Skip to content

Reference for ultralytics/models/sam/predict.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/predict.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


Summary

class ultralytics.models.sam.predict.Predictor

Predictor(self, cfg = DEFAULT_CFG, overrides = None, _callbacks = None)

Bases: BasePredictor

Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.

This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image segmentation tasks. It supports various input prompts like points, bounding boxes, and masks for fine-grained control over segmentation results.

Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True for optimal results.

Args

NameTypeDescriptionDefault
cfgdictConfiguration dictionary containing default settings.DEFAULT_CFG
overridesdict | NoneDictionary of values to override default configuration.None
_callbacksdict | NoneDictionary of callback functions to customize behavior.None

Attributes

NameTypeDescription
argsSimpleNamespaceConfiguration arguments for the predictor.
modeltorch.nn.ModuleThe loaded SAM model.
devicetorch.deviceThe device (CPU or GPU) on which the model is loaded.
imtorch.TensorThe preprocessed input image.
featurestorch.TensorExtracted image features.
promptsdict[str, Any]Dictionary to store various types of prompts (e.g., bboxes, points, masks).
segment_allboolFlag to indicate if full image segmentation should be performed.
meantorch.TensorMean values for image normalization.
stdtorch.TensorStandard deviation values for image normalization.

Methods

NameDescription
_inference_featuresPerform inference on image features using the SAM model.
_prepare_promptsPrepare and transform the input prompts for processing based on the destination shape.
generatePerform image segmentation using the Segment Anything Model (SAM).
get_im_featuresExtract image features using the SAM model's image encoder for subsequent mask prediction.
get_modelRetrieve or build the Segment Anything Model (SAM) for image segmentation tasks.
inferencePerform image segmentation inference based on the given input cues, using the currently loaded image.
inference_featuresPerform prompts preprocessing and inference on provided image features using the SAM model.
postprocessPost-process SAM's inference outputs to generate object detection masks and bounding boxes.
pre_transformPerform initial transformations on the input image for preprocessing.
preprocessPreprocess the input image for model inference.
prompt_inferencePerform image segmentation inference based on input cues using SAM's specialized architecture.
remove_small_regionsRemove small disconnected regions and holes from segmentation masks.
reset_imageReset the current image and its features, clearing them for subsequent inference.
set_imagePreprocess and set a single image for inference.
set_promptsSet prompts for subsequent inference operations.
setup_modelInitialize the Segment Anything Model (SAM) for inference.
setup_sourceSet up the data source for inference.

Examples

>>> predictor = Predictor()
>>> predictor.setup_model(model_path="sam_model.pt")
>>> predictor.set_image("image.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> results = predictor(bboxes=bboxes)
Source code in ultralytics/models/sam/predict.pyView on GitHub
class Predictor(BasePredictor):
    """Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.

    This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image segmentation
    tasks. It supports various input prompts like points, bounding boxes, and masks for fine-grained control over
    segmentation results.

    Attributes:
        args (SimpleNamespace): Configuration arguments for the predictor.
        model (torch.nn.Module): The loaded SAM model.
        device (torch.device): The device (CPU or GPU) on which the model is loaded.
        im (torch.Tensor): The preprocessed input image.
        features (torch.Tensor): Extracted image features.
        prompts (dict[str, Any]): Dictionary to store various types of prompts (e.g., bboxes, points, masks).
        segment_all (bool): Flag to indicate if full image segmentation should be performed.
        mean (torch.Tensor): Mean values for image normalization.
        std (torch.Tensor): Standard deviation values for image normalization.

    Methods:
        preprocess: Prepare input images for model inference.
        pre_transform: Perform initial transformations on the input image.
        inference: Perform segmentation inference based on input prompts.
        prompt_inference: Internal function for prompt-based segmentation inference.
        generate: Generate segmentation masks for an entire image.
        setup_model: Initialize the SAM model for inference.
        get_model: Build and return a SAM model.
        postprocess: Post-process model outputs to generate final results.
        setup_source: Set up the data source for inference.
        set_image: Set and preprocess a single image for inference.
        get_im_features: Extract image features using the SAM image encoder.
        set_prompts: Set prompts for subsequent inference.
        reset_image: Reset the current image and its features.
        remove_small_regions: Remove small disconnected regions and holes from masks.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_model(model_path="sam_model.pt")
        >>> predictor.set_image("image.jpg")
        >>> bboxes = [[100, 100, 200, 200]]
        >>> results = predictor(bboxes=bboxes)
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize the Predictor with configuration, overrides, and callbacks.

        Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or
        callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True for
        optimal results.

        Args:
            cfg (dict): Configuration dictionary containing default settings.
            overrides (dict | None): Dictionary of values to override default configuration.
            _callbacks (dict | None): Dictionary of callback functions to customize behavior.
        """
        if overrides is None:
            overrides = {}
        overrides.update(dict(task="segment", mode="predict", batch=1))
        super().__init__(cfg, overrides, _callbacks)
        self.args.retina_masks = True
        self.im = None
        self.features = None
        self.prompts = {}
        self.segment_all = False


method ultralytics.models.sam.predict.Predictor._inference_features

def _inference_features(
    self,
    features,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
)

Perform inference on image features using the SAM model.

Args

NameTypeDescriptionDefault
featurestorch.TensorExtracted image features with shape (B, C, H, W) from the SAM model image encoder.required
bboxesnp.ndarray | list[list[float]] | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list[list[float]] | NoneObject location points with shape (N, 2), in pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N,). 1 = foreground, 0 = background.None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False

Returns

TypeDescription
pred_masks (torch.Tensor)Output masks with shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)Quality scores for each mask, with length C.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _inference_features(
    self,
    features,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
):
    """Perform inference on image features using the SAM model.

    Args:
        features (torch.Tensor): Extracted image features with shape (B, C, H, W) from the SAM model image encoder.
        bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list[list[float]] | None): Object location points with shape (N, 2), in pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

    Returns:
        pred_masks (torch.Tensor): Output masks with shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): Quality scores for each mask, with length C.
    """
    points = (points, labels) if points is not None else None
    # Embed prompts
    sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)

    # Predict masks
    pred_masks, pred_scores = self.model.mask_decoder(
        image_embeddings=features,
        image_pe=self.model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=multimask_output,
    )

    # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
    # `d` could be 1 or 3 depends on `multimask_output`.
    return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)


method ultralytics.models.sam.predict.Predictor._prepare_prompts

def _prepare_prompts(self, dst_shape, src_shape, bboxes = None, points = None, labels = None, masks = None)

Prepare and transform the input prompts for processing based on the destination shape.

Args

NameTypeDescriptionDefault
dst_shapetuple[int, int]The target shape (height, width) for the prompts.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
bboxesnp.ndarray | list | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.None
labelsnp.ndarray | list | NonePoint prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array with shape (H, W).None

Returns

TypeDescription
bboxes (torch.Tensor | None)Transformed bounding boxes.
points (torch.Tensor | None)Transformed points.
labels (torch.Tensor | None)Transformed labels.
masks (torch.Tensor | None)Transformed masks.

