setup_model

def setup_model(self, model = None, verbose = True)

Setup the SAM3 model with appropriate mean and standard deviation for preprocessing.

Args

NameTypeDescriptionDefault
modelNone
verboseTrue
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_model(self, model=None, verbose=True):
    """Setup the SAM3 model with appropriate mean and standard deviation for preprocessing."""
    super().setup_model(model, verbose)
    # update mean and std
    self.mean = torch.tensor([127.5, 127.5, 127.5]).view(-1, 1, 1).to(self.device)
    self.std = torch.tensor([127.5, 127.5, 127.5]).view(-1, 1, 1).to(self.device)





class ultralytics.models.sam.predict.SAM3SemanticPredictor

SAM3SemanticPredictor(self, cfg = DEFAULT_CFG, overrides = None, _callbacks = None, bpe_path = None)

Bases: SAM3Predictor

Segment Anything Model 3 (SAM3) Predictor for image segmentation tasks.

Args

NameTypeDescriptionDefault
cfgDEFAULT_CFG
overridesNone
_callbacksNone
bpe_pathNone

Methods

NameDescription
_get_dummy_promptGet a dummy geometric prompt with zero boxes.
_inference_featuresRun inference on the extracted features with optional bounding boxes and labels.
_prepare_geometric_promptsPrepare prompts by normalizing bounding boxes and points to the destination shape.
get_im_featuresExtract image features using the model's backbone.
get_modelRetrieve and initialize the Segment Anything Model 3 (SAM3) for image segmentation tasks.
inferencePerform inference on a single image with optional prompts.
inference_featuresPerform prompts preprocessing and inference on provided image features using the SAM model.
postprocessPost-process the predictions to apply non-overlapping constraints if required.
pre_transformPerform initial transformations on the input image for preprocessing.
reset_promptsReset the prompts for the predictor.
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM3SemanticPredictor(SAM3Predictor):
    """Segment Anything Model 3 (SAM3) Predictor for image segmentation tasks."""

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None, bpe_path=None):
        """Initialize the SAM3SemanticPredictor with configuration and optional overrides."""
        super().__init__(cfg, overrides, _callbacks)
        self.bpe_path = bpe_path


method ultralytics.models.sam.predict.SAM3SemanticPredictor._get_dummy_prompt

def _get_dummy_prompt(self, num_prompts = 1)

Get a dummy geometric prompt with zero boxes.

Args

NameTypeDescriptionDefault
num_prompts1
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _get_dummy_prompt(self, num_prompts=1):
    """Get a dummy geometric prompt with zero boxes."""
    geometric_prompt = Prompt(
        box_embeddings=torch.zeros(0, num_prompts, 4, device=self.device),
        box_mask=torch.zeros(num_prompts, 0, device=self.device, dtype=torch.bool),
    )
    return geometric_prompt


method ultralytics.models.sam.predict.SAM3SemanticPredictor._inference_features

def _inference_features(self, features, bboxes = None, labels = None, text: list[str] | None = None)

Run inference on the extracted features with optional bounding boxes and labels.

Args

NameTypeDescriptionDefault
featuresrequired
bboxesNone
labelsNone
textlist[str] | NoneNone
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _inference_features(self, features, bboxes=None, labels=None, text: list[str] | None = None):
    """Run inference on the extracted features with optional bounding boxes and labels."""
    # NOTE: priority: bboxes > text > pre-set classes
    nc = 1 if bboxes is not None else len(text) if text is not None else len(self.model.names)
    geometric_prompt = self._get_dummy_prompt(nc)
    if bboxes is not None:
        for i in range(len(bboxes)):
            geometric_prompt.append_boxes(bboxes[[i]], labels[[i]])
        if text is None:
            text = ["visual"]  # bboxes needs this `visual` text prompt if no text passed
    if text is not None and self.model.names != text:
        self.model.set_classes(text=text)
    outputs = self.model.forward_grounding(
        backbone_out=features,
        text_ids=torch.arange(nc, device=self.device, dtype=torch.long),
        geometric_prompt=geometric_prompt,
    )
    return outputs


method ultralytics.models.sam.predict.SAM3SemanticPredictor._prepare_geometric_prompts

def _prepare_geometric_prompts(self, src_shape, bboxes = None, labels = None)

Prepare prompts by normalizing bounding boxes and points to the destination shape.

Args

NameTypeDescriptionDefault
src_shaperequired
bboxesNone
labelsNone
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_geometric_prompts(self, src_shape, bboxes=None, labels=None):
    """Prepare prompts by normalizing bounding boxes and points to the destination shape."""
    if bboxes is not None:
        bboxes = torch.as_tensor(bboxes, dtype=self.torch_dtype, device=self.device)
        bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
        # needs xywh as input
        bboxes = ops.xyxy2xywh(bboxes)
        bboxes[:, 0::2] /= src_shape[1]
        bboxes[:, 1::2] /= src_shape[0]
        # Assuming labels are all positive if users don't pass labels.
        if labels is None:
            labels = np.ones(bboxes.shape[:-1])
        labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
        assert bboxes.shape[-2] == labels.shape[-1], (
            f"Number of points {bboxes.shape[-2]} should match number of labels {labels.shape[-1]}."
        )
        bboxes = bboxes.view(-1, 1, 4)  # (N, 1, 4)
        labels = labels.view(-1, 1)  # (N, 1)
    return bboxes, labels


method ultralytics.models.sam.predict.SAM3SemanticPredictor.get_im_features

def get_im_features(self, im)

Extract image features using the model's backbone.

Args

NameTypeDescriptionDefault
imrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def get_im_features(self, im):
    """Extract image features using the model's backbone."""
    return self.model.backbone.forward_image(im)


method ultralytics.models.sam.predict.SAM3SemanticPredictor.get_model

def get_model(self)

Retrieve and initialize the Segment Anything Model 3 (SAM3) for image segmentation tasks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve and initialize the Segment Anything Model 3 (SAM3) for image segmentation tasks."""
    from .build_sam3 import build_sam3_image_model  # slow import

    return build_sam3_image_model(self.args.model, bpe_path=self.bpe_path, compile=self.args.compile)


method ultralytics.models.sam.predict.SAM3SemanticPredictor.inference

def inference(self, im, bboxes = None, labels = None, text: list[str] | None = None, *args, **kwargs)

Perform inference on a single image with optional prompts.

Args

NameTypeDescriptionDefault
imrequired
bboxesNone
labelsNone
textlist[str] | NoneNone
*argsrequired
**kwargsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def inference(self, im, bboxes=None, labels=None, text: list[str] | None = None, *args, **kwargs):
    """Perform inference on a single image with optional prompts."""
    bboxes = self.prompts.pop("bboxes", bboxes)
    labels = self.prompts.pop("labels", labels)
    text = self.prompts.pop("text", text)
    features = self.get_im_features(im) if self.features is None else self.features
    prompts = self._prepare_geometric_prompts(self.batch[1][0].shape[:2], bboxes, labels)
    return self._inference_features(features, *prompts, text=text)


method ultralytics.models.sam.predict.SAM3SemanticPredictor.inference_features

def inference_features(self, features, src_shape, bboxes = None, labels = None, text: list[str] | None = None)

Perform prompts preprocessing and inference on provided image features using the SAM model.

Args

NameTypeDescriptionDefault
featuresdict[str, Any]Extracted image features from the SAM3 model image encoder.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
bboxesnp.ndarray | list[list[float]] | NoneBounding boxes in xyxy format with shape (N, 4). pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N, ).None
textlist[str] | NoneList of text prompts corresponding to the classes.None

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape (C, H, W), where C is the number of generated masks.
pred_bboxes (torch.Tensor)Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.

Notes

  • The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def inference_features(
    self,
    features,
    src_shape,
    bboxes=None,
    labels=None,
    text: list[str] | None = None,
):
    """Perform prompts preprocessing and inference on provided image features using the SAM model.

    Args:
        features (dict[str, Any]): Extracted image features from the SAM3 model image encoder.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in xyxy format with shape (N, 4). pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N, ).
        text (list[str] | None): List of text prompts corresponding to the classes.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
        pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.
            Each box is in xyxy format with additional columns for score and class.

    Notes:
        - The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
    """
    prompts = self._prepare_geometric_prompts(src_shape[:2], bboxes, labels)
    preds = self._inference_features(features, *prompts, text=text)
    pred_boxes = preds["pred_boxes"]  # (nc, num_query, 4)
    pred_logits = preds["pred_logits"]
    pred_masks = preds["pred_masks"]
    pred_scores = pred_logits.sigmoid()
    presence_score = preds["presence_logit_dec"].sigmoid().unsqueeze(1)
    pred_scores = (pred_scores * presence_score).squeeze(-1)
    pred_cls = torch.tensor(
        list(range(pred_scores.shape[0])),
        dtype=pred_scores.dtype,
        device=pred_scores.device,
    )[:, None].expand_as(pred_scores)
    pred_boxes = torch.cat([pred_boxes, pred_scores[..., None], pred_cls[..., None]], dim=-1)

    keep = pred_scores > self.args.conf
    pred_masks = pred_masks[keep]
    pred_boxes = pred_boxes[keep]
    pred_boxes[:, :4] = ops.xywh2xyxy(pred_boxes[:, :4])

    if pred_masks.shape[0] == 0:
        pred_masks, pred_boxes = None, torch.zeros((0, 6), device=pred_masks.device)
    else:
        pred_masks = F.interpolate(pred_masks.float()[None], src_shape[:2], mode="bilinear")[0] > 0.5
        pred_boxes[..., 0] *= src_shape[1]
        pred_boxes[..., 1] *= src_shape[0]
        pred_boxes[..., 2] *= src_shape[1]
        pred_boxes[..., 3] *= src_shape[0]
    return pred_masks, pred_boxes


method ultralytics.models.sam.predict.SAM3SemanticPredictor.postprocess

def postprocess(self, preds, img, orig_imgs)

Post-process the predictions to apply non-overlapping constraints if required.

Args

NameTypeDescriptionDefault
predsrequired
imgrequired
orig_imgsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def postprocess(self, preds, img, orig_imgs):
    """Post-process the predictions to apply non-overlapping constraints if required."""
    pred_boxes = preds["pred_boxes"]  # (nc, num_query, 4)
    pred_logits = preds["pred_logits"]
    pred_masks = preds["pred_masks"]
    pred_scores = pred_logits.sigmoid()
    presence_score = preds["presence_logit_dec"].sigmoid().unsqueeze(1)
    pred_scores = (pred_scores * presence_score).squeeze(-1)
    pred_cls = torch.tensor(
        list(range(pred_scores.shape[0])),
        dtype=pred_scores.dtype,
        device=pred_scores.device,
    )[:, None].expand_as(pred_scores)
    pred_boxes = torch.cat([pred_boxes, pred_scores[..., None], pred_cls[..., None]], dim=-1)

    keep = pred_scores > self.args.conf
    pred_masks = pred_masks[keep]
    pred_boxes = pred_boxes[keep]
    pred_boxes[:, :4] = ops.xywh2xyxy(pred_boxes[:, :4])

    names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
    if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
        orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
    results = []
    for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
        if masks.shape[0] == 0:
            masks, boxes = None, torch.zeros((0, 6), device=pred_masks.device)
        else:
            masks = F.interpolate(masks.float()[None], orig_img.shape[:2], mode="bilinear")[0] > 0.5
            boxes[..., [0, 2]] *= orig_img.shape[1]
            boxes[..., [1, 3]] *= orig_img.shape[0]
        results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
    return results


method ultralytics.models.sam.predict.SAM3SemanticPredictor.pre_transform

def pre_transform(self, im)

Perform initial transformations on the input image for preprocessing.

This method applies transformations such as resizing to prepare the image for further preprocessing. Currently, batched inference is not supported; hence the list length should be 1.

Args

NameTypeDescriptionDefault
imlist[np.ndarray]List containing a single image in HWC numpy array format.required

Returns

TypeDescription
list[np.ndarray]List containing the transformed image.

Examples

>>> predictor = Predictor()
>>> image = np.random.rand(480, 640, 3)  # Single HWC image
>>> transformed = predictor.pre_transform([image])
>>> print(len(transformed))
1

Raises

TypeDescription
AssertionErrorIf the input list contains more than one image.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def pre_transform(self, im):
    """Perform initial transformations on the input image for preprocessing.

    This method applies transformations such as resizing to prepare the image for further preprocessing. Currently,
    batched inference is not supported; hence the list length should be 1.

    Args:
        im (list[np.ndarray]): List containing a single image in HWC numpy array format.

    Returns:
        (list[np.ndarray]): List containing the transformed image.

    Raises:
        AssertionError: If the input list contains more than one image.