Raises

TypeDescription
AssertionErrorIf the number of points don't match the number of labels, in case labels were passed.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_prompts(self, dst_shape, src_shape, bboxes=None, points=None, labels=None, masks=None):
    """Prepare and transform the input prompts for processing based on the destination shape.

    Args:
        dst_shape (tuple[int, int]): The target shape (height, width) for the prompts.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
            2), in pixels.
        labels (np.ndarray | list | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground,
            0 for background.
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array with
            shape (H, W).

    Returns:
        bboxes (torch.Tensor | None): Transformed bounding boxes.
        points (torch.Tensor | None): Transformed points.
        labels (torch.Tensor | None): Transformed labels.
        masks (torch.Tensor | None): Transformed masks.

    Raises:
        AssertionError: If the number of points don't match the number of labels, in case labels were passed.
    """
    r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
    # Transform input prompts
    if points is not None:
        points = torch.as_tensor(points, dtype=self.torch_dtype, device=self.device)
        points = points[None] if points.ndim == 1 else points
        # Assuming labels are all positive if users don't pass labels.
        if labels is None:
            labels = np.ones(points.shape[:-1])
        labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
        assert points.shape[-2] == labels.shape[-1], (
            f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}."
        )
        points *= r
        if points.ndim == 2:
            # (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
            points, labels = points[:, None, :], labels[:, None]
    if bboxes is not None:
        bboxes = torch.as_tensor(bboxes, dtype=self.torch_dtype, device=self.device)
        bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
        bboxes *= r
    if masks is not None:
        masks = np.asarray(masks, dtype=np.uint8)
        masks = masks[None] if masks.ndim == 2 else masks
        letterbox = LetterBox(dst_shape, auto=False, center=False, padding_value=0, interpolation=cv2.INTER_NEAREST)
        masks = np.stack([letterbox(image=x).squeeze() for x in masks], axis=0)
        masks = torch.tensor(masks, dtype=self.torch_dtype, device=self.device)
    return bboxes, points, labels, masks


method ultralytics.models.sam.predict.Predictor.generate

def generate(
    self,
    im,
    crop_n_layers=0,
    crop_overlap_ratio=512 / 1500,
    crop_downscale_factor=1,
    point_grids=None,
    points_stride=32,
    points_batch_size=64,
    conf_thres=0.88,
    stability_score_thresh=0.95,
    stability_score_offset=0.95,
    crop_nms_thresh=0.7,
)

Perform image segmentation using the Segment Anything Model (SAM).

This method segments an entire image into constituent parts by leveraging SAM's advanced architecture and real-time performance capabilities. It can optionally work on image crops for finer segmentation.

Args

NameTypeDescriptionDefault
imtorch.TensorInput tensor representing the preprocessed image with shape (N, C, H, W).required
crop_n_layersintNumber of layers for additional mask predictions on image crops.0
crop_overlap_ratiofloatOverlap between crops, scaled down in subsequent layers.512 / 1500
crop_downscale_factorintScaling factor for sampled points-per-side in each layer.1
point_gridslist[np.ndarray] | NoneCustom grids for point sampling normalized to [0,1].None
points_strideintNumber of points to sample along each side of the image.32
points_batch_sizeintBatch size for the number of points processed simultaneously.64
conf_thresfloatConfidence threshold [0,1] for filtering based on mask quality prediction.0.88
stability_score_threshfloatStability threshold [0,1] for mask filtering based on stability.0.95
stability_score_offsetfloatOffset value for calculating stability score.0.95
crop_nms_threshfloatIoU cutoff for NMS to remove duplicate masks between crops.0.7

Returns

TypeDescription
pred_masks (torch.Tensor)Segmented masks with shape (N, H, W).
pred_scores (torch.Tensor)Confidence scores for each mask with shape (N,).
pred_bboxes (torch.Tensor)Bounding boxes for each mask with shape (N, 4).

Examples

>>> predictor = Predictor()
>>> im = torch.rand(1, 3, 1024, 1024)  # Example input image
>>> masks, scores, boxes = predictor.generate(im)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def generate(
    self,
    im,
    crop_n_layers=0,
    crop_overlap_ratio=512 / 1500,
    crop_downscale_factor=1,
    point_grids=None,
    points_stride=32,
    points_batch_size=64,
    conf_thres=0.88,
    stability_score_thresh=0.95,
    stability_score_offset=0.95,
    crop_nms_thresh=0.7,
):
    """Perform image segmentation using the Segment Anything Model (SAM).

    This method segments an entire image into constituent parts by leveraging SAM's advanced architecture and
    real-time performance capabilities. It can optionally work on image crops for finer segmentation.

    Args:
        im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W).
        crop_n_layers (int): Number of layers for additional mask predictions on image crops.
        crop_overlap_ratio (float): Overlap between crops, scaled down in subsequent layers.
        crop_downscale_factor (int): Scaling factor for sampled points-per-side in each layer.
        point_grids (list[np.ndarray] | None): Custom grids for point sampling normalized to [0,1].
        points_stride (int): Number of points to sample along each side of the image.
        points_batch_size (int): Batch size for the number of points processed simultaneously.
        conf_thres (float): Confidence threshold [0,1] for filtering based on mask quality prediction.
        stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on stability.
        stability_score_offset (float): Offset value for calculating stability score.
        crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.

    Returns:
        pred_masks (torch.Tensor): Segmented masks with shape (N, H, W).
        pred_scores (torch.Tensor): Confidence scores for each mask with shape (N,).
        pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 4).

    Examples:
        >>> predictor = Predictor()
        >>> im = torch.rand(1, 3, 1024, 1024)  # Example input image
        >>> masks, scores, boxes = predictor.generate(im)
    """
    import torchvision  # scope for faster 'import ultralytics'

    self.segment_all = True
    ih, iw = im.shape[2:]
    crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio)
    if point_grids is None:
        point_grids = build_all_layer_point_grids(points_stride, crop_n_layers, crop_downscale_factor)
    pred_masks, pred_scores, pred_bboxes, region_areas = [], [], [], []
    for crop_region, layer_idx in zip(crop_regions, layer_idxs):
        x1, y1, x2, y2 = crop_region
        w, h = x2 - x1, y2 - y1
        area = torch.tensor(w * h, device=im.device)
        points_scale = np.array([[w, h]])  # w, h
        # Crop image and interpolate to input size
        crop_im = F.interpolate(im[..., y1:y2, x1:x2], (ih, iw), mode="bilinear", align_corners=False)
        # (num_points, 2)
        points_for_image = point_grids[layer_idx] * points_scale
        crop_masks, crop_scores, crop_bboxes = [], [], []
        for (points,) in batch_iterator(points_batch_size, points_for_image):
            pred_mask, pred_score = self.prompt_inference(crop_im, points=points, multimask_output=True)
            # Interpolate predicted masks to input size
            pred_mask = F.interpolate(pred_mask[None], (h, w), mode="bilinear", align_corners=False)[0]
            idx = pred_score > conf_thres
            pred_mask, pred_score = pred_mask[idx], pred_score[idx]

            stability_score = calculate_stability_score(
                pred_mask, self.model.mask_threshold, stability_score_offset
            )
            idx = stability_score > stability_score_thresh
            pred_mask, pred_score = pred_mask[idx], pred_score[idx]
            # Bool type is much more memory-efficient.
            pred_mask = pred_mask > self.model.mask_threshold
            # (N, 4)
            pred_bbox = batched_mask_to_box(pred_mask).float()
            keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih])
            if not torch.all(keep_mask):
                pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask]

            crop_masks.append(pred_mask)
            crop_bboxes.append(pred_bbox)
            crop_scores.append(pred_score)

        # Do nms within this crop
        crop_masks = torch.cat(crop_masks)
        crop_bboxes = torch.cat(crop_bboxes)
        crop_scores = torch.cat(crop_scores)
        keep = torchvision.ops.nms(crop_bboxes, crop_scores, self.args.iou)  # NMS
        crop_bboxes = uncrop_boxes_xyxy(crop_bboxes[keep], crop_region)
        crop_masks = uncrop_masks(crop_masks[keep], crop_region, ih, iw)
        crop_scores = crop_scores[keep]

        pred_masks.append(crop_masks)
        pred_bboxes.append(crop_bboxes)
        pred_scores.append(crop_scores)
        region_areas.append(area.expand(crop_masks.shape[0]))

    pred_masks = torch.cat(pred_masks)
    pred_bboxes = torch.cat(pred_bboxes)
    pred_scores = torch.cat(pred_scores)
    region_areas = torch.cat(region_areas)

    # Remove duplicate masks between crops
    if len(crop_regions) > 1:
        scores = 1 / region_areas
        keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh)
        pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep]

    return pred_masks, pred_scores, pred_bboxes


method ultralytics.models.sam.predict.Predictor.get_im_features

def get_im_features(self, im)

Extract image features using the SAM model's image encoder for subsequent mask prediction.

Args

NameTypeDescriptionDefault
imrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im):
    """Extract image features using the SAM model's image encoder for subsequent mask prediction."""
    assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
        f"SAM models only support square image size, but got {self.imgsz}."
    )
    self.model.set_imgsz(self.imgsz)
    return self.model.image_encoder(im)


method ultralytics.models.sam.predict.Predictor.get_model

def get_model(self)

Retrieve or build the Segment Anything Model (SAM) for image segmentation tasks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve or build the Segment Anything Model (SAM) for image segmentation tasks."""
    from .build import build_sam  # slow import

    return build_sam(self.args.model)


method ultralytics.models.sam.predict.Predictor.inference

def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs)

Perform image segmentation inference based on the given input cues, using the currently loaded image.

This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and mask decoder for real-time and promptable segmentation tasks.

Args

NameTypeDescriptionDefault
imtorch.TensorThe preprocessed input image in tensor format, with shape (N, C, H, W).required
bboxesnp.ndarray | list | NoneBounding boxes with shape (N, 4), in XYXY format.None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2), in pixels.None
labelsnp.ndarray | list | NoneLabels for point prompts, shape (N,). 1 = foreground, 0 = background.None
masksnp.ndarray | NoneLow-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.None
multimask_outputboolFlag to return multiple masks. Helpful for ambiguous prompts.False
*argsAnyAdditional positional arguments.required
**kwargsAnyAdditional keyword arguments.required

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)An array of length C containing quality scores predicted by the model for each

Examples

>>> predictor = Predictor()
>>> predictor.setup_model(model_path="sam_model.pt")
>>> predictor.set_image("image.jpg")
>>> results = predictor(bboxes=[[0, 0, 100, 100]])
Source code in ultralytics/models/sam/predict.pyView on GitHub
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
    """Perform image segmentation inference based on the given input cues, using the currently loaded image.

    This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder,
    and mask decoder for real-time and promptable segmentation tasks.

    Args:
        im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
        bboxes (np.ndarray | list | None): Bounding boxes with shape (N, 4), in XYXY format.
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2), in pixels.
        labels (np.ndarray | list | None): Labels for point prompts, shape (N,). 1 = foreground, 0 = background.
        masks (np.ndarray | None): Low-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.
        multimask_output (bool): Flag to return multiple masks. Helpful for ambiguous prompts.
        *args (Any): Additional positional arguments.
        **kwargs (Any): Additional keyword arguments.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): An array of length C containing quality scores predicted by the model for each
            mask.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_model(model_path="sam_model.pt")
        >>> predictor.set_image("image.jpg")
        >>> results = predictor(bboxes=[[0, 0, 100, 100]])
    """
    # Override prompts if any stored in self.prompts
    bboxes = self.prompts.pop("bboxes", bboxes)
    points = self.prompts.pop("points", points)
    masks = self.prompts.pop("masks", masks)
    labels = self.prompts.pop("labels", labels)

    if all(i is None for i in [bboxes, points, masks]):
        return self.generate(im, *args, **kwargs)

    return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)


method ultralytics.models.sam.predict.Predictor.inference_features

def inference_features(
    self,
    features,
    src_shape,
    dst_shape=None,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
)

Perform prompts preprocessing and inference on provided image features using the SAM model.

Args

NameTypeDescriptionDefault
featurestorch.Tensor | dict[str, Any]Extracted image features from the SAM/SAM2 model image encoder.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
dst_shapetuple[int, int] | NoneThe target shape (height, width) for the prompts. If None, defaults to (imgsz, imgsz).None
bboxesnp.ndarray | list[list[float]] | NoneBounding boxes in xyxy format with shape (N, 4).None
pointsnp.ndarray | list[list[float]] | NonePoints indicating object locations with shape (N, 2), in pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N, ).None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape (C, H, W), where C is the number of generated masks.
pred_bboxes (torch.Tensor)Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.

Notes

  • The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def inference_features(
    self,
    features,
    src_shape,
    dst_shape=None,
    bboxes=None,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
):
    """Perform prompts preprocessing and inference on provided image features using the SAM model.

    Args:
        features (torch.Tensor | dict[str, Any]): Extracted image features from the SAM/SAM2 model image encoder.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        dst_shape (tuple[int, int] | None): The target shape (height, width) for the prompts. If None, defaults to
            (imgsz, imgsz).
        bboxes (np.ndarray | list[list[float]] | None): Bounding boxes in xyxy format with shape (N, 4).
        points (np.ndarray | list[list[float]] | None): Points indicating object locations with shape (N, 2), in
            pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N, ).
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape (C, H, W), where C is the number of generated masks.
        pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 6), where N is the number of boxes.
            Each box is in xyxy format with additional columns for score and class.

    Notes:
        - The input features is a torch.Tensor of shape (B, C, H, W) if performing on SAM, or a dict[str, Any] if performing on SAM2.
    """
    dst_shape = dst_shape or (self.args.imgsz, self.args.imgsz)
    prompts = self._prepare_prompts(dst_shape, src_shape, bboxes, points, labels, masks)
    pred_masks, pred_scores = self._inference_features(features, *prompts, multimask_output)
    if pred_masks.shape[0] == 0:
        pred_masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
    else:
        pred_masks = ops.scale_masks(pred_masks[None].float(), src_shape, padding=False)[0]
        pred_masks = pred_masks > self.model.mask_threshold  # to bool
        pred_bboxes = batched_mask_to_box(pred_masks)
        # NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
        cls = torch.arange(pred_masks.shape[0], dtype=torch.int32, device=pred_masks.device)
        pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
    return pred_masks, pred_bboxes


method ultralytics.models.sam.predict.Predictor.postprocess

def postprocess(self, preds, img, orig_imgs)

Post-process SAM's inference outputs to generate object detection masks and bounding boxes.