    Examples:
        >>> predictor = Predictor()
        >>> image = np.random.rand(480, 640, 3)  # Single HWC image
        >>> transformed = predictor.pre_transform([image])
        >>> print(len(transformed))
        1
    """
    assert len(im) == 1, "SAM model does not currently support batched inference"
    letterbox = LetterBox(self.imgsz, auto=False, center=False, scale_fill=True)  # hardcode here for sam3
    return [letterbox(image=x) for x in im]


method ultralytics.models.sam.predict.SAM3SemanticPredictor.reset_prompts

def reset_prompts(self)

Reset the prompts for the predictor.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def reset_prompts(self):
    """Reset the prompts for the predictor."""
    self.prompts = {}
    self.model.text_embeddings = {}





class ultralytics.models.sam.predict.SAM3VideoPredictor

SAM3VideoPredictor()

Bases: SAM2VideoPredictor, SAM3Predictor

Segment Anything Model 3 (SAM3) Video Predictor for video segmentation tasks.

Methods

NameDescription
get_im_featuresA wrapper to get image features, supporting pre-extracted backbone outputs.
propagate_in_videoPerform image segmentation inference based on the given input cues, using the currently loaded image. This
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM3VideoPredictor(SAM2VideoPredictor, SAM3Predictor):


method ultralytics.models.sam.predict.SAM3VideoPredictor.get_im_features

def get_im_features(self, im, batch = 1)

A wrapper to get image features, supporting pre-extracted backbone outputs.

Args

NameTypeDescriptionDefault
imrequired
batch1
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im, batch=1):
    """A wrapper to get image features, supporting pre-extracted backbone outputs."""
    if getattr(self, "backbone_out", None):
        backbone_out = self.backbone_out
        if batch > 1:  # expand features if there's more than one prompt
            backbone_out = {
                "backbone_fpn": backbone_out["backbone_fpn"].copy(),
                "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
            }
            for i, feat in enumerate(backbone_out["backbone_fpn"]):
                backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1)
            for i, pos in enumerate(backbone_out["vision_pos_enc"]):
                pos = pos.expand(batch, -1, -1, -1)
                backbone_out["vision_pos_enc"][i] = pos
        _, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
        return vis_feats, vis_pos_embed, feat_sizes
    return super().get_im_features(im, batch)


method ultralytics.models.sam.predict.SAM3VideoPredictor.propagate_in_video

def propagate_in_video(self, inference_state, frame_idx)

Perform image segmentation inference based on the given input cues, using the currently loaded image. This

method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and mask decoder for real-time and promptable segmentation tasks.

Args

NameTypeDescriptionDefault
inference_statedictThe current state of inference, including input cues and previous outputs.required
frame_idxintThe index of the current frame in the video sequence.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def propagate_in_video(self, inference_state, frame_idx):
    """Perform image segmentation inference based on the given input cues, using the currently loaded image. This
    method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
    encoder, and mask decoder for real-time and promptable segmentation tasks.

    Args:
        inference_state (dict): The current state of inference, including input cues and previous outputs.
        frame_idx (int): The index of the current frame in the video sequence.
    """
    frame = frame_idx
    output_dict = inference_state["output_dict"]
    obj_ids = inference_state["obj_ids"]
    consolidated_frame_inds = inference_state["consolidated_frame_inds"]
    batch_size = len(inference_state["obj_idx_to_id"])
    if len(output_dict["cond_frame_outputs"]) == 0:
        raise RuntimeError("No points are provided; please add points first")

    if frame in consolidated_frame_inds["cond_frame_outputs"]:
        storage_key = "cond_frame_outputs"
        current_out = output_dict[storage_key][frame]
        if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
            # clear non-conditioning memory of the surrounding frames
            self._clear_non_cond_mem_around_input(frame)
    elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
        storage_key = "non_cond_frame_outputs"
        current_out = output_dict[storage_key][frame]
    else:
        storage_key = "non_cond_frame_outputs"
        current_out = self._run_single_frame_inference(
            output_dict=output_dict,
            frame_idx=frame,
            batch_size=batch_size,
            is_init_cond_frame=False,
            point_inputs=None,
            mask_inputs=None,
            reverse=False,
            run_mem_encoder=True,
            inference_state=inference_state,
        )
        output_dict[storage_key][frame] = current_out
    # Create slices of per-object outputs for subsequent interaction with each
    # individual object after tracking.
    self._add_output_per_object(frame, current_out, storage_key, inference_state=inference_state)
    inference_state["frames_already_tracked"].append(frame)
    pred_masks = current_out["pred_masks"].flatten(0, 1)
    obj_scores = current_out["object_score_logits"]

    return obj_ids, pred_masks, obj_scores





class ultralytics.models.sam.predict.SAM3VideoSemanticPredictor

def __init__(
    self,
    cfg=DEFAULT_CFG,
    overrides=None,
    _callbacks=None,
    bpe_path="bpe_simple_vocab_16e6.txt.gz",
    # prob threshold for detection outputs -- only keep detections above this threshold
    # enters NMS and det-to-track matching
    score_threshold_detection=0.5,
    # IoU threshold for detection NMS
    det_nms_thresh=0.0,
    # IoU threshold for det-to-track matching -- a detection is considered "matched" to a tracklet it
    # overlaps with a tracklet above this threshold -- it is often a loose threshold like 0.1
    assoc_iou_thresh=0.5,
    # IoU threshold for det-to-track matching, which is used to determine whether a masklet is "unmatched"
    # by any detections -- it is often a stricter threshold like 0.5
    trk_assoc_iou_thresh=0.5,
    # prob threshold for a detection to be added as a new object
    new_det_thresh=0.0,
    # hotstart parameters: we hold off the outputs for `hotstart_delay` frames and
    # 1) remove those tracklets unmatched by any detections based on `hotstart_unmatch_thresh`
    # 2) remove those tracklets overlapping with one another based on `hotstart_dup_thresh`
    hotstart_delay=0,
    hotstart_unmatch_thresh=3,
    hotstart_dup_thresh=3,
    # Whether to suppress masks only within hotstart. If False, we can suppress masks even if they start before hotstart period.
    suppress_unmatched_only_within_hotstart=True,
    init_trk_keep_alive=0,
    max_trk_keep_alive=8,
    min_trk_keep_alive=-4,
    # Threshold for suppressing overlapping objects based on recent occlusion
    suppress_overlapping_based_on_recent_occlusion_threshold=0.0,
    decrease_trk_keep_alive_for_empty_masklets=False,
    o2o_matching_masklets_enable=False,  # Enable hungarian matching to match existing masklets
    suppress_det_close_to_boundary=False,
    fill_hole_area=16,
    # The maximum number of objects (masklets) to track across all GPUs (for no limit, set it to -1)
    max_num_objects=-1,
    recondition_every_nth_frame=-1,
    # masket confirmation status (to suppress unconfirmed masklets)
    masklet_confirmation_enable=False,
    # a masklet is confirmed after being consecutively detected and matched for
    # `masklet_confirmation_consecutive_det_thresh`
    masklet_confirmation_consecutive_det_thresh=3,
    # bbox heuristic parameters
    reconstruction_bbox_iou_thresh=0.0,
    reconstruction_bbox_det_score=0.0,
)

Bases: SAM3SemanticPredictor

Segment Anything Model 3 (SAM3) Video Semantic Predictor.

Args

NameTypeDescriptionDefault
cfgDEFAULT_CFG
overridesNone
_callbacksNone
bpe_path"bpe_simple_vocab_16e6.txt.gz"
score_threshold_detection0.5
det_nms_thresh0.0
assoc_iou_thresh0.5
trk_assoc_iou_thresh0.5
new_det_thresh0.0
hotstart_delay0
hotstart_unmatch_thresh3
hotstart_dup_thresh3
suppress_unmatched_only_within_hotstartTrue
init_trk_keep_alive0
max_trk_keep_alive8
min_trk_keep_alive-4
suppress_overlapping_based_on_recent_occlusion_threshold0.0
decrease_trk_keep_alive_for_empty_maskletsFalse
o2o_matching_masklets_enableFalse
suppress_det_close_to_boundaryFalse
fill_hole_area16
max_num_objects-1
recondition_every_nth_frame-1
masklet_confirmation_enableFalse
masklet_confirmation_consecutive_det_thresh3
reconstruction_bbox_iou_thresh0.0
reconstruction_bbox_det_score0.0

Methods

NameDescription
_apply_object_wise_non_overlapping_constraintsApplies non-overlapping constraints object wise (i.e. only one object can claim the overlapping region).
_associate_det_trkMatch detections on the current frame with the existing masklets.
_cache_backbone_featuresBuild and cache SAM2 backbone features.
_det_track_one_frameThis function handles one-step inference for the DenseTracking model in an SPMD manner. At a high-level, all
_drop_new_det_with_obj_limitDrop a few new detections based on the maximum number of objects. We drop new objects based on their
_extract_detection_outputsExtract and filter detection outputs.
_initialize_metadataInitialize metadata for the masklets.
_process_hotstartHandle hotstart heuristics to remove unmatched or duplicated objects.
_propogate_tracker_one_frame_local_gpuInference_states: list of inference states, each state corresponds to a different set of objects.
_recondition_maskletsRecondition masklets based on new high-confidence detections.
_run_single_frame_inferencePerform inference on a single frame and get its inference results.
_suppress_detections_close_to_boundarySuppress detections too close to image edges (for normalized boxes).
_suppress_overlapping_based_on_recent_occlusionSuppress overlapping masks based on the most recent occlusion information. If an object is removed by
_tracker_add_new_objectsAdd a new object to SAM2 inference states.
_tracker_remove_objectsRemove an object from SAM2 inference states. This would remove the object from all frames in the video.
_tracker_update_memoriesRun Sam2 memory encoder, enforcing non-overlapping constraints globally.
add_promptAdd text, point or box prompts on a single frame. This method returns the inference outputs only on the
build_outputsBuild the output masks for the current frame.
inferencePerform inference on a video sequence with optional prompts.
init_stateInitialize an inference state for the predictor.
postprocessPost-process the predictions to apply non-overlapping constraints if required.
run_backbone_and_detectionRun backbone and detection for a single frame.
run_tracker_propagationRun the tracker propagation phase for a single frame in an SPMD manner.
run_tracker_update_execution_phaseExecute the tracker update plan for a single frame in an SPMD manner.
run_tracker_update_planning_phaseRun the tracker update planning phase for a single frame in an SPMD manner.
setup_modelSetup the SAM3VideoSemanticPredictor model.
setup_sourceSetup the source for the SAM3VideoSemanticPredictor model.
update_masklet_confirmation_statusUpdate the confirmation status of masklets based on the current frame's detection results.
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM3VideoSemanticPredictor(SAM3SemanticPredictor):
    """Segment Anything Model 3 (SAM3) Video Semantic Predictor."""

    HIGH_CONF_THRESH = 0.8
    HIGH_IOU_THRESH = 0.8
    NO_OBJ_LOGIT = -10.0
    NEVER_OCCLUDED = -1
    ALWAYS_OCCLUDED = 100000

    UNCONFIRMED = 1  # newly added masklet, not confirmed by any detection yet
    CONFIRMED = 2  # confirmed by at least one detection
    _bb_feat_sizes = [
        (288, 288),
        (144, 144),
        (72, 72),
    ]
    stride = 14

    def __init__(
        self,
        cfg=DEFAULT_CFG,
        overrides=None,
        _callbacks=None,
        bpe_path="bpe_simple_vocab_16e6.txt.gz",
        # prob threshold for detection outputs -- only keep detections above this threshold
        # enters NMS and det-to-track matching
        score_threshold_detection=0.5,
        # IoU threshold for detection NMS
        det_nms_thresh=0.0,
        # IoU threshold for det-to-track matching -- a detection is considered "matched" to a tracklet it
        # overlaps with a tracklet above this threshold -- it is often a loose threshold like 0.1
        assoc_iou_thresh=0.5,
        # IoU threshold for det-to-track matching, which is used to determine whether a masklet is "unmatched"
        # by any detections -- it is often a stricter threshold like 0.5
        trk_assoc_iou_thresh=0.5,
        # prob threshold for a detection to be added as a new object
        new_det_thresh=0.0,
        # hotstart parameters: we hold off the outputs for `hotstart_delay` frames and
        # 1) remove those tracklets unmatched by any detections based on `hotstart_unmatch_thresh`
        # 2) remove those tracklets overlapping with one another based on `hotstart_dup_thresh`
        hotstart_delay=0,
        hotstart_unmatch_thresh=3,
        hotstart_dup_thresh=3,
        # Whether to suppress masks only within hotstart. If False, we can suppress masks even if they start before hotstart period.
        suppress_unmatched_only_within_hotstart=True,
        init_trk_keep_alive=0,
        max_trk_keep_alive=8,
        min_trk_keep_alive=-4,
        # Threshold for suppressing overlapping objects based on recent occlusion
        suppress_overlapping_based_on_recent_occlusion_threshold=0.0,
        decrease_trk_keep_alive_for_empty_masklets=False,
        o2o_matching_masklets_enable=False,  # Enable hungarian matching to match existing masklets
        suppress_det_close_to_boundary=False,
        fill_hole_area=16,
        # The maximum number of objects (masklets) to track across all GPUs (for no limit, set it to -1)
        max_num_objects=-1,
        recondition_every_nth_frame=-1,
        # masket confirmation status (to suppress unconfirmed masklets)
        masklet_confirmation_enable=False,
        # a masklet is confirmed after being consecutively detected and matched for
        # `masklet_confirmation_consecutive_det_thresh`
        masklet_confirmation_consecutive_det_thresh=3,
        # bbox heuristic parameters
        reconstruction_bbox_iou_thresh=0.0,
        reconstruction_bbox_det_score=0.0,
    ):
        """Initialize the SAM3VideoSemanticPredictor with configuration and optional overrides."""
        super().__init__(cfg, overrides, _callbacks, bpe_path=bpe_path)
        self.score_threshold_detection = score_threshold_detection
        self.det_nms_thresh = det_nms_thresh
        self.assoc_iou_thresh = assoc_iou_thresh
        self.trk_assoc_iou_thresh = trk_assoc_iou_thresh
        self.new_det_thresh = new_det_thresh

        # hotstart parameters
        if hotstart_delay > 0:
            assert hotstart_unmatch_thresh <= hotstart_delay
            assert hotstart_dup_thresh <= hotstart_delay
        self.hotstart_delay = hotstart_delay
        self.hotstart_unmatch_thresh = hotstart_unmatch_thresh
        self.hotstart_dup_thresh = hotstart_dup_thresh
        self.suppress_unmatched_only_within_hotstart = suppress_unmatched_only_within_hotstart
        self.init_trk_keep_alive = init_trk_keep_alive
        self.max_trk_keep_alive = max_trk_keep_alive
        self.min_trk_keep_alive = min_trk_keep_alive
        self.suppress_overlapping_based_on_recent_occlusion_threshold = (
            suppress_overlapping_based_on_recent_occlusion_threshold
        )
        self.suppress_det_close_to_boundary = suppress_det_close_to_boundary
        self.decrease_trk_keep_alive_for_empty_masklets = decrease_trk_keep_alive_for_empty_masklets
        self.o2o_matching_masklets_enable = o2o_matching_masklets_enable
        self.fill_hole_area = fill_hole_area
        self._dist_pg_cpu = None  # CPU process group (lazy-initialized on first use)

        max_num_objects = 10000  # no limit
        num_obj_for_compile = 16
        self.max_num_objects = max_num_objects
        self.num_obj_for_compile = num_obj_for_compile
        self.recondition_every_nth_frame = recondition_every_nth_frame
        self.masklet_confirmation_enable = masklet_confirmation_enable
        self.masklet_confirmation_consecutive_det_thresh = masklet_confirmation_consecutive_det_thresh
        self.reconstruction_bbox_iou_thresh = reconstruction_bbox_iou_thresh
        self.reconstruction_bbox_det_score = reconstruction_bbox_det_score

        # build SAM3 tracker
        self.tracker = SAM3VideoPredictor(overrides=overrides)

        self.inference_state = {}
        self.callbacks["on_predict_start"].append(self.init_state)


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._apply_object_wise_non_overlapping_constraints

def _apply_object_wise_non_overlapping_constraints(self, pred_masks, obj_scores, background_value = -10.0)

Applies non-overlapping constraints object wise (i.e. only one object can claim the overlapping region).

Args

NameTypeDescriptionDefault
pred_masksrequired
obj_scoresrequired
background_value-10.0
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _apply_object_wise_non_overlapping_constraints(self, pred_masks, obj_scores, background_value=-10.0):
    """Applies non-overlapping constraints object wise (i.e. only one object can claim the overlapping region)."""
    # Replace pixel scores with object scores
    pred_masks_single_score = torch.where(pred_masks > 0, obj_scores[..., None, None], background_value)
    # Apply pixel-wise non-overlapping constraint based on mask scores
    pixel_level_non_overlapping_masks = self.tracker.model._apply_non_overlapping_constraints(
        pred_masks_single_score
    )
    # Replace object scores with pixel scores. Note, that now only one object can claim the overlapping region
    pred_masks = torch.where(
        pixel_level_non_overlapping_masks > 0,
        pred_masks,
        torch.clamp(pred_masks, max=background_value),
    )
    return pred_masks


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._associate_det_trk

def _associate_det_trk(
    self,
    det_masks: torch.Tensor,
    det_scores_np: np.ndarray,
    trk_masks: torch.Tensor,
    trk_obj_ids: np.ndarray,
)

Match detections on the current frame with the existing masklets.

Args

NameTypeDescriptionDefault
det_maskstorch.Tensor(N, H, W) tensor of predicted masksrequired
det_scores_npnp.ndarray(N,) array of detection scoresrequired
trk_maskstorch.Tensor(M, H, W) tensor of track masksrequired
trk_obj_idsnp.ndarray(M,) array of object IDs corresponding to trk_masksrequired

Returns

TypeDescription
new_det_fa_indsarray of new object indices.
unmatched_trk_obj_idsarray of existing masklet object IDs that are not matched to any detections on this
det_to_matched_trk_obj_idsdict[int, np.ndarray]: mapping from detector's detection indices to the list of
empty_trk_obj_idsarray of existing masklet object IDs with zero area in SAM2 prediction
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _associate_det_trk(
    self,
    det_masks: torch.Tensor,
    det_scores_np: np.ndarray,
    trk_masks: torch.Tensor,
    trk_obj_ids: np.ndarray,
):
    """Match detections on the current frame with the existing masklets.

    Args:
        det_masks: (N, H, W) tensor of predicted masks
        det_scores_np: (N,) array of detection scores
        trk_masks: (M, H, W) tensor of track masks
        trk_obj_ids: (M,) array of object IDs corresponding to trk_masks

    Returns:
        new_det_fa_inds: array of new object indices.
        unmatched_trk_obj_ids: array of existing masklet object IDs that are not matched to any detections on this
            frame (for unmatched, we only count masklets with >0 area)
        det_to_matched_trk_obj_ids: dict[int, np.ndarray]: mapping from detector's detection indices to the list of
            matched tracklet object IDs
        empty_trk_obj_ids: array of existing masklet object IDs with zero area in SAM2 prediction
    """
    iou_threshold = self.assoc_iou_thresh
    iou_threshold_trk = self.trk_assoc_iou_thresh
    new_det_thresh = self.new_det_thresh

    assert det_masks.is_floating_point(), "float tensor expected (do not binarize)"
    assert trk_masks.is_floating_point(), "float tensor expected (do not binarize)"
    assert trk_masks.size(0) == len(trk_obj_ids), (
        f"trk_masks and trk_obj_ids should have the same length, {trk_masks.size(0)} vs {len(trk_obj_ids)}"
    )
    if trk_masks.size(0) == 0:
        # all detections are new
        new_det_fa_inds = np.arange(det_masks.size(0))
        unmatched_trk_obj_ids = np.array([], np.int64)
        empty_trk_obj_ids = np.array([], np.int64)
        det_to_matched_trk_obj_ids = {}
        trk_id_to_max_iou_high_conf_det = {}
        return (
            new_det_fa_inds,
            unmatched_trk_obj_ids,
            det_to_matched_trk_obj_ids,
            trk_id_to_max_iou_high_conf_det,
            empty_trk_obj_ids,
        )
    elif det_masks.size(0) == 0:
        # all previous tracklets are unmatched if they have a non-zero area
        new_det_fa_inds = np.array([], np.int64)
        trk_is_nonempty = (trk_masks > 0).any(dim=(1, 2)).cpu().numpy()
        unmatched_trk_obj_ids = trk_obj_ids[trk_is_nonempty]
        empty_trk_obj_ids = trk_obj_ids[~trk_is_nonempty]
        det_to_matched_trk_obj_ids = {}
        trk_id_to_max_iou_high_conf_det = {}
        return (
            new_det_fa_inds,
            unmatched_trk_obj_ids,
            det_to_matched_trk_obj_ids,
            trk_id_to_max_iou_high_conf_det,
            empty_trk_obj_ids,
        )

    if det_masks.shape[-2:] != trk_masks.shape[-2:]:
        # resize to the smaller size to save GPU memory
        if np.prod(det_masks.shape[-2:]) < np.prod(trk_masks.shape[-2:]):
            trk_masks = F.interpolate(
                trk_masks.unsqueeze(1),
                size=det_masks.shape[-2:],
                mode="bilinear",
                align_corners=False,
            ).squeeze(1)
        else:
            # resize detections to track size
            det_masks = F.interpolate(
                det_masks.unsqueeze(1),
                size=trk_masks.shape[-2:],
                mode="bilinear",
                align_corners=False,
            ).squeeze(1)

    det_masks_binary = det_masks > 0
    trk_masks_binary = trk_masks > 0
    ious = mask_iou(det_masks_binary.flatten(1).float(), trk_masks_binary.flatten(1).float())  # (N, M)

    ious_np = ious.cpu().numpy()
    if self.o2o_matching_masklets_enable:
        from scipy.optimize import linear_sum_assignment

        # Hungarian matching for tracks (one-to-one: each track matches at most one detection)
        cost_matrix = 1 - ious_np  # Hungarian solves for minimum cost
        row_ind, col_ind = linear_sum_assignment(cost_matrix)
        trk_is_matched = np.zeros(trk_masks.size(0), dtype=bool)
        for d, t in zip(row_ind, col_ind):
            if ious_np[d, t] >= iou_threshold_trk:
                trk_is_matched[t] = True
    else:
        trk_is_matched = (ious_np >= iou_threshold_trk).any(axis=0)
    # Non-empty tracks not matched by Hungarian assignment above threshold are unmatched
    trk_is_nonempty = trk_masks_binary.any(dim=(1, 2)).cpu().numpy()
    trk_is_unmatched = np.logical_and(trk_is_nonempty, ~trk_is_matched)
    unmatched_trk_obj_ids = trk_obj_ids[trk_is_unmatched]
    # also record masklets that have zero area in SAM 2 prediction
    empty_trk_obj_ids = trk_obj_ids[~trk_is_nonempty]

    # For detections: allow many tracks to match to the same detection (many-to-one)
    # So, a detection is 'new' if it does not match any track above threshold
    is_new_det = np.logical_and(
        det_scores_np >= new_det_thresh,
        np.logical_not(np.any(ious_np >= iou_threshold, axis=1)),
    )
    new_det_fa_inds = np.nonzero(is_new_det)[0]

    # for each detection, which tracks it matched to (above threshold)
    det_to_matched_trk_obj_ids = {}
    trk_id_to_max_iou_high_conf_det = {}  # trk id --> exactly one detection idx
    det_to_max_iou_trk_idx = np.argmax(ious_np, axis=1)
    det_is_high_conf = (det_scores_np >= self.HIGH_CONF_THRESH) & ~is_new_det
    det_is_high_iou = np.max(ious_np, axis=1) >= self.HIGH_IOU_THRESH
    det_is_high_conf_and_iou = set(np.nonzero(det_is_high_conf & det_is_high_iou)[0])
    for d in range(det_masks.size(0)):
        det_to_matched_trk_obj_ids[d] = trk_obj_ids[ious_np[d, :] >= iou_threshold]
        if d in det_is_high_conf_and_iou:
            trk_obj_id = trk_obj_ids[det_to_max_iou_trk_idx[d]].item()
            trk_id_to_max_iou_high_conf_det[trk_obj_id] = d

    return (
        new_det_fa_inds,
        unmatched_trk_obj_ids,
        det_to_matched_trk_obj_ids,
        trk_id_to_max_iou_high_conf_det,
        empty_trk_obj_ids,
    )


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._cache_backbone_features

def _cache_backbone_features(self, sam3_image_out)

Build and cache SAM2 backbone features.

Args

NameTypeDescriptionDefault
sam3_image_outrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _cache_backbone_features(self, sam3_image_out):
    """Build and cache SAM2 backbone features."""
    sam_mask_decoder = self.tracker.model.sam_mask_decoder
    feats = sam3_image_out["backbone_out"]["sam2_backbone_out"]
    tracker_backbone_fpn = [
        sam_mask_decoder.conv_s0(feats["backbone_fpn"][0]),
        sam_mask_decoder.conv_s1(feats["backbone_fpn"][1]),
        feats["backbone_fpn"][2],
    ]
    tracker_backbone_out = {
        "vision_features": tracker_backbone_fpn[-1],
        "vision_pos_enc": feats["vision_pos_enc"],
        "backbone_fpn": tracker_backbone_fpn,
    }
    # cache the SAM2 backbone features for `frame_idx` in the tracker
    self.tracker.backbone_out = tracker_backbone_out


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._det_track_one_frame

def _det_track_one_frame(
    self,
    im: torch.Tensor,
    text_ids: torch.Tensor,
    frame_idx: int,
    num_frames: int,
    reverse: bool,
    geometric_prompt: Prompt,
    tracker_states_local: list[Any],
    tracker_metadata_prev: dict[str, Any],
    allow_new_detections: bool = True,
)

This function handles one-step inference for the DenseTracking model in an SPMD manner. At a high-level, all

GPUs execute the same function calls as if it's done on a single GPU, while under the hood, some function calls involve distributed computation based on sharded SAM2 states.