This method scales masks and boxes to the original image size and applies a threshold to the mask predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.

Args

NameTypeDescriptionDefault
predstupleThe output from SAM model inference, containing: - pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W). - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1). - pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.required
imgtorch.TensorThe processed input image tensor with shape (C, H, W).required
orig_imgslist[np.ndarray] | torch.TensorThe original, unprocessed images.required

Returns

TypeDescription
list[Results]List of Results objects containing detection masks, bounding boxes, and other metadata for

Examples

>>> predictor = Predictor()
>>> preds = predictor.inference(img)
>>> results = predictor.postprocess(preds, img, orig_imgs)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def postprocess(self, preds, img, orig_imgs):
    """Post-process SAM's inference outputs to generate object detection masks and bounding boxes.

    This method scales masks and boxes to the original image size and applies a threshold to the mask
    predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.

    Args:
        preds (tuple): The output from SAM model inference, containing:
            - pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W).
            - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1).
            - pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.
        img (torch.Tensor): The processed input image tensor with shape (C, H, W).
        orig_imgs (list[np.ndarray] | torch.Tensor): The original, unprocessed images.

    Returns:
        (list[Results]): List of Results objects containing detection masks, bounding boxes, and other metadata for
            each processed image.

    Examples:
        >>> predictor = Predictor()
        >>> preds = predictor.inference(img)
        >>> results = predictor.postprocess(preds, img, orig_imgs)
    """
    # (N, 1, H, W), (N, 1)
    pred_masks, pred_scores = preds[:2]
    pred_bboxes = preds[2] if self.segment_all else None
    names = dict(enumerate(str(i) for i in range(pred_masks.shape[0])))

    if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
        orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)[..., ::-1]

    results = []
    for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
        if masks.shape[0] == 0:
            masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
        else:
            masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
            masks = masks > self.model.mask_threshold  # to bool
            if pred_bboxes is not None:
                pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
            else:
                pred_bboxes = batched_mask_to_box(masks)
            # NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
            cls = torch.arange(pred_masks.shape[0], dtype=torch.int32, device=pred_masks.device)
            idx = pred_scores > self.args.conf
            pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)[idx]
            masks = masks[idx]
        results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
    # Reset segment-all mode.
    self.segment_all = False
    return results


method ultralytics.models.sam.predict.Predictor.pre_transform

def pre_transform(self, im)

Perform initial transformations on the input image for preprocessing.

This method applies transformations such as resizing to prepare the image for further preprocessing. Currently, batched inference is not supported; hence the list length should be 1.

Args

NameTypeDescriptionDefault
imlist[np.ndarray]List containing a single image in HWC numpy array format.required

Returns

TypeDescription
list[np.ndarray]List containing the transformed image.

Examples

>>> predictor = Predictor()
>>> image = np.random.rand(480, 640, 3)  # Single HWC image
>>> transformed = predictor.pre_transform([image])
>>> print(len(transformed))
1

Raises

TypeDescription
AssertionErrorIf the input list contains more than one image.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def pre_transform(self, im):
    """Perform initial transformations on the input image for preprocessing.

    This method applies transformations such as resizing to prepare the image for further preprocessing. Currently,
    batched inference is not supported; hence the list length should be 1.

    Args:
        im (list[np.ndarray]): List containing a single image in HWC numpy array format.

    Returns:
        (list[np.ndarray]): List containing the transformed image.

    Raises:
        AssertionError: If the input list contains more than one image.

    Examples:
        >>> predictor = Predictor()
        >>> image = np.random.rand(480, 640, 3)  # Single HWC image
        >>> transformed = predictor.pre_transform([image])
        >>> print(len(transformed))
        1
    """
    assert len(im) == 1, "SAM model does not currently support batched inference"
    letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
    return [letterbox(image=x) for x in im]


method ultralytics.models.sam.predict.Predictor.preprocess

def preprocess(self, im)

Preprocess the input image for model inference.

This method prepares the input image by applying transformations and normalization. It supports both torch.Tensor and list of np.ndarray as input formats.

Args

NameTypeDescriptionDefault
imtorch.Tensor | list[np.ndarray]Input image(s) in BCHW tensor format or list of HWC numpy arrays.required

Returns

TypeDescription
torch.TensorThe preprocessed image tensor, normalized and converted to the appropriate dtype.

Examples

>>> predictor = Predictor()
>>> image = torch.rand(1, 3, 640, 640)
>>> preprocessed_image = predictor.preprocess(image)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def preprocess(self, im):
    """Preprocess the input image for model inference.

    This method prepares the input image by applying transformations and normalization. It supports both
    torch.Tensor and list of np.ndarray as input formats.

    Args:
        im (torch.Tensor | list[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC numpy arrays.

    Returns:
        (torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype.

    Examples:
        >>> predictor = Predictor()
        >>> image = torch.rand(1, 3, 640, 640)
        >>> preprocessed_image = predictor.preprocess(image)
    """
    if self.im is not None:
        return self.im
    not_tensor = not isinstance(im, torch.Tensor)
    if not_tensor:
        im = np.stack(self.pre_transform(im))
        im = im[..., ::-1].transpose((0, 3, 1, 2))
        im = np.ascontiguousarray(im)
        im = torch.from_numpy(im)

    im = im.to(self.device)
    if not_tensor:
        im = (im - self.mean) / self.std
    im = im.half() if self.model.fp16 else im.float()
    return im


method ultralytics.models.sam.predict.Predictor.prompt_inference

def prompt_inference(self, im, bboxes = None, points = None, labels = None, masks = None, multimask_output = False)

Perform image segmentation inference based on input cues using SAM's specialized architecture.

This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation. It processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.

Args

NameTypeDescriptionDefault
imtorch.TensorPreprocessed input image tensor with shape (N, C, H, W).required
bboxesnp.ndarray | list | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.None
labelsnp.ndarray | list | NonePoint prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.None
masksnp.ndarray | NoneLow-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False

Returns

TypeDescription
pred_masks (torch.Tensor)Output masks with shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)Quality scores predicted by the model for each mask, with length C.

Examples

>>> predictor = Predictor()
>>> im = torch.rand(1, 3, 1024, 1024)
>>> bboxes = [[100, 100, 200, 200]]
>>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
    """Perform image segmentation inference based on input cues using SAM's specialized architecture.

    This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation. It
    processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.

    Args:
        im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
        bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
            2), in pixels.
        labels (np.ndarray | list | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground,
            0 for background.
        masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

    Returns:
        pred_masks (torch.Tensor): Output masks with shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): Quality scores predicted by the model for each mask, with length C.