  • input_batch contains image and other inputs on the entire video; it should be identical across GPUs - tracker_states_local holds the local masklet information in this GPU shard - tracker_metadata_prev manages the metadata for SAM2 objects, such as which masklet is hold on which GPUs it contains both global and local masklet information

Args

NameTypeDescriptionDefault
imtorch.Tensorrequired
text_idstorch.Tensorrequired
frame_idxintrequired
num_framesintrequired
reverseboolrequired
geometric_promptPromptrequired
tracker_states_locallist[Any]required
tracker_metadata_prevdict[str, Any]required
allow_new_detectionsboolTrue
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _det_track_one_frame(
    self,
    im: torch.Tensor,
    text_ids: torch.Tensor,
    frame_idx: int,
    num_frames: int,
    reverse: bool,
    geometric_prompt: Prompt,
    tracker_states_local: list[Any],
    tracker_metadata_prev: dict[str, Any],
    allow_new_detections: bool = True,
):
    """This function handles one-step inference for the DenseTracking model in an SPMD manner. At a high-level, all
    GPUs execute the same function calls as if it's done on a single GPU, while under the hood, some
    function calls involve distributed computation based on sharded SAM2 states.

    - `input_batch` contains image and other inputs on the entire video; it should be identical across GPUs
    - `tracker_states_local` holds the local masklet information in this GPU shard
    - `tracker_metadata_prev` manages the metadata for SAM2 objects, such as which masklet is hold on which GPUs
      it contains both global and local masklet information
    """
    # Step 1: run backbone and detector in a distributed manner -- this is done via Sam3ImageOnVideoMultiGPU,
    # a MultiGPU model (assigned to `self.detector`) that shards frames in a round-robin manner.
    det_out = self.run_backbone_and_detection(
        im=im,
        text_ids=text_ids,
        geometric_prompt=geometric_prompt,
        allow_new_detections=allow_new_detections,
    )

    # Step 2: each GPU propagates its local SAM2 states to get the SAM2 prediction masks.
    # the returned `tracker_low_res_masks_global` contains the concatenated masklet predictions
    # gathered from all GPUs (as if they are propagated on a single GPU). Note that this step only
    # runs the SAM2 propagation step, but doesn't encode new memory for the predicted masks;
    # we defer memory encoding to `run_tracker_update_execution_phase` after resolving all heuristics.
    if tracker_metadata_prev == {}:
        # initialize masklet metadata if it's uninitialized (empty dict)
        tracker_metadata_prev.update(self._initialize_metadata())
    tracker_low_res_masks_global, tracker_obj_scores_global = self.run_tracker_propagation(
        frame_idx=frame_idx,
        tracker_states_local=tracker_states_local,
        tracker_metadata_prev=tracker_metadata_prev,
    )

    # Step 3: based on detection outputs and the propagated SAM2 prediction masks, we make plans
    # for SAM2 masklet updates (i.e. which objects to add and remove, how to load-balance them, etc).
    # We also run SAM2 memory encoder globally in this step to resolve non-overlapping constraints.
    # **This step should involve all the heuristics needed for any updates.** Most of the update
    # planning will be done on the master rank (GPU 0) and the resulting plan `tracker_update_plan` is
    # broadcasted to other GPUs (to be executed in a distributed manner). This step also generates the
    # new masklet metadata `tracker_metadata_new` (based on its previous version `tracker_metadata_prev`).
    tracker_update_plan, tracker_metadata_new = self.run_tracker_update_planning_phase(
        frame_idx=frame_idx,
        reverse=reverse,
        det_out=det_out,
        tracker_low_res_masks_global=tracker_low_res_masks_global,
        tracker_obj_scores_global=tracker_obj_scores_global,
        tracker_metadata_prev=tracker_metadata_prev,
        tracker_states_local=tracker_states_local,
    )

    # Get reconditioning info from the update plan
    reconditioned_obj_ids = tracker_update_plan.get("reconditioned_obj_ids", set())

    # Step 4: based on `tracker_update_plan`, each GPU executes the update w.r.t. its local SAM2 inference states
    tracker_states_local_new = self.run_tracker_update_execution_phase(
        frame_idx=frame_idx,
        num_frames=num_frames,
        det_out=det_out,
        tracker_states_local=tracker_states_local,
        tracker_update_plan=tracker_update_plan,
    )

    # Step 5: finally, build the outputs for this frame (it only needs to be done on GPU 0 since
    # only GPU 0 will send outputs to the server).
    obj_id_to_mask = self.build_outputs(
        det_out=det_out,
        tracker_low_res_masks_global=tracker_low_res_masks_global,
        tracker_metadata_prev=tracker_metadata_prev,
        tracker_update_plan=tracker_update_plan,
        reconditioned_obj_ids=reconditioned_obj_ids,
    )
    obj_id_to_score = tracker_metadata_new["obj_id_to_score"]
    obj_id_to_cls = tracker_metadata_new["obj_id_to_cls"]
    # a few statistics for the current frame as a part of the output
    frame_stats = {
        "num_obj_tracked": np.sum(tracker_metadata_new["num_obj"]),
        "num_obj_dropped": tracker_update_plan["num_obj_dropped_due_to_limit"],
    }
    # add tracker scores to metadata, it should be fired for frames except the first frame
    if tracker_obj_scores_global.shape[0] > 0:
        # Convert tracker_obj_scores_global to sigmoid scores before updating
        tracker_obj_scores_global = tracker_obj_scores_global.sigmoid().tolist()
        tracker_obj_ids = tracker_metadata_prev["obj_ids"]
        tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx].update(
            dict(zip(tracker_obj_ids, tracker_obj_scores_global))
        )
    return (
        obj_id_to_mask,  # a dict: obj_id --> output mask
        obj_id_to_score,  # a dict: obj_id --> output score (prob)
        obj_id_to_cls,  # a dict: obj_id --> output cls (int)
        tracker_states_local_new,
        tracker_metadata_new,
        frame_stats,
        tracker_obj_scores_global,  # a dict: obj_id --> tracker frame-level scores
    )


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._drop_new_det_with_obj_limit

def _drop_new_det_with_obj_limit(self, new_det_fa_inds, det_scores_np, num_to_keep)

Drop a few new detections based on the maximum number of objects. We drop new objects based on their

detection scores, keeping the high-scoring ones and dropping the low-scoring ones.

Args

NameTypeDescriptionDefault
new_det_fa_indsrequired
det_scores_nprequired
num_to_keeprequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _drop_new_det_with_obj_limit(self, new_det_fa_inds, det_scores_np, num_to_keep):
    """Drop a few new detections based on the maximum number of objects. We drop new objects based on their
    detection scores, keeping the high-scoring ones and dropping the low-scoring ones.
    """
    assert 0 <= num_to_keep <= len(new_det_fa_inds)
    if num_to_keep == 0:
        return np.array([], np.int64)  # keep none
    if num_to_keep == len(new_det_fa_inds):
        return new_det_fa_inds  # keep all

    # keep the top-scoring detections
    score_order = np.argsort(det_scores_np[new_det_fa_inds])[::-1]
    new_det_fa_inds = new_det_fa_inds[score_order[:num_to_keep]]
    return new_det_fa_inds


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._extract_detection_outputs

def _extract_detection_outputs(self, sam3_image_out, allow_new_detections)

Extract and filter detection outputs.

Args

NameTypeDescriptionDefault
sam3_image_outrequired
allow_new_detectionsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _extract_detection_outputs(self, sam3_image_out, allow_new_detections):
    """Extract and filter detection outputs."""
    pred_probs = sam3_image_out["pred_logits"].squeeze(-1).sigmoid()
    if not allow_new_detections:
        pred_probs = pred_probs - 1e8

    pred_cls = torch.tensor(
        list(range(pred_probs.shape[0])),
        dtype=pred_probs.dtype,
        device=pred_probs.device,
    )[:, None].expand_as(pred_probs)

    pred_boxes_xyxy = sam3_image_out["pred_boxes_xyxy"]
    pred_masks = sam3_image_out["pred_masks"]

    keep = pred_probs > self.score_threshold_detection
    return {
        "bbox": pred_boxes_xyxy[keep],
        "mask": pred_masks[keep],
        "scores": pred_probs[keep],
        "cls": pred_cls[keep],
    }


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._initialize_metadata

def _initialize_metadata(self)

Initialize metadata for the masklets.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def _initialize_metadata(self):
    """Initialize metadata for the masklets."""
    tracker_metadata = {
        "obj_ids": np.array([], np.int32),
        "num_obj": np.zeros(1, np.int32),
        "max_obj_id": -1,
        "obj_id_to_score": {},
        "obj_id_to_cls": {},
        "obj_id_to_tracker_score_frame_wise": defaultdict(dict),
        "obj_id_to_last_occluded": {},
    }
    # "metadata" contains metadata that is only stored on (and accessible to) GPU 0
    # - obj_first_frame_idx: obj_id --> first frame index where the object was detected
    # - unmatched_frame_inds: obj_id --> [mismatched frame indices]
    # - overlap_pair_to_frame_inds: (first_appear_obj_id, obj_id) --> [overlap frame indices]
    # - removed_obj_ids: object IDs that are suppressed via hot-start
    metadata = {
        "obj_first_frame_idx": {},
        "unmatched_frame_inds": defaultdict(list),
        "trk_keep_alive": defaultdict(int),  # This is used only for object suppression not for removal
        "overlap_pair_to_frame_inds": defaultdict(list),
        "removed_obj_ids": set(),
        # frame_idx --> set of objects with suppressed outputs, but still continue to be tracked
        "suppressed_obj_ids": defaultdict(set),
    }
    if self.masklet_confirmation_enable:
        # all the following are np.ndarray with the same shape as `obj_ids_all_gpu`
        metadata["masklet_confirmation"] = {
            # "status" is the confirmation status of each masklet
            "status": np.array([], np.int64),
            # "consecutive_det_num" is the number of consecutive frames where the masklet is
            # detected by the detector (with a matched detection)
            "consecutive_det_num": np.array([], np.int64),
        }
    tracker_metadata["metadata"] = metadata

    return tracker_metadata


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._process_hotstart

def _process_hotstart(
    self,
    frame_idx: int,
    reverse: bool,
    det_to_matched_trk_obj_ids: dict[int, np.ndarray],
    new_det_obj_ids: np.ndarray,
    empty_trk_obj_ids: np.ndarray,
    unmatched_trk_obj_ids: np.ndarray,
    metadata: dict[str, Any],
)

Handle hotstart heuristics to remove unmatched or duplicated objects.

Args

NameTypeDescriptionDefault
frame_idxintrequired
reverseboolrequired
det_to_matched_trk_obj_idsdict[int, np.ndarray]required
new_det_obj_idsnp.ndarrayrequired
empty_trk_obj_idsnp.ndarrayrequired
unmatched_trk_obj_idsnp.ndarrayrequired
metadatadict[str, Any]required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _process_hotstart(
    self,
    frame_idx: int,
    reverse: bool,
    det_to_matched_trk_obj_ids: dict[int, np.ndarray],
    new_det_obj_ids: np.ndarray,
    empty_trk_obj_ids: np.ndarray,
    unmatched_trk_obj_ids: np.ndarray,
    metadata: dict[str, Any],
):
    """Handle hotstart heuristics to remove unmatched or duplicated objects."""
    # obj_id --> first frame index where the object was detected
    obj_first_frame_idx = metadata["obj_first_frame_idx"]
    # obj_id --> [mismatched frame indices]
    unmatched_frame_inds = metadata["unmatched_frame_inds"]
    trk_keep_alive = metadata["trk_keep_alive"]
    # (first_appear_obj_id, obj_id) --> [overlap frame indices]
    overlap_pair_to_frame_inds = metadata["overlap_pair_to_frame_inds"]
    # removed_obj_ids: object IDs that are suppressed via hot-start
    removed_obj_ids = metadata["removed_obj_ids"]
    suppressed_obj_ids = metadata["suppressed_obj_ids"][frame_idx]

    obj_ids_newly_removed = set()  # object IDs to be newly removed on this frame
    hotstart_diff = frame_idx - self.hotstart_delay if not reverse else frame_idx + self.hotstart_delay

    # Step 1: log the frame index where each object ID first appears
    for obj_id in new_det_obj_ids:
        if obj_id not in obj_first_frame_idx:
            obj_first_frame_idx[obj_id] = frame_idx
        assert obj_id not in trk_keep_alive
        trk_keep_alive[obj_id] = self.init_trk_keep_alive

    matched_trks = set()
    # We use the det-->tracks list to check for matched objects. Otherwise, we need to compute areas to decide whether they're occluded
    for matched_trks_per_det in det_to_matched_trk_obj_ids.values():
        matched_trks.update(matched_trks_per_det)
    for obj_id in matched_trks:
        # NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the max value of trk_keep_alive
        trk_keep_alive[obj_id] = min(self.max_trk_keep_alive, trk_keep_alive[obj_id] + 1)
    for obj_id in unmatched_trk_obj_ids:
        unmatched_frame_inds[obj_id].append(frame_idx)
        # NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the min value of trk_keep_alive
        # The max keep alive is 2x the min, means the model prefers to keep the prediction rather than suppress it if it was matched long enough.
        trk_keep_alive[obj_id] = max(self.min_trk_keep_alive, trk_keep_alive[obj_id] - 1)
    if self.decrease_trk_keep_alive_for_empty_masklets:
        for obj_id in empty_trk_obj_ids:
            # NOTE: To minimize number of configurable params, we use the hotstart_unmatch_thresh to set the min value of trk_keep_alive
            trk_keep_alive[obj_id] = max(self.min_trk_keep_alive, trk_keep_alive[obj_id] - 1)

    # Step 2: removed tracks that has not matched with detections for `hotstart_unmatch_thresh` frames with hotstart period
    # a) add unmatched frame indices for each existing object ID
    # note that `unmatched_trk_obj_ids` contains those frames where the SAM2 output mask
    # doesn't match any detection; it excludes those frames where SAM2 gives an empty mask
    # b) remove a masklet if it first appears after `hotstart_diff` and is unmatched for more
    # than `self.hotstart_unmatch_thresh` frames
    for obj_id, frame_indices in unmatched_frame_inds.items():
        if obj_id in removed_obj_ids or obj_id in obj_ids_newly_removed:
            continue  # skip if the object is already removed
        if len(frame_indices) >= self.hotstart_unmatch_thresh:
            is_within_hotstart = (obj_first_frame_idx[obj_id] > hotstart_diff and not reverse) or (
                obj_first_frame_idx[obj_id] < hotstart_diff and reverse
            )
            if is_within_hotstart:
                obj_ids_newly_removed.add(obj_id)
                LOGGER.debug(
                    f"Removing object {obj_id} at frame {frame_idx} "
                    f"since it is unmatched for frames: {frame_indices}"
                )
        if (
            trk_keep_alive[obj_id] <= 0  # Object has not been matched for too long
            and not self.suppress_unmatched_only_within_hotstart
            and obj_id not in removed_obj_ids
            and obj_id not in obj_ids_newly_removed
        ):
            LOGGER.debug(f"Suppressing object {obj_id} at frame {frame_idx}, due to being unmatched")
            suppressed_obj_ids.add(obj_id)

    # Step 3: removed tracks that overlaps with another track for `hotstart_dup_thresh` frames
    # a) find overlaps tracks -- we consider overlap if they match to the same detection
    for _, matched_trk_obj_ids in det_to_matched_trk_obj_ids.items():
        if len(matched_trk_obj_ids) < 2:
            continue  # only count detections that are matched to multiple (>=2) masklets
        # if there are multiple matched track ids, we need to find the one that appeared first;
        # these later appearing ids may be removed since they may be considered as duplicates
        first_appear_obj_id = (
            min(matched_trk_obj_ids, key=lambda x: obj_first_frame_idx[x])
            if not reverse
            else max(matched_trk_obj_ids, key=lambda x: obj_first_frame_idx[x])
        )
        for obj_id in matched_trk_obj_ids:
            if obj_id != first_appear_obj_id:
                key = (first_appear_obj_id, obj_id)
                overlap_pair_to_frame_inds[key].append(frame_idx)

    # b) remove a masklet if it first appears after `hotstart_diff` and it overlaps with another
    # masklet (that appears earlier) for more than `self.hotstart_dup_thresh` frames
    for (first_obj_id, obj_id), frame_indices in overlap_pair_to_frame_inds.items():
        if obj_id in removed_obj_ids or obj_id in obj_ids_newly_removed:
            continue  # skip if the object is already removed
        if (obj_first_frame_idx[obj_id] > hotstart_diff and not reverse) or (
            obj_first_frame_idx[obj_id] < hotstart_diff and reverse
        ):
            if len(frame_indices) >= self.hotstart_dup_thresh:
                obj_ids_newly_removed.add(obj_id)
                LOGGER.debug(
                    f"Removing object {obj_id} at frame {frame_idx} "
                    f"since it overlaps with another track {first_obj_id} at frames: {frame_indices}"
                )

    removed_obj_ids.update(obj_ids_newly_removed)
    return obj_ids_newly_removed, metadata


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._propogate_tracker_one_frame_local_gpu

def _propogate_tracker_one_frame_local_gpu(self, inference_states: list[Any], frame_idx: int)

Inference_states: list of inference states, each state corresponds to a different set of objects.

Args

NameTypeDescriptionDefault
inference_stateslist[Any]required
frame_idxintrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _propogate_tracker_one_frame_local_gpu(self, inference_states: list[Any], frame_idx: int):
    """Inference_states: list of inference states, each state corresponds to a different set of objects."""
    obj_ids_local = []
    low_res_masks_list = []
    obj_scores_list = []
    for inference_state in inference_states:
        if len(inference_state["obj_ids"]) == 0:
            continue  # skip propagation on empty inference states

        out_obj_ids, out_low_res_masks, out_obj_scores = self.tracker.propagate_in_video(
            inference_state, frame_idx=frame_idx
        )
        assert isinstance(out_obj_ids, list)
        obj_ids_local.extend(out_obj_ids)
        low_res_masks_list.append(out_low_res_masks.squeeze(1))
        obj_scores_list.append(out_obj_scores.squeeze(1))

    # concatenate the output masklets from all local inference states
    if len(low_res_masks_list) > 0:
        low_res_masks_local = torch.cat(low_res_masks_list, dim=0)
        obj_scores_local = torch.cat(obj_scores_list, dim=0)
        low_res_masks_local = low_res_masks_local.squeeze(1)
    else:
        low_res_masks_local = torch.zeros(0, *self._bb_feat_sizes[0], device=self.device)
        obj_scores_local = torch.zeros(0, device=self.device)

    return obj_ids_local, low_res_masks_local, obj_scores_local


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._recondition_masklets

def _recondition_masklets(
    self,
    frame_idx,
    det_out: dict[str, torch.Tensor],
    trk_id_to_max_iou_high_conf_det: list[int],
    tracker_states_local: list[Any],
    tracker_metadata: dict[str, np.ndarray],
    tracker_obj_scores_global: torch.Tensor,
)

Recondition masklets based on new high-confidence detections.

Args

NameTypeDescriptionDefault
frame_idxrequired
det_outdict[str, torch.Tensor]required
trk_id_to_max_iou_high_conf_detlist[int]required
tracker_states_locallist[Any]required
tracker_metadatadict[str, np.ndarray]required
tracker_obj_scores_globaltorch.Tensorrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _recondition_masklets(
    self,
    frame_idx,
    det_out: dict[str, torch.Tensor],
    trk_id_to_max_iou_high_conf_det: list[int],
    tracker_states_local: list[Any],
    tracker_metadata: dict[str, np.ndarray],
    tracker_obj_scores_global: torch.Tensor,
):
    """Recondition masklets based on new high-confidence detections."""
    # Recondition the masklets based on the new detections
    for trk_obj_id, det_idx in trk_id_to_max_iou_high_conf_det.items():
        new_mask = det_out["mask"][det_idx : det_idx + 1]
        new_mask_binary = (
            F.interpolate(new_mask.unsqueeze(1), size=self.interpol_size, mode="bilinear", align_corners=False) > 0
        )
        HIGH_CONF_THRESH = 0.8
        reconditioned_states_idx = set()
        obj_idx = np.where(tracker_metadata["obj_ids"] == trk_obj_id)[0].item()
        obj_score = tracker_obj_scores_global[obj_idx]
        for state_idx, inference_state in enumerate(tracker_states_local):
            if (
                trk_obj_id in inference_state["obj_ids"]
                # NOTE: Goal of this condition is to avoid reconditioning masks that are occluded/low qualiy.
                # Unfortunately, these can get reconditioned anyway due to batching. We should consider removing these heuristics.
                and obj_score > HIGH_CONF_THRESH
            ):
                LOGGER.debug(
                    f"Adding new mask for track {trk_obj_id} at frame {frame_idx}. Objects {inference_state['obj_ids']} are all reconditioned."
                )
                self.tracker.add_new_prompts(
                    inference_state=inference_state,
                    frame_idx=frame_idx,
                    obj_id=trk_obj_id,
                    masks=new_mask_binary,
                )
                reconditioned_states_idx.add(state_idx)

        for idx in reconditioned_states_idx:
            self.tracker.propagate_in_video_preflight(tracker_states_local[idx])
    return tracker_states_local


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._run_single_frame_inference

def _run_single_frame_inference(self, frame_idx, reverse = False, inference_state = None)

Perform inference on a single frame and get its inference results.

Args

NameTypeDescriptionDefault
frame_idxrequired
reverseFalse
inference_stateNone
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _run_single_frame_inference(self, frame_idx, reverse=False, inference_state=None):
    """Perform inference on a single frame and get its inference results."""
    inference_state = inference_state or self.inference_state
    # prepare inputs
    tracker_states_local = inference_state["tracker_inference_states"]
    has_text_prompt = inference_state["text_prompt"] is not None
    has_geometric_prompt = inference_state["per_frame_geometric_prompt"][frame_idx] is not None
    # run inference for the current frame
    (
        obj_id_to_mask,
        obj_id_to_score,
        obj_id_to_cls,
        tracker_states_local_new,
        tracker_metadata_new,
        frame_stats,
        _,
    ) = self._det_track_one_frame(
        frame_idx=frame_idx,
        num_frames=inference_state["num_frames"],
        reverse=reverse,
        im=inference_state["im"],
        text_ids=inference_state["text_ids"],
        geometric_prompt=(
            self._get_dummy_prompt(num_prompts=len(inference_state["text_ids"]))
            if not has_geometric_prompt
            else inference_state["per_frame_geometric_prompt"][frame_idx]
        ),
        tracker_states_local=tracker_states_local,
        tracker_metadata_prev=inference_state["tracker_metadata"],
        allow_new_detections=has_text_prompt or has_geometric_prompt,
    )
    # update inference state
    inference_state["tracker_inference_states"] = tracker_states_local_new
    inference_state["tracker_metadata"] = tracker_metadata_new

    out = {
        "obj_id_to_mask": obj_id_to_mask,
        "obj_id_to_score": obj_id_to_score,  # first frame detection score
        "obj_id_to_cls": obj_id_to_cls,  # first frame detection score
        "obj_id_to_tracker_score": tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx],
    }
    # removed_obj_ids is only needed on rank 0 to handle hotstart delay buffer
    metadata = tracker_metadata_new["metadata"]
    removed_obj_ids = metadata["removed_obj_ids"]
    out["removed_obj_ids"] = removed_obj_ids
    out["suppressed_obj_ids"] = metadata["suppressed_obj_ids"][frame_idx]
    out["frame_stats"] = frame_stats
    if self.masklet_confirmation_enable:
        status = metadata["masklet_confirmation"]["status"]
        is_unconfirmed = status == self.UNCONFIRMED
        out["unconfirmed_obj_ids"] = tracker_metadata_new["obj_ids_all_gpu"][is_unconfirmed].tolist()
    else:
        out["unconfirmed_obj_ids"] = []
    return out


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._suppress_detections_close_to_boundary

def _suppress_detections_close_to_boundary(self, boxes, margin = 0.025)

Suppress detections too close to image edges (for normalized boxes).

boxes: (N, 4) in xyxy format, normalized [0,1] margin: fraction of image

Args

NameTypeDescriptionDefault
boxesrequired
margin0.025
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _suppress_detections_close_to_boundary(self, boxes, margin=0.025):
    """Suppress detections too close to image edges (for normalized boxes).

    boxes: (N, 4) in xyxy format, normalized [0,1]
    margin: fraction of image
    """
    x_min, y_min, x_max, y_max = boxes.unbind(-1)
    x_c = (x_min + x_max) / 2
    y_c = (y_min + y_max) / 2
    keep = (x_c > margin) & (x_c < 1.0 - margin) & (y_c > margin) & (y_c < 1.0 - margin)

    return keep


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._suppress_overlapping_based_on_recent_occlusion

def _suppress_overlapping_based_on_recent_occlusion(
    self,
    frame_idx: int,
    tracker_low_res_masks_global: torch.Tensor,
    tracker_metadata_prev: dict[str, Any],
    tracker_metadata_new: dict[str, Any],
    obj_ids_newly_removed: set[int],
    reverse: bool = False,
)

Suppress overlapping masks based on the most recent occlusion information. If an object is removed by

hotstart, we always suppress it if it overlaps with any other object.

Args

NameTypeDescriptionDefault
frame_idxintThe current frame index.required
tracker_low_res_masks_globaltorch.TensorThe low-resolution masks for the current frame.required
tracker_metadata_prevdict[str, Any]The metadata from the previous frame.required
tracker_metadata_newdict[str, Any]The metadata for the current frame.required
obj_ids_newly_removedset[int]The object IDs that have been removed.required
reverseboolWhether the tracking is in reverse order.False

Returns

TypeDescription
torch.TensorThe updated low-resolution masks with some objects suppressed.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _suppress_overlapping_based_on_recent_occlusion(
    self,
    frame_idx: int,
    tracker_low_res_masks_global: torch.Tensor,
    tracker_metadata_prev: dict[str, Any],
    tracker_metadata_new: dict[str, Any],
    obj_ids_newly_removed: set[int],
    reverse: bool = False,
):
    """Suppress overlapping masks based on the most recent occlusion information. If an object is removed by
    hotstart, we always suppress it if it overlaps with any other object.