    Examples:
        >>> predictor = Predictor()
        >>> im = torch.rand(1, 3, 1024, 1024)
        >>> bboxes = [[100, 100, 200, 200]]
        >>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)
    """
    features = self.get_im_features(im) if self.features is None else self.features

    prompts = self._prepare_prompts(im.shape[2:], self.batch[1][0].shape[:2], bboxes, points, labels, masks)
    return self._inference_features(features, *prompts, multimask_output)


method ultralytics.models.sam.predict.Predictor.remove_small_regions

def remove_small_regions(masks, min_area = 0, nms_thresh = 0.7)

Remove small disconnected regions and holes from segmentation masks.

This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM). It removes small disconnected regions and holes from the input masks, and then performs Non-Maximum Suppression (NMS) to eliminate any newly created duplicate boxes.

Args

NameTypeDescriptionDefault
maskstorch.TensorSegmentation masks to be processed, with shape (N, H, W) where N is the number of masks, H is height, and W is width.required
min_areaintMinimum area threshold for removing disconnected regions and holes. Regions smaller than this will be removed.0
nms_threshfloatIoU threshold for the NMS algorithm to remove duplicate boxes.0.7

Returns

TypeDescription
new_masks (torch.Tensor)Processed masks with small regions removed, shape (N, H, W).
keep (list[int])Indices of remaining masks after NMS, for filtering corresponding boxes.

Examples

>>> masks = torch.rand(5, 640, 640) > 0.5  # 5 random binary masks
>>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)
>>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")
>>> print(f"Indices of kept masks: {keep}")
Source code in ultralytics/models/sam/predict.pyView on GitHub
@staticmethod
def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
    """Remove small disconnected regions and holes from segmentation masks.

    This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM). It
    removes small disconnected regions and holes from the input masks, and then performs Non-Maximum Suppression
    (NMS) to eliminate any newly created duplicate boxes.

    Args:
        masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of
            masks, H is height, and W is width.
        min_area (int): Minimum area threshold for removing disconnected regions and holes. Regions smaller than
            this will be removed.
        nms_thresh (float): IoU threshold for the NMS algorithm to remove duplicate boxes.

    Returns:
        new_masks (torch.Tensor): Processed masks with small regions removed, shape (N, H, W).
        keep (list[int]): Indices of remaining masks after NMS, for filtering corresponding boxes.

    Examples:
        >>> masks = torch.rand(5, 640, 640) > 0.5  # 5 random binary masks
        >>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)
        >>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")
        >>> print(f"Indices of kept masks: {keep}")
    """
    import torchvision  # scope for faster 'import ultralytics'

    if masks.shape[0] == 0:
        return masks

    # Filter small disconnected regions and holes
    new_masks = []
    scores = []
    for mask in masks:
        mask = mask.cpu().numpy().astype(np.uint8)
        mask, changed = remove_small_regions(mask, min_area, mode="holes")
        unchanged = not changed
        mask, changed = remove_small_regions(mask, min_area, mode="islands")
        unchanged = unchanged and not changed

        new_masks.append(torch.as_tensor(mask).unsqueeze(0))
        # Give score=0 to changed masks and 1 to unchanged masks so NMS prefers masks not needing postprocessing
        scores.append(float(unchanged))

    # Recalculate boxes and remove any new duplicates
    new_masks = torch.cat(new_masks, dim=0)
    boxes = batched_mask_to_box(new_masks)
    keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh)

    return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep


method ultralytics.models.sam.predict.Predictor.reset_image

def reset_image(self)

Reset the current image and its features, clearing them for subsequent inference.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def reset_image(self):
    """Reset the current image and its features, clearing them for subsequent inference."""
    self.im = None
    self.features = None


method ultralytics.models.sam.predict.Predictor.set_image

def set_image(self, image)

Preprocess and set a single image for inference.

This method prepares the model for inference on a single image by setting up the model if not already initialized, configuring the data source, and preprocessing the image for feature extraction. It ensures that only one image is set at a time and extracts image features for subsequent use.

Args

NameTypeDescriptionDefault
imagestr | np.ndarrayPath to the image file as a string, or a numpy array representing an image read by cv2.required

Examples

>>> predictor = Predictor()
>>> predictor.set_image("path/to/image.jpg")
>>> predictor.set_image(cv2.imread("path/to/image.jpg"))

Notes

  • This method should be called before performing inference on a new image.
  • The extracted features are stored in the self.features attribute for later use.

Raises

TypeDescription
AssertionErrorIf more than one image is attempted to be set.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def set_image(self, image):
    """Preprocess and set a single image for inference.

    This method prepares the model for inference on a single image by setting up the model if not already
    initialized, configuring the data source, and preprocessing the image for feature extraction. It ensures that
    only one image is set at a time and extracts image features for subsequent use.

    Args:
        image (str | np.ndarray): Path to the image file as a string, or a numpy array representing an image read by
            cv2.

    Raises:
        AssertionError: If more than one image is attempted to be set.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.set_image("path/to/image.jpg")
        >>> predictor.set_image(cv2.imread("path/to/image.jpg"))

    Notes:
        - This method should be called before performing inference on a new image.
        - The extracted features are stored in the `self.features` attribute for later use.
    """
    if self.model is None:
        self.setup_model()
    self.setup_source(image)
    assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
    for batch in self.dataset:
        im = self.preprocess(batch[1])
        self.features = self.get_im_features(im)
        break


method ultralytics.models.sam.predict.Predictor.set_prompts

def set_prompts(self, prompts)

Set prompts for subsequent inference operations.

Args

NameTypeDescriptionDefault
promptsrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def set_prompts(self, prompts):
    """Set prompts for subsequent inference operations."""
    self.prompts = prompts


method ultralytics.models.sam.predict.Predictor.setup_model

def setup_model(self, model = None, verbose = True)

Initialize the Segment Anything Model (SAM) for inference.

This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary parameters for image normalization and other Ultralytics compatibility settings.

Args

NameTypeDescriptionDefault
modeltorch.nn.Module | NoneA pretrained SAM model. If None, a new model is built based on config.None
verboseboolIf True, prints selected device information.True

Examples

>>> predictor = Predictor()
>>> predictor.setup_model(model=sam_model, verbose=True)
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_model(self, model=None, verbose=True):
    """Initialize the Segment Anything Model (SAM) for inference.

    This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary
    parameters for image normalization and other Ultralytics compatibility settings.

    Args:
        model (torch.nn.Module | None): A pretrained SAM model. If None, a new model is built based on config.
        verbose (bool): If True, prints selected device information.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_model(model=sam_model, verbose=True)
    """
    device = select_device(self.args.device, verbose=verbose)
    if model is None:
        model = self.get_model()
    model.eval()
    model = model.to(device)
    self.model = model.half() if self.args.half else model.float()
    self.device = device
    self.mean = torch.tensor([123.675, 116.28, 103.53]).view(-1, 1, 1).to(device)
    self.std = torch.tensor([58.395, 57.12, 57.375]).view(-1, 1, 1).to(device)

    # Ultralytics compatibility settings
    self.model.pt = False
    self.model.triton = False
    self.model.stride = 32
    self.model.fp16 = self.args.half
    self.done_warmup = True
    self.torch_dtype = torch.float16 if self.model.fp16 else torch.float32


method ultralytics.models.sam.predict.Predictor.setup_source

def setup_source(self, source)

Set up the data source for inference.