    Args:
        frame_idx (int): The current frame index.
        tracker_low_res_masks_global (torch.Tensor): The low-resolution masks for the current frame.
        tracker_metadata_prev (dict[str, Any]): The metadata from the previous frame.
        tracker_metadata_new (dict[str, Any]): The metadata for the current frame.
        obj_ids_newly_removed (set[int]): The object IDs that have been removed.
        reverse (bool): Whether the tracking is in reverse order.

    Returns:
        (torch.Tensor): The updated low-resolution masks with some objects suppressed.
    """
    obj_ids_global = tracker_metadata_prev["obj_ids"]
    binary_tracker_low_res_masks_global = tracker_low_res_masks_global > 0
    batch_size = tracker_low_res_masks_global.size(0)
    if batch_size > 0:
        assert len(obj_ids_global) == batch_size, (
            f"Mismatch in number of objects: {len(obj_ids_global)} vs {batch_size}"
        )
        last_occluded_prev = torch.cat(
            [
                tracker_metadata_prev["obj_id_to_last_occluded"].get(
                    obj_id,
                    torch.full(
                        (1,),
                        fill_value=(
                            self.NEVER_OCCLUDED if obj_id not in obj_ids_newly_removed else self.ALWAYS_OCCLUDED
                        ),
                        device=binary_tracker_low_res_masks_global.device,
                        dtype=torch.long,
                    ),
                )
                for obj_id in obj_ids_global
            ],
            dim=0,
        )
        to_suppress = self._get_objects_to_suppress_based_on_most_recently_occluded(
            binary_tracker_low_res_masks_global,
            last_occluded_prev,
            obj_ids_global,
            frame_idx,
            reverse,
        )

        # Update metadata with occlusion information
        is_obj_occluded = ~(binary_tracker_low_res_masks_global.any(dim=(-1, -2)))
        is_obj_occluded_or_suppressed = is_obj_occluded | to_suppress
        last_occluded_new = last_occluded_prev.clone()
        last_occluded_new[is_obj_occluded_or_suppressed] = frame_idx
        # Slice out the last occluded frame for each object
        tracker_metadata_new["obj_id_to_last_occluded"] = {
            obj_id: last_occluded_new[obj_idx : obj_idx + 1] for obj_idx, obj_id in enumerate(obj_ids_global)
        }

        # Zero out suppressed masks before memory encoding
        tracker_low_res_masks_global[to_suppress] = self.NO_OBJ_LOGIT

    return tracker_low_res_masks_global


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._tracker_add_new_objects

def _tracker_add_new_objects(
    self,
    frame_idx: int,
    num_frames: int,
    new_obj_ids: list[int],
    new_obj_masks: torch.Tensor,
    tracker_states_local: list[Any],
)

Add a new object to SAM2 inference states.

Args

NameTypeDescriptionDefault
frame_idxintrequired
num_framesintrequired
new_obj_idslist[int]required
new_obj_maskstorch.Tensorrequired
tracker_states_locallist[Any]required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _tracker_add_new_objects(
    self,
    frame_idx: int,
    num_frames: int,
    new_obj_ids: list[int],
    new_obj_masks: torch.Tensor,
    tracker_states_local: list[Any],
):
    """Add a new object to SAM2 inference states."""
    prev_tracker_state = tracker_states_local[0] if len(tracker_states_local) > 0 else None

    # prepare inference_state
    # batch objects that first appear on the same frame together
    # Clear inference state. Keep the cached image features if available.
    new_tracker_state = self.tracker._init_state(num_frames=num_frames)
    # NOTE: adding image placeholder
    new_tracker_state["im"] = None
    new_tracker_state["backbone_out"] = (
        prev_tracker_state.get("backbone_out", None) if prev_tracker_state is not None else None
    )

    assert len(new_obj_ids) == new_obj_masks.size(0)
    assert new_obj_masks.is_floating_point()
    new_obj_masks = F.interpolate(
        new_obj_masks.unsqueeze(0),
        size=self.interpol_size,
        mode="bilinear",
        align_corners=False,
    ).squeeze(0)
    new_obj_masks = new_obj_masks > 0

    # add object one by one
    for new_obj_id, new_mask in zip(new_obj_ids, new_obj_masks):
        self.tracker.add_new_prompts(
            inference_state=new_tracker_state,
            frame_idx=frame_idx,
            obj_id=new_obj_id,
            masks=new_mask[None, None],  # add bs, channel
        )
    # NOTE: we skip enforcing the non-overlapping constraint **globally** when adding new objects.
    self.tracker.propagate_in_video_preflight(new_tracker_state)
    tracker_states_local.append(new_tracker_state)
    return tracker_states_local


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._tracker_remove_objects

def _tracker_remove_objects(self, tracker_states_local: list[Any], obj_ids: list[int])

Remove an object from SAM2 inference states. This would remove the object from all frames in the video.

Args

NameTypeDescriptionDefault
tracker_states_locallist[Any]required
obj_idslist[int]required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _tracker_remove_objects(self, tracker_states_local: list[Any], obj_ids: list[int]):
    """Remove an object from SAM2 inference states. This would remove the object from all frames in the video."""
    if not obj_ids:
        return
    # Filter out states that become empty after removal
    active_states = []
    for state in tracker_states_local:
        for obj_id in obj_ids:
            # we try to remove `obj_id` on every inference state with `strict=False`
            # it will not do anything if an inference state doesn't contain `obj_id`
            self.tracker.remove_object(state, obj_id, strict=False)

        if len(state["obj_ids"]) > 0:
            active_states.append(state)

    # Update the list in-place
    tracker_states_local[:] = active_states


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor._tracker_update_memories

def _tracker_update_memories(self, tracker_inference_states: list[Any], frame_idx: int, low_res_masks: torch.Tensor)

Run Sam2 memory encoder, enforcing non-overlapping constraints globally.

Args

NameTypeDescriptionDefault
tracker_inference_stateslist[Any]required
frame_idxintrequired
low_res_maskstorch.Tensorrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _tracker_update_memories(
    self, tracker_inference_states: list[Any], frame_idx: int, low_res_masks: torch.Tensor
):
    """Run Sam2 memory encoder, enforcing non-overlapping constraints globally."""
    if len(tracker_inference_states) == 0:
        return
    # NOTE: inspect this part if we observe OOMs in the demo
    high_res_masks = F.interpolate(
        low_res_masks.unsqueeze(1),
        size=self.interpol_size,
        mode="bilinear",
        align_corners=False,
    )
    # We first apply non-overlapping constraints before memory encoding. This may include some suppression heuristics.
    if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
        high_res_masks = self.tracker.model._suppress_object_pw_area_shrinkage(high_res_masks)
    # Instead of gathering the predicted object scores, we use mask areas as a proxy.
    object_score_logits = torch.where((high_res_masks > 0).any(dim=(-1, -2)), 10.0, -10.0)

    # Run the memory encoder on local slices for each GPU
    start_idx_gpu = 0
    start_idx_state = start_idx_gpu
    for tracker_state in tracker_inference_states:
        num_obj_per_state = len(tracker_state["obj_ids"])
        if num_obj_per_state == 0:
            continue
        # Get the local high-res masks and object score logits for this inference state
        end_idx_state = start_idx_state + num_obj_per_state
        local_high_res_masks = high_res_masks[start_idx_state:end_idx_state]
        local_object_score_logits = object_score_logits[start_idx_state:end_idx_state]
        local_batch_size = local_high_res_masks.size(0)
        # Run Sam2 memory encoder. Note that we do not re-enforce the non-overlapping constraint as it is turned off by default

        encoded_mem = self.tracker._run_memory_encoder(
            local_batch_size,
            local_high_res_masks,
            local_object_score_logits,
            is_mask_from_pts=False,
            inference_state=tracker_state,
        )
        local_maskmem_features, local_maskmem_pos_enc = encoded_mem
        # Store encoded memories in the local inference state
        output_dict = tracker_state["output_dict"]
        for storage_key in ["cond_frame_outputs", "non_cond_frame_outputs"]:
            if frame_idx not in output_dict[storage_key]:
                continue
            output_dict[storage_key][frame_idx]["maskmem_features"] = local_maskmem_features
            output_dict[storage_key][frame_idx]["maskmem_pos_enc"] = [pos for pos in local_maskmem_pos_enc]
            # for batched inference state, we also need to add per-object
            # memory slides to support instance interactivity
            self.tracker._add_output_per_object(
                inference_state=tracker_state,
                frame_idx=frame_idx,
                current_out=output_dict[storage_key][frame_idx],
                storage_key=storage_key,
            )
        start_idx_state += num_obj_per_state


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.add_prompt

def add_prompt(self, frame_idx, text = None, bboxes = None, labels = None, inference_state = None)

Add text, point or box prompts on a single frame. This method returns the inference outputs only on the

prompted frame.

Note that text prompts are NOT associated with a particular frame (i.e. they apply to all frames). However, we only run inference on the frame specified in frame_idx.

Args

NameTypeDescriptionDefault
frame_idxrequired
textNone
bboxesNone
labelsNone
inference_stateNone
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def add_prompt(
    self,
    frame_idx,
    text=None,
    bboxes=None,
    labels=None,
    inference_state=None,
):
    """Add text, point or box prompts on a single frame. This method returns the inference outputs only on the
    prompted frame.

    Note that text prompts are NOT associated with a particular frame (i.e. they apply
    to all frames). However, we only run inference on the frame specified in `frame_idx`.
    """
    inference_state = inference_state or self.inference_state
    assert text is not None or bboxes is not None, "at least one type of prompt (text, boxes) must be provided"

    # 1) handle text prompt
    use_text = text is not None
    text = text if use_text else "visual"
    text_batch = [text] if isinstance(text, str) else text
    inference_state["text_prompt"] = text if use_text else None
    n = len(text_batch)
    text_ids = torch.arange(n, device=self.device, dtype=torch.long)
    inference_state["text_ids"] = text_ids
    if text is not None and self.model.names != text:
        self.model.set_classes(text=text)

    # 2) handle box prompt
    bboxes, labels = self._prepare_geometric_prompts(self.batch[1][0].shape[:2], bboxes, labels)
    assert (bboxes is not None) == (labels is not None)
    geometric_prompt = self._get_dummy_prompt(num_prompts=n)
    if bboxes is not None:
        for i in range(len(bboxes)):
            geometric_prompt.append_boxes(bboxes[[i]], labels[[i]])
    inference_state["per_frame_geometric_prompt"][frame_idx] = geometric_prompt
    out = self._run_single_frame_inference(frame_idx, reverse=False, inference_state=inference_state)
    return frame_idx, out


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.build_outputs

def build_outputs(
    self,
    det_out: dict[str, torch.Tensor],
    tracker_low_res_masks_global: torch.Tensor,
    tracker_metadata_prev: dict[str, np.ndarray],
    tracker_update_plan: dict[str, np.ndarray],
    reconditioned_obj_ids: set | None = None,
)

Build the output masks for the current frame.

Args

NameTypeDescriptionDefault
det_outdict[str, torch.Tensor]required
tracker_low_res_masks_globaltorch.Tensorrequired
tracker_metadata_prevdict[str, np.ndarray]required
tracker_update_plandict[str, np.ndarray]required
reconditioned_obj_idsset | NoneNone
Source code in ultralytics/models/sam/predict.pyView on GitHub
def build_outputs(
    self,
    det_out: dict[str, torch.Tensor],
    tracker_low_res_masks_global: torch.Tensor,
    tracker_metadata_prev: dict[str, np.ndarray],
    tracker_update_plan: dict[str, np.ndarray],
    reconditioned_obj_ids: set | None = None,
):
    """Build the output masks for the current frame."""
    new_det_fa_inds: np.ndarray = tracker_update_plan["new_det_fa_inds"]
    new_det_obj_ids: np.ndarray = tracker_update_plan["new_det_obj_ids"]
    obj_id_to_mask = {}  # obj_id --> output mask tensor

    # Part 1: masks from previous SAM2 propagation
    existing_masklet_obj_ids = tracker_metadata_prev["obj_ids"]
    existing_masklet_binary = tracker_low_res_masks_global.unsqueeze(1)
    assert len(existing_masklet_obj_ids) == len(existing_masklet_binary)
    for obj_id, mask in zip(existing_masklet_obj_ids, existing_masklet_binary):
        obj_id_to_mask[obj_id] = mask  # (1, H_video, W_video)

    # Part 2: masks from new detections
    new_det_fa_inds_t = torch.from_numpy(new_det_fa_inds)
    new_det_low_res_masks = det_out["mask"][new_det_fa_inds_t].unsqueeze(1)
    assert len(new_det_obj_ids) == len(new_det_low_res_masks)
    for obj_id, mask in zip(new_det_obj_ids, new_det_low_res_masks):
        obj_id_to_mask[obj_id] = mask  # (1, H_video, W_video)

    # Part 3: Override masks for reconditioned objects using detection masks
    if reconditioned_obj_ids is not None and len(reconditioned_obj_ids) > 0:
        trk_id_to_max_iou_high_conf_det = tracker_update_plan.get("trk_id_to_max_iou_high_conf_det", {})

        for obj_id in reconditioned_obj_ids:
            det_idx = trk_id_to_max_iou_high_conf_det.get(obj_id)

            if det_idx is not None:
                obj_id_to_mask[obj_id] = det_out["mask"][det_idx].unsqueeze(0)

    return obj_id_to_mask


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.inference

def inference(self, im, bboxes = None, labels = None, text: list[str] | None = None, *args, **kwargs)

Perform inference on a video sequence with optional prompts.