This method configures the data source from which images will be fetched for inference. It supports various input types such as image files, directories, video files, and other compatible data sources.

Args

NameTypeDescriptionDefault
sourcestr | Path | NoneThe path or identifier for the image data source. Can be a file path, directory path, URL, or other supported source types.required

Examples

>>> predictor = Predictor()
>>> predictor.setup_source("path/to/images")
>>> predictor.setup_source("video.mp4")
>>> predictor.setup_source(None)  # Uses default source if available

Notes

  • If source is None, the method may use a default source if configured.
  • The method adapts to different source types and prepares them for subsequent inference steps.
  • Supported source types may include local files, directories, URLs, and video streams.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def setup_source(self, source):
    """Set up the data source for inference.

    This method configures the data source from which images will be fetched for inference. It supports various
    input types such as image files, directories, video files, and other compatible data sources.

    Args:
        source (str | Path | None): The path or identifier for the image data source. Can be a file path, directory
            path, URL, or other supported source types.

    Examples:
        >>> predictor = Predictor()
        >>> predictor.setup_source("path/to/images")
        >>> predictor.setup_source("video.mp4")
        >>> predictor.setup_source(None)  # Uses default source if available

    Notes:
        - If source is None, the method may use a default source if configured.
        - The method adapts to different source types and prepares them for subsequent inference steps.
        - Supported source types may include local files, directories, URLs, and video streams.
    """
    if source is not None:
        super().setup_source(source)





class ultralytics.models.sam.predict.SAM2Predictor

SAM2Predictor()

Bases: Predictor

SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.

This class extends the base Predictor class to implement SAM2-specific functionality for image segmentation tasks. It provides methods for model initialization, feature extraction, and prompt-based inference.

Attributes

NameTypeDescription
_bb_feat_sizeslist[tuple]Feature sizes for different backbone levels.
modeltorch.nn.ModuleThe loaded SAM2 model.
devicetorch.deviceThe device (CPU or GPU) on which the model is loaded.
featuresdictCached image features for efficient inference.
segment_allboolFlag to indicate if all segments should be predicted.
promptsdict[str, Any]Dictionary to store various types of prompts for inference.

Methods

NameDescription
_inference_featuresPerform inference on image features using the SAM2 model.
_prepare_promptsPrepare and transform the input prompts for processing based on the destination shape.
get_im_featuresExtract image features from the SAM image encoder for subsequent processing.
get_modelRetrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks.
set_imagePreprocess and set a single image for inference using the SAM2 model.

Examples

>>> predictor = SAM2Predictor(cfg)
>>> predictor.set_image("path/to/image.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> result = predictor(bboxes=bboxes)[0]
>>> print(f"Predicted {len(result.masks)} masks with average score {result.boxes.conf.mean():.2f}")
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM2Predictor(Predictor):


method ultralytics.models.sam.predict.SAM2Predictor._inference_features

def _inference_features(
    self,
    features,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
    img_idx=-1,
)

Perform inference on image features using the SAM2 model.

Args

NameTypeDescriptionDefault
featurestorch.Tensor | dict[str, Any]Extracted image features with shape (B, C, H, W) from the SAM2required
model image encoder, it could also be a dictionary including:<br> - image_embed (torch.Tensor): Image embedding with shape (B, C, H, W).<br> - high_res_feats (list[torch.Tensor]): List of high-resolution feature maps from the backbone, each with shape (B, C, H, W).required
pointsnp.ndarray | list[list[float]] | NoneObject location points with shape (N, 2), in pixels.None
labelsnp.ndarray | list[int] | NonePoint prompt labels with shape (N,). 1 = foreground, 0 = background.None
maskslist[np.ndarray] | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None
multimask_outputboolFlag to return multiple masks for ambiguous prompts.False
img_idxintIndex of the image in the batch to process.-1

Returns

TypeDescription
pred_masks (torch.Tensor)Output masks with shape (C, H, W), where C is the number of generated masks.
pred_scores (torch.Tensor)Quality scores for each mask, with length C.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _inference_features(
    self,
    features,
    points=None,
    labels=None,
    masks=None,
    multimask_output=False,
    img_idx=-1,
):
    """Perform inference on image features using the SAM2 model.

    Args:
        features (torch.Tensor | dict[str, Any]): Extracted image features with shape (B, C, H, W) from the SAM2
        model image encoder, it could also be a dictionary including:
            - image_embed (torch.Tensor): Image embedding with shape (B, C, H, W).
            - high_res_feats (list[torch.Tensor]): List of high-resolution feature maps from the backbone, each with shape (B, C, H, W).
        points (np.ndarray | list[list[float]] | None): Object location points with shape (N, 2), in pixels.
        labels (np.ndarray | list[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.
        masks (list[np.ndarray] | np.ndarray | None): Masks for the objects, where each mask is a 2D array.
        multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
        img_idx (int): Index of the image in the batch to process.

    Returns:
        pred_masks (torch.Tensor): Output masks with shape (C, H, W), where C is the number of generated masks.
        pred_scores (torch.Tensor): Quality scores for each mask, with length C.
    """
    points = (points, labels) if points is not None else None
    sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
        points=points,
        boxes=None,
        masks=masks,
    )
    # Predict masks
    batched_mode = points is not None and points[0].shape[0] > 1  # multi object prediction
    high_res_features = None
    if isinstance(features, dict):
        high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]]
        features = features["image_embed"][[img_idx]]
    pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder(
        image_embeddings=features,
        image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=multimask_output,
        repeat_image=batched_mode,
        high_res_features=high_res_features,
    )
    # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
    # `d` could be 1 or 3 depends on `multimask_output`.
    return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)


method ultralytics.models.sam.predict.SAM2Predictor._prepare_prompts

def _prepare_prompts(self, dst_shape, src_shape, bboxes = None, points = None, labels = None, masks = None)

Prepare and transform the input prompts for processing based on the destination shape.

Args

NameTypeDescriptionDefault
dst_shapetuple[int, int]The target shape (height, width) for the prompts.required
src_shapetuple[int, int]The source shape (height, width) of the input image.required
bboxesnp.ndarray | list | NoneBounding boxes in XYXY format with shape (N, 4).None
pointsnp.ndarray | list | NonePoints indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.None
labelsnp.ndarray | list | NonePoint prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.None
maskslist | np.ndarray | NoneMasks for the objects, where each mask is a 2D array.None

Returns

TypeDescription
points (torch.Tensor | None)Transformed points.
labels (torch.Tensor | None)Transformed labels.
masks (torch.Tensor | None)Transformed masks.

Raises

TypeDescription
AssertionErrorIf the number of points don't match the number of labels, in case labels were passed.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_prompts(self, dst_shape, src_shape, bboxes=None, points=None, labels=None, masks=None):
    """Prepare and transform the input prompts for processing based on the destination shape.

    Args:
        dst_shape (tuple[int, int]): The target shape (height, width) for the prompts.
        src_shape (tuple[int, int]): The source shape (height, width) of the input image.
        bboxes (np.ndarray | list | None): Bounding boxes in XYXY format with shape (N, 4).
        points (np.ndarray | list | None): Points indicating object locations with shape (N, 2) or (N, num_points,
            2), in pixels.
        labels (np.ndarray | list | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground,
            0 for background.
        masks (list | np.ndarray | None): Masks for the objects, where each mask is a 2D array.

    Returns:
        points (torch.Tensor | None): Transformed points.
        labels (torch.Tensor | None): Transformed labels.
        masks (torch.Tensor | None): Transformed masks.

    Raises:
        AssertionError: If the number of points don't match the number of labels, in case labels were passed.
    """
    bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, src_shape, bboxes, points, labels, masks)
    if bboxes is not None:
        bboxes = bboxes.view(-1, 2, 2)
        bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(bboxes.shape[0], -1)
        # NOTE: merge "boxes" and "points" into a single "points" input
        # (where boxes are added at the beginning) to model.sam_prompt_encoder
        if points is not None:
            points = torch.cat([bboxes, points], dim=1)
            labels = torch.cat([bbox_labels, labels], dim=1)
        else:
            points, labels = bboxes, bbox_labels
    return points, labels, masks


method ultralytics.models.sam.predict.SAM2Predictor.get_im_features

def get_im_features(self, im)

Extract image features from the SAM image encoder for subsequent processing.

Args

NameTypeDescriptionDefault
imrequired
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im):
    """Extract image features from the SAM image encoder for subsequent processing."""
    assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
        f"SAM 2 models only support square image size, but got {self.imgsz}."
    )
    self.model.set_imgsz(self.imgsz)
    self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]]

    backbone_out = self.model.forward_image(im)
    _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
    if self.model.directly_add_no_mem_embed:
        vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
    feats = [
        feat.permute(1, 2, 0).view(1, -1, *feat_size) for feat, feat_size in zip(vision_feats, self._bb_feat_sizes)
    ]
    return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}


method ultralytics.models.sam.predict.SAM2Predictor.get_model

def get_model(self)

Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve and initialize the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
    from .build import build_sam  # slow import

    return build_sam(self.args.model)


method ultralytics.models.sam.predict.SAM2Predictor.set_image

def set_image(self, image)

Preprocess and set a single image for inference using the SAM2 model.

This method initializes the model if not already done, configures the data source to the specified image, and preprocesses the image for feature extraction. It supports setting only one image at a time.

Args

NameTypeDescriptionDefault
imagestr | np.ndarrayPath to the image file as a string, or a numpy array representing the image.required

Examples

>>> predictor = SAM2Predictor()
>>> predictor.set_image("path/to/image.jpg")
>>> predictor.set_image(np.array([...]))  # Using a numpy array

Notes

  • This method must be called before performing any inference on a new image.
  • The method caches the extracted features for efficient subsequent inferences on the same image.
  • Only one image can be set at a time. To process multiple images, call this method for each new image.

Raises

TypeDescription
AssertionErrorIf more than one image is attempted to be set.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def set_image(self, image):
    """Preprocess and set a single image for inference using the SAM2 model.

    This method initializes the model if not already done, configures the data source to the specified image, and
    preprocesses the image for feature extraction. It supports setting only one image at a time.

    Args:
        image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image.

    Raises:
        AssertionError: If more than one image is attempted to be set.

    Examples:
        >>> predictor = SAM2Predictor()
        >>> predictor.set_image("path/to/image.jpg")
        >>> predictor.set_image(np.array([...]))  # Using a numpy array

    Notes:
        - This method must be called before performing any inference on a new image.
        - The method caches the extracted features for efficient subsequent inferences on the same image.
        - Only one image can be set at a time. To process multiple images, call this method for each new image.
    """
    if self.model is None:
        self.setup_model(model=None)
    self.setup_source(image)
    assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
    for batch in self.dataset:
        im = self.preprocess(batch[1])
        self.features = self.get_im_features(im)
        break





class ultralytics.models.sam.predict.SAM2VideoPredictor

SAM2VideoPredictor(self, cfg = DEFAULT_CFG, overrides = None, _callbacks = None)

Bases: SAM2Predictor

SAM2VideoPredictor to handle user interactions with videos and manage inference states.

This class extends the functionality of SAM2Predictor to support video processing and maintains the state of inference operations. It includes configurations for managing non-overlapping masks, clearing memory for non-conditional inputs, and setting up callbacks for prediction events.

This constructor initializes the SAM2VideoPredictor with a given configuration, applies any specified overrides, and sets up the inference state along with certain flags that control the behavior of the predictor.

Args

NameTypeDescriptionDefault
cfgdictConfiguration dictionary containing default settings.DEFAULT_CFG
overridesdict | NoneDictionary of values to override default configuration.None
_callbacksdict | NoneDictionary of callback functions to customize behavior.None

Attributes

NameTypeDescription
inference_statedictA dictionary to store the current state of inference operations.
non_overlap_masksboolA flag indicating whether masks should be non-overlapping.
clear_non_cond_mem_around_inputboolA flag to control clearing non-conditional memory around inputs.
clear_non_cond_mem_for_multi_objboolA flag to control clearing non-conditional memory for multi-object scenarios.
callbacksdictA dictionary of callbacks for various prediction lifecycle events.

Methods

NameDescription
_add_output_per_objectSplit a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.
_clear_non_cond_mem_around_inputRemove the non-conditioning memory around the input frame.
_consolidate_temp_output_across_objConsolidate per-object temporary outputs into a single output for all objects.
_get_empty_mask_ptrGet a dummy object pointer based on an empty mask on the current frame.
_get_maskmem_pos_encCache and manage the positional encoding for mask memory across frames and objects.
_obj_id_to_idxMap client-side object id to model-side object index.
_run_memory_encoderRun the memory encoder on masks.
_run_single_frame_inferenceRun tracking on a single frame based on current inputs and previous memory.
add_new_promptsAdd new points or masks to a specific frame for a given object ID.
get_im_featuresExtract and process image features using SAM2's image encoder for subsequent segmentation tasks.
get_modelRetrieve and configure the model with binarization enabled.
inferencePerform image segmentation inference based on the given input cues, using the currently loaded image. This
init_stateInitialize an inference state for the predictor.
postprocessPost-process the predictions to apply non-overlapping constraints if required.
propagate_in_video_preflightPrepare inference_state and consolidate temporary outputs before tracking.

Examples

>>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
>>> predictor.set_image("path/to/video_frame.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> results = predictor(bboxes=bboxes)

Notes

The fill_hole_area attribute is defined but not used in the current implementation.

Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM2VideoPredictor(SAM2Predictor):
    """SAM2VideoPredictor to handle user interactions with videos and manage inference states.

    This class extends the functionality of SAM2Predictor to support video processing and maintains the state of
    inference operations. It includes configurations for managing non-overlapping masks, clearing memory for
    non-conditional inputs, and setting up callbacks for prediction events.

    Attributes:
        inference_state (dict): A dictionary to store the current state of inference operations.
        non_overlap_masks (bool): A flag indicating whether masks should be non-overlapping.
        clear_non_cond_mem_around_input (bool): A flag to control clearing non-conditional memory around inputs.
        clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object
            scenarios.
        callbacks (dict): A dictionary of callbacks for various prediction lifecycle events.