Args

NameTypeDescriptionDefault
imrequired
bboxesNone
labelsNone
textlist[str] | NoneNone
*argsrequired
**kwargsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def inference(self, im, bboxes=None, labels=None, text: list[str] | None = None, *args, **kwargs):
    """Perform inference on a video sequence with optional prompts."""
    frame = self.dataset.frame - 1  # align frame index to be 0-based
    self.inference_state["im"] = im  # only pass image for subsequent frames
    if "text_ids" not in self.inference_state:  # first frame processing
        self.add_prompt(frame_idx=frame, text=text, bboxes=bboxes, labels=labels)
    return self._run_single_frame_inference(frame, reverse=False)


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.init_state

def init_state(predictor)

Initialize an inference state for the predictor.

This function sets up the initial state required for performing inference on video data. It includes initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata relevant to the tracking process.

Args

NameTypeDescriptionDefault
predictorSAM3VideoSemanticPredictorThe predictor object for which to initialize the state.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
@staticmethod
def init_state(predictor):
    """Initialize an inference state for the predictor.

    This function sets up the initial state required for performing inference on video data. It includes
    initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
    relevant to the tracking process.

    Args:
        predictor (SAM3VideoSemanticPredictor): The predictor object for which to initialize the state.
    """
    if len(predictor.inference_state) > 0:  # means initialized
        return
    assert predictor.dataset is not None
    assert predictor.dataset.mode == "video"
    num_frames = predictor.dataset.frames
    inference_state = {
        "num_frames": num_frames,
        "tracker_inference_states": [],
        "tracker_metadata": {},
    }
    inference_state["text_prompt"] = None
    inference_state["per_frame_geometric_prompt"] = [None] * num_frames
    predictor.inference_state = inference_state


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.postprocess

def postprocess(self, preds, img, orig_imgs)

Post-process the predictions to apply non-overlapping constraints if required.

Args

NameTypeDescriptionDefault
predsrequired
imgrequired
orig_imgsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def postprocess(self, preds, img, orig_imgs):
    """Post-process the predictions to apply non-overlapping constraints if required."""
    obj_id_to_mask = preds["obj_id_to_mask"]  # low res masks
    curr_obj_ids = sorted(obj_id_to_mask.keys())
    if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
        orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

    if len(curr_obj_ids) == 0:
        pred_masks, pred_boxes = None, torch.zeros((0, 7), device=self.device)
    else:
        pred_masks = torch.cat([obj_id_to_mask[obj_id] for obj_id in curr_obj_ids], dim=0)
        pred_masks = F.interpolate(pred_masks.float()[None], orig_imgs[0].shape[:2], mode="bilinear")[0] > 0.5
        pred_ids = torch.tensor(curr_obj_ids, dtype=torch.int32, device=pred_masks.device)
        pred_scores = torch.tensor(
            [preds["obj_id_to_score"][obj_id] for obj_id in curr_obj_ids], device=pred_masks.device
        )
        pred_cls = torch.tensor(
            [preds["obj_id_to_cls"][obj_id] for obj_id in curr_obj_ids], device=pred_masks.device
        )
        keep = (pred_scores > self.args.conf) & pred_masks.any(dim=(1, 2))
        pred_masks = pred_masks[keep]
        pred_boxes = batched_mask_to_box(pred_masks)
        pred_boxes = torch.cat(
            [pred_boxes, pred_ids[keep][:, None], pred_scores[keep][..., None], pred_cls[keep][..., None]], dim=-1
        )
        if pred_masks.shape[0] > 1:
            tracker_scores = torch.tensor(
                [
                    (
                        preds["obj_id_to_tracker_score"][obj_id]
                        if obj_id in preds["obj_id_to_tracker_score"]
                        else 0.0
                    )
                    for obj_id in curr_obj_ids
                ],
                device=pred_masks.device,
            )[keep]
            pred_masks = (
                self._apply_object_wise_non_overlapping_constraints(
                    pred_masks.unsqueeze(1),
                    tracker_scores.unsqueeze(1),
                    background_value=0,
                ).squeeze(1)
            ) > 0

    # names = getattr(self.model, "names", [str(i) for i in range(pred_scores.shape[0])])
    names = dict(enumerate(str(i) for i in range(pred_masks.shape[0])))
    results = []
    for masks, boxes, orig_img, img_path in zip([pred_masks], [pred_boxes], orig_imgs, self.batch[0]):
        results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=boxes))
    return results


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.run_backbone_and_detection

def run_backbone_and_detection(
    self, im: torch.Tensor, text_ids: torch.Tensor, geometric_prompt: Prompt, allow_new_detections: bool
)

Run backbone and detection for a single frame.

Args

NameTypeDescriptionDefault
imtorch.Tensorrequired
text_idstorch.Tensorrequired
geometric_promptPromptrequired
allow_new_detectionsboolrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def run_backbone_and_detection(
    self, im: torch.Tensor, text_ids: torch.Tensor, geometric_prompt: Prompt, allow_new_detections: bool
):
    """Run backbone and detection for a single frame."""
    features = self.get_im_features(im)
    sam3_image_out = self.model.forward_grounding(
        backbone_out=features, text_ids=text_ids, geometric_prompt=geometric_prompt
    )
    det_out = self._extract_detection_outputs(sam3_image_out, allow_new_detections)
    self._cache_backbone_features(sam3_image_out)
    return det_out


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.run_tracker_propagation

def run_tracker_propagation(
    self, frame_idx: int, tracker_states_local: list[Any], tracker_metadata_prev: dict[str, np.ndarray]
)

Run the tracker propagation phase for a single frame in an SPMD manner.

Args

NameTypeDescriptionDefault
frame_idxintrequired
tracker_states_locallist[Any]required
tracker_metadata_prevdict[str, np.ndarray]required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def run_tracker_propagation(
    self, frame_idx: int, tracker_states_local: list[Any], tracker_metadata_prev: dict[str, np.ndarray]
):
    """Run the tracker propagation phase for a single frame in an SPMD manner."""
    # Step 1: propagate the local SAM2 states to get the current frame's prediction
    # `low_res_masks_local` of the existing masklets on this GPU
    # - obj_ids_local: list[int] -- list of object IDs
    # - low_res_masks_local: Tensor -- (num_local_obj, H_mask, W_mask)
    obj_ids_local, low_res_masks_local, obj_scores_local = self._propogate_tracker_one_frame_local_gpu(
        tracker_states_local, frame_idx=frame_idx
    )

    assert np.all(obj_ids_local == tracker_metadata_prev["obj_ids"]), "{} != {}".format(
        obj_ids_local, tracker_metadata_prev["obj_ids"]
    )

    # Step 2: all-gather `low_res_masks_local` into `low_res_masks_global`
    # - low_res_masks_global: Tensor -- (num_global_obj, H_mask, W_mask)
    low_res_masks_global = low_res_masks_local
    obj_scores_global = obj_scores_local
    return low_res_masks_global, obj_scores_global


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.run_tracker_update_execution_phase

def run_tracker_update_execution_phase(
    self,
    frame_idx: int,
    num_frames: int,
    det_out: dict[str, torch.Tensor],
    tracker_states_local: list[Any],
    tracker_update_plan: dict[str, np.ndarray],
)

Execute the tracker update plan for a single frame in an SPMD manner.

Args

NameTypeDescriptionDefault
frame_idxintrequired
num_framesintrequired
det_outdict[str, torch.Tensor]required
tracker_states_locallist[Any]required
tracker_update_plandict[str, np.ndarray]required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def run_tracker_update_execution_phase(
    self,
    frame_idx: int,
    num_frames: int,
    det_out: dict[str, torch.Tensor],
    tracker_states_local: list[Any],
    tracker_update_plan: dict[str, np.ndarray],
):
    """Execute the tracker update plan for a single frame in an SPMD manner."""
    # initialize tracking scores with detection scores
    new_det_fa_inds: np.ndarray = tracker_update_plan["new_det_fa_inds"]
    new_det_obj_ids: np.ndarray = tracker_update_plan["new_det_obj_ids"]
    # new_det_gpu_ids: np.ndarray = tracker_update_plan["new_det_gpu_ids"]
    new_det_obj_ids_local: np.ndarray = new_det_obj_ids
    new_det_fa_inds_local: np.ndarray = new_det_fa_inds
    obj_ids_newly_removed: set[int] = tracker_update_plan["obj_ids_newly_removed"]

    # Step 1: add new objects from the detector to SAM2 inference states
    if len(new_det_fa_inds_local) > 0:
        new_det_fa_inds_local_t = torch.from_numpy(new_det_fa_inds_local)
        new_det_masks: torch.Tensor = det_out["mask"][new_det_fa_inds_local_t]
        # initialize SAM2 with new object masks
        tracker_states_local = self._tracker_add_new_objects(
            frame_idx=frame_idx,
            num_frames=num_frames,
            new_obj_ids=new_det_obj_ids_local,
            new_obj_masks=new_det_masks,
            tracker_states_local=tracker_states_local,
        )

    # Step 2: remove from SAM2 inference states those objects removed by heuristics
    if len(obj_ids_newly_removed) > 0:
        self._tracker_remove_objects(tracker_states_local, obj_ids_newly_removed)

    return tracker_states_local


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.run_tracker_update_planning_phase

def run_tracker_update_planning_phase(
    self,
    frame_idx: int,
    reverse: bool,
    det_out: dict[str, torch.Tensor],
    tracker_low_res_masks_global: torch.Tensor,
    tracker_obj_scores_global: torch.Tensor,
    tracker_metadata_prev: dict[str, np.ndarray],
    tracker_states_local: list[Any],
)

Run the tracker update planning phase for a single frame in an SPMD manner.

Args

NameTypeDescriptionDefault
frame_idxintrequired
reverseboolrequired
det_outdict[str, torch.Tensor]required
tracker_low_res_masks_globaltorch.Tensorrequired
tracker_obj_scores_globaltorch.Tensorrequired
tracker_metadata_prevdict[str, np.ndarray]required
tracker_states_locallist[Any]required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def run_tracker_update_planning_phase(
    self,
    frame_idx: int,
    reverse: bool,
    det_out: dict[str, torch.Tensor],
    tracker_low_res_masks_global: torch.Tensor,
    tracker_obj_scores_global: torch.Tensor,
    tracker_metadata_prev: dict[str, np.ndarray],
    tracker_states_local: list[Any],
):
    """Run the tracker update planning phase for a single frame in an SPMD manner."""
    # initialize new metadata from previous metadata (its values will be updated later)
    tracker_metadata_new = {
        "obj_ids": deepcopy(tracker_metadata_prev["obj_ids"]),
        "num_obj": deepcopy(tracker_metadata_prev["num_obj"]),
        "obj_id_to_score": deepcopy(tracker_metadata_prev["obj_id_to_score"]),
        "obj_id_to_cls": deepcopy(tracker_metadata_prev["obj_id_to_cls"]),
        "obj_id_to_tracker_score_frame_wise": deepcopy(tracker_metadata_prev["obj_id_to_tracker_score_frame_wise"]),
        "obj_id_to_last_occluded": {},  # will be filled later
        "max_obj_id": deepcopy(tracker_metadata_prev["max_obj_id"]),
    }

    # Initialize reconditioned_obj_ids early to avoid UnboundLocalError
    reconditioned_obj_ids = set()

    # Step 1: make the update plan and resolve heuristics on GPU 0
    det_mask_preds: torch.Tensor = det_out["mask"]  # low-res mask logits
    det_scores_np: np.ndarray = det_out["scores"].float().cpu().numpy()
    det_cls_np: np.ndarray = det_out["cls"].float().cpu().numpy()
    det_bbox_xyxy: torch.Tensor = det_out["bbox"]
    # a) match detector and tracker masks and find new objects
    (
        new_det_fa_inds,
        unmatched_trk_obj_ids,
        det_to_matched_trk_obj_ids,
        trk_id_to_max_iou_high_conf_det,
        empty_trk_obj_ids,
    ) = self._associate_det_trk(
        det_masks=det_mask_preds,
        det_scores_np=det_scores_np,
        trk_masks=tracker_low_res_masks_global,
        trk_obj_ids=tracker_metadata_prev["obj_ids"],
    )
    if self.suppress_det_close_to_boundary:
        keep = self._suppress_detections_close_to_boundary(det_bbox_xyxy[new_det_fa_inds])
        new_det_fa_inds = new_det_fa_inds[keep.cpu().numpy()]

    # check whether we've hit the maximum number of objects we can track (and if so, drop some detections)
    prev_obj_num = np.sum(tracker_metadata_prev["num_obj"])
    new_det_num = len(new_det_fa_inds)
    num_obj_dropped_due_to_limit = 0
    if prev_obj_num + new_det_num > self.max_num_objects:
        LOGGER.warning(f"hitting {self.max_num_objects=} with {new_det_num=} and {prev_obj_num=}")
        new_det_num_to_keep = self.max_num_objects - prev_obj_num
        num_obj_dropped_due_to_limit = new_det_num - new_det_num_to_keep
        new_det_fa_inds = self._drop_new_det_with_obj_limit(new_det_fa_inds, det_scores_np, new_det_num_to_keep)
        assert len(new_det_fa_inds) == new_det_num_to_keep
        new_det_num = len(new_det_fa_inds)

    # assign object IDs to new detections and decide which GPU to place them
    new_det_obj_ids = tracker_metadata_prev["max_obj_id"] + 1 + np.arange(new_det_num)

    # b) handle hotstart heuristics to remove objects
    # here `metadata` contains metadata stored on (and only accessible to) GPU 0;
    # we avoid broadcasting them to other GPUs to save communication cost, assuming
    # that `metadata` is not needed by other GPUs
    metadata_new = deepcopy(tracker_metadata_prev["metadata"])
    if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
        obj_ids_newly_removed, metadata_new = self._process_hotstart(
            frame_idx=frame_idx,
            reverse=reverse,
            det_to_matched_trk_obj_ids=det_to_matched_trk_obj_ids,
            new_det_obj_ids=new_det_obj_ids,
            empty_trk_obj_ids=empty_trk_obj_ids,
            unmatched_trk_obj_ids=unmatched_trk_obj_ids,
            metadata=metadata_new,
        )
    else:
        # if warm-up is not complete, we don't remove any objects
        obj_ids_newly_removed = set()
    tracker_metadata_new["metadata"] = metadata_new

    # `tracker_update_plan` should be identical on all GPUs after broadcasting
    tracker_update_plan = {
        "new_det_fa_inds": new_det_fa_inds,  # np.ndarray
        "new_det_obj_ids": new_det_obj_ids,  # np.ndarray
        # "new_det_gpu_ids": new_det_gpu_ids,  # np.ndarray
        "unmatched_trk_obj_ids": unmatched_trk_obj_ids,  # np.ndarray
        "det_to_matched_trk_obj_ids": det_to_matched_trk_obj_ids,  # dict
        "obj_ids_newly_removed": obj_ids_newly_removed,  # set
        "num_obj_dropped_due_to_limit": num_obj_dropped_due_to_limit,  # int
        "trk_id_to_max_iou_high_conf_det": trk_id_to_max_iou_high_conf_det,  # dict
        "reconditioned_obj_ids": reconditioned_obj_ids,  # set
    }

    # Step 3 (optional): recondition masklets based on high-confidence detections before memory encoding
    # NOTE: Running this in execution phase (after memory encoding) can lead to suboptimal results
    should_recondition_iou = False

    # Evaluate tracklets for reconditioning based on bbox IoU mismatch with detections
    if self.reconstruction_bbox_iou_thresh > 0 and len(trk_id_to_max_iou_high_conf_det) > 0:
        for trk_obj_id, det_idx in trk_id_to_max_iou_high_conf_det.items():
            det_box = det_out["bbox"][det_idx]
            det_score = det_out["scores"][det_idx]

            try:
                trk_idx = list(tracker_metadata_prev["obj_ids"]).index(trk_obj_id)
            except ValueError:
                continue  # Skip if tracklet not found

            tracker_mask = tracker_low_res_masks_global[trk_idx]
            mask_binary = tracker_mask > 0
            mask_area = mask_binary.sum().item()

            if mask_area == 0:
                continue  # Skip tracklets with zero mask area

            # Get bounding box from SAM2 mask and convert to normalized coordinates
            tracker_box_pixels = batched_mask_to_box(mask_binary.unsqueeze(0)).squeeze(0)
            mask_height, mask_width = tracker_mask.shape[-2:]
            tracker_box_normalized = torch.tensor(
                [
                    tracker_box_pixels[0] / mask_width,
                    tracker_box_pixels[1] / mask_height,
                    tracker_box_pixels[2] / mask_width,
                    tracker_box_pixels[3] / mask_height,
                ],
                device=tracker_box_pixels.device,
            )

            # Compute IoU between detection and SAM2 tracklet bounding boxes
            det_box_batch = det_box.unsqueeze(0)
            tracker_box_batch = tracker_box_normalized.unsqueeze(0)
            iou = box_iou(det_box_batch, tracker_box_batch)[0]

            if iou < self.reconstruction_bbox_iou_thresh and det_score >= self.reconstruction_bbox_det_score:
                should_recondition_iou = True
                reconditioned_obj_ids.add(trk_obj_id)

    should_recondition_periodic = (
        self.recondition_every_nth_frame > 0
        and frame_idx % self.recondition_every_nth_frame == 0
        and len(trk_id_to_max_iou_high_conf_det) > 0
    )

    # Recondition if periodic or IoU condition met
    if should_recondition_periodic or should_recondition_iou:
        self._recondition_masklets(
            frame_idx,
            det_out,
            trk_id_to_max_iou_high_conf_det,
            tracker_states_local,
            tracker_metadata_prev,
            tracker_obj_scores_global,
        )

    # Step 4: Run SAM2 memory encoder on the current frame's prediction masks
    # This is done on all GPUs
    batch_size = tracker_low_res_masks_global.size(0)
    if batch_size > 0:
        if not hasattr(self, "_warm_up_complete") or self._warm_up_complete:
            if self.suppress_overlapping_based_on_recent_occlusion_threshold > 0.0:
                # NOTE: tracker_low_res_masks_global is updated in-place then returned
                tracker_low_res_masks_global = self._suppress_overlapping_based_on_recent_occlusion(
                    frame_idx,
                    tracker_low_res_masks_global,
                    tracker_metadata_prev,
                    tracker_metadata_new,
                    obj_ids_newly_removed,
                    reverse,
                )

        self._tracker_update_memories(tracker_states_local, frame_idx, low_res_masks=tracker_low_res_masks_global)

    # Step 4: update the SAM2 metadata based on the update plan
    updated_obj_ids_this_gpu = tracker_metadata_new["obj_ids"]
    if len(new_det_obj_ids) > 0:
        updated_obj_ids_this_gpu = np.concatenate([updated_obj_ids_this_gpu, new_det_obj_ids])
    if len(obj_ids_newly_removed) > 0:
        is_removed = np.isin(updated_obj_ids_this_gpu, list(obj_ids_newly_removed))
        updated_obj_ids_this_gpu = updated_obj_ids_this_gpu[~is_removed]
    tracker_metadata_new["obj_ids"] = updated_obj_ids_this_gpu
    tracker_metadata_new["num_obj"] = len(updated_obj_ids_this_gpu)
    # update object scores and the maximum object ID assigned so far
    if len(new_det_obj_ids) > 0:
        tracker_metadata_new["obj_id_to_score"].update(zip(new_det_obj_ids, det_scores_np[new_det_fa_inds]))
        tracker_metadata_new["obj_id_to_cls"].update(zip(new_det_obj_ids, det_cls_np[new_det_fa_inds]))
        # tracker scores are not available for new objects, use det score instead.
        tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx].update(
            zip(new_det_obj_ids, det_scores_np[new_det_fa_inds])
        )
        tracker_metadata_new["max_obj_id"] = max(tracker_metadata_new["max_obj_id"], np.max(new_det_obj_ids))
    # for removed objects, we set their scores to a very low value (-1e4) but still
    # keep them in "obj_id_to_score" (it's easier to handle outputs this way)
    for obj_id in obj_ids_newly_removed:
        tracker_metadata_new["obj_id_to_score"][obj_id] = -1e4
        tracker_metadata_new["obj_id_to_tracker_score_frame_wise"][frame_idx][obj_id] = -1e4
        tracker_metadata_new["obj_id_to_last_occluded"].pop(obj_id, None)
    # check that "metadata" is in tracker_metadata_new if and only if it's GPU 0
    assert "metadata" in tracker_metadata_new
    if self.masklet_confirmation_enable:
        metadata = self.update_masklet_confirmation_status(
            metadata=tracker_metadata_new["metadata"],
            obj_ids_all_gpu_prev=tracker_metadata_prev["obj_ids"],
            obj_ids_all_gpu_updated=tracker_metadata_new["obj_ids"],
            det_to_matched_trk_obj_ids=det_to_matched_trk_obj_ids,
            new_det_obj_ids=new_det_obj_ids,
        )
        tracker_metadata_new["metadata"] = metadata

    return tracker_update_plan, tracker_metadata_new


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.setup_model

def setup_model(self, model = None, verbose = True)

Setup the SAM3VideoSemanticPredictor model.

Args

NameTypeDescriptionDefault
modelNone
verboseTrue
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_model(self, model=None, verbose=True):
    """Setup the SAM3VideoSemanticPredictor model."""
    super().setup_model(model, verbose)
    from .build_sam3 import build_interactive_sam3

    # Initialize the SAM3 tracker model without backbone (backbone is handled in the detector)
    model = build_interactive_sam3(self.args.model, with_backbone=False)
    self.tracker.setup_model(model=model, verbose=False)


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.setup_source

def setup_source(self, source)

Setup the source for the SAM3VideoSemanticPredictor model.

Args

NameTypeDescriptionDefault
sourcerequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_source(self, source):
    """Setup the source for the SAM3VideoSemanticPredictor model."""
    super().setup_source(source)
    self.tracker.imgsz = self.imgsz
    self.tracker.model.set_imgsz(self.imgsz)
    self.tracker._bb_feat_sizes = [[int(x / (self.stride * i)) for x in self.imgsz] for i in [1 / 4, 1 / 2, 1]]
    self.interpol_size = self.tracker.model.memory_encoder.mask_downsampler.interpol_size


method ultralytics.models.sam.predict.SAM3VideoSemanticPredictor.update_masklet_confirmation_status

def update_masklet_confirmation_status(
    self,
    metadata: dict[str, Any],
    obj_ids_all_gpu_prev: np.ndarray,
    obj_ids_all_gpu_updated: np.ndarray,
    det_to_matched_trk_obj_ids: dict[int, np.ndarray],
    new_det_obj_ids: np.ndarray,
)

Update the confirmation status of masklets based on the current frame's detection results.

Args

NameTypeDescriptionDefault
metadatadict[str, Any]required
obj_ids_all_gpu_prevnp.ndarrayrequired
obj_ids_all_gpu_updatednp.ndarrayrequired
det_to_matched_trk_obj_idsdict[int, np.ndarray]required
new_det_obj_idsnp.ndarrayrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def update_masklet_confirmation_status(
    self,
    metadata: dict[str, Any],
    obj_ids_all_gpu_prev: np.ndarray,
    obj_ids_all_gpu_updated: np.ndarray,
    det_to_matched_trk_obj_ids: dict[int, np.ndarray],
    new_det_obj_ids: np.ndarray,
):
    """Update the confirmation status of masklets based on the current frame's detection results."""
    confirmation_data = metadata["masklet_confirmation"]

    # a) first, expand "confirmation_data" to include new masklets added in this frame
    status_prev = confirmation_data["status"]
    consecutive_det_num_prev = confirmation_data["consecutive_det_num"]
    assert status_prev.shape == obj_ids_all_gpu_prev.shape, (
        f"Got {status_prev.shape} vs {obj_ids_all_gpu_prev.shape}"
    )

    obj_id_to_updated_idx = {obj_id: idx for idx, obj_id in enumerate(obj_ids_all_gpu_updated)}
    prev_elem_is_in_updated = np.isin(obj_ids_all_gpu_prev, obj_ids_all_gpu_updated)
    prev_elem_obj_ids_in_updated = obj_ids_all_gpu_prev[prev_elem_is_in_updated]
    prev_elem_inds_in_updated = np.array(
        [obj_id_to_updated_idx[obj_id] for obj_id in prev_elem_obj_ids_in_updated],
        dtype=np.int64,
    )
    # newly added masklets are initialized to "UNCONFIRMED" status
    unconfirmed_val = self.UNCONFIRMED
    status = np.full_like(obj_ids_all_gpu_updated, fill_value=unconfirmed_val)
    status[prev_elem_inds_in_updated] = status_prev[prev_elem_is_in_updated]
    consecutive_det_num = np.zeros_like(obj_ids_all_gpu_updated)
    consecutive_det_num[prev_elem_inds_in_updated] = consecutive_det_num_prev[prev_elem_is_in_updated]

    # b) update the confirmation status of all masklets based on the current frame
    # b.1) update "consecutive_det_num"
    # "is_matched": whether a masklet is matched to a detection on this frame
    is_matched = np.isin(obj_ids_all_gpu_updated, new_det_obj_ids)
    for matched_trk_obj_ids in det_to_matched_trk_obj_ids.values():
        is_matched |= np.isin(obj_ids_all_gpu_updated, matched_trk_obj_ids)
    consecutive_det_num = np.where(is_matched, consecutive_det_num + 1, 0)

    # b.2) update "status"
    change_to_confirmed = consecutive_det_num >= self.masklet_confirmation_consecutive_det_thresh
    status[change_to_confirmed] = self.CONFIRMED

    confirmation_data["status"] = status
    confirmation_data["consecutive_det_num"] = consecutive_det_num
    return metadata





📅 Created 2 years ago ✏️ Updated 0 days ago
glenn-jocherLaughing-qShuaiLYUjk4eBurhan-Q