    Methods:
        get_model: Retrieve and configure the model with binarization enabled.
        inference: Perform image segmentation inference based on the given input cues.
        postprocess: Post-process the predictions to apply non-overlapping constraints if required.
        add_new_prompts: Add new points or masks to a specific frame for a given object ID.
        propagate_in_video_preflight: Prepare inference_state and consolidate temporary outputs before tracking.
        init_state: Initialize an inference state for the predictor.
        get_im_features: Extract image features using SAM2's image encoder for subsequent segmentation tasks.

    Examples:
        >>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
        >>> predictor.set_image("path/to/video_frame.jpg")
        >>> bboxes = [[100, 100, 200, 200]]
        >>> results = predictor(bboxes=bboxes)

    Notes:
        The `fill_hole_area` attribute is defined but not used in the current implementation.
    """

    # fill_hole_area = 8  # not used

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize the predictor with configuration and optional overrides.

        This constructor initializes the SAM2VideoPredictor with a given configuration, applies any specified overrides,
        and sets up the inference state along with certain flags that control the behavior of the predictor.

        Args:
            cfg (dict): Configuration dictionary containing default settings.
            overrides (dict | None): Dictionary of values to override default configuration.
            _callbacks (dict | None): Dictionary of callback functions to customize behavior.
        """
        super().__init__(cfg, overrides, _callbacks)
        self.inference_state = {}
        self.non_overlap_masks = True
        self.clear_non_cond_mem_around_input = False
        self.clear_non_cond_mem_for_multi_obj = False
        self.callbacks["on_predict_start"].append(self.init_state)


method ultralytics.models.sam.predict.SAM2VideoPredictor._add_output_per_object

def _add_output_per_object(self, frame_idx, current_out, storage_key)

Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.

The resulting slices share the same tensor storage.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the current frame.required
current_outdictThe current output dictionary containing multi-object outputs.required
storage_keystrThe key used to store the output in the per-object output dictionary.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _add_output_per_object(self, frame_idx, current_out, storage_key):
    """Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.

    The resulting slices share the same tensor storage.

    Args:
        frame_idx (int): The index of the current frame.
        current_out (dict): The current output dictionary containing multi-object outputs.
        storage_key (str): The key used to store the output in the per-object output dictionary.
    """
    maskmem_features = current_out["maskmem_features"]
    assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)

    maskmem_pos_enc = current_out["maskmem_pos_enc"]
    assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)

    for obj_idx, obj_output_dict in self.inference_state["output_dict_per_obj"].items():
        obj_slice = slice(obj_idx, obj_idx + 1)
        obj_out = {
            "maskmem_features": None,
            "maskmem_pos_enc": None,
            "pred_masks": current_out["pred_masks"][obj_slice],
            "obj_ptr": current_out["obj_ptr"][obj_slice],
        }
        if maskmem_features is not None:
            obj_out["maskmem_features"] = maskmem_features[obj_slice]
        if maskmem_pos_enc is not None:
            obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
        obj_output_dict[storage_key][frame_idx] = obj_out


method ultralytics.models.sam.predict.SAM2VideoPredictor._clear_non_cond_mem_around_input

def _clear_non_cond_mem_around_input(self, frame_idx)

Remove the non-conditioning memory around the input frame.

When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated object appearance information and could confuse the model. This method clears those non-conditioning memories surrounding the interacted frame to avoid giving the model both old and new information about the object.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the current frame where user interaction occurred.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _clear_non_cond_mem_around_input(self, frame_idx):
    """Remove the non-conditioning memory around the input frame.

    When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain
    outdated object appearance information and could confuse the model. This method clears those non-conditioning
    memories surrounding the interacted frame to avoid giving the model both old and new information about the
    object.

    Args:
        frame_idx (int): The index of the current frame where user interaction occurred.
    """
    r = self.model.memory_temporal_stride_for_eval
    frame_idx_begin = frame_idx - r * self.model.num_maskmem
    frame_idx_end = frame_idx + r * self.model.num_maskmem
    for t in range(frame_idx_begin, frame_idx_end + 1):
        self.inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None)
        for obj_output_dict in self.inference_state["output_dict_per_obj"].values():
            obj_output_dict["non_cond_frame_outputs"].pop(t, None)


method ultralytics.models.sam.predict.SAM2VideoPredictor._consolidate_temp_output_across_obj

def _consolidate_temp_output_across_obj(self, frame_idx, is_cond = False, run_mem_encoder = False)

Consolidate per-object temporary outputs into a single output for all objects.

This method combines the temporary outputs for each object on a given frame into a unified output. It fills in any missing objects either from the main output dictionary or leaves placeholders if they do not exist in the main output. Optionally, it can re-run the memory encoder after applying non-overlapping constraints to the object scores.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the frame for which to consolidate outputs.required
is_condbool, optionalIndicates if the frame is considered a conditioning frame.False
run_mem_encoderbool, optionalSpecifies whether to run the memory encoder after consolidating the outputs.False

Returns

TypeDescription
dictA consolidated output dictionary containing the combined results for all objects.

Notes

  • The method initializes the consolidated output with placeholder values for missing objects.
  • It searches for outputs in both the temporary and main output dictionaries.
  • If run_mem_encoder is True, it applies non-overlapping constraints and re-runs the memory encoder.
  • The maskmem_features and maskmem_pos_enc are only populated when run_mem_encoder is True.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _consolidate_temp_output_across_obj(
    self,
    frame_idx,
    is_cond=False,
    run_mem_encoder=False,
):
    """Consolidate per-object temporary outputs into a single output for all objects.

    This method combines the temporary outputs for each object on a given frame into a unified
    output. It fills in any missing objects either from the main output dictionary or leaves
    placeholders if they do not exist in the main output. Optionally, it can re-run the memory encoder after
    applying non-overlapping constraints to the object scores.

    Args:
        frame_idx (int): The index of the frame for which to consolidate outputs.
        is_cond (bool, optional): Indicates if the frame is considered a conditioning frame.
        run_mem_encoder (bool, optional): Specifies whether to run the memory encoder after consolidating the
            outputs.

    Returns:
        (dict): A consolidated output dictionary containing the combined results for all objects.

    Notes:
        - The method initializes the consolidated output with placeholder values for missing objects.
        - It searches for outputs in both the temporary and main output dictionaries.
        - If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder.
        - The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True.
    """
    batch_size = len(self.inference_state["obj_idx_to_id"])
    storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

    # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
    # will be added when rerunning the memory encoder after applying non-overlapping
    # constraints to object scores. Its "pred_masks" are prefilled with a large
    # negative value (NO_OBJ_SCORE) to represent missing objects.
    consolidated_out = {
        "maskmem_features": None,
        "maskmem_pos_enc": None,
        "pred_masks": torch.full(
            size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "obj_ptr": torch.full(
            size=(batch_size, self.model.hidden_dim),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "object_score_logits": torch.full(
            size=(batch_size, 1),
            # default to 10.0 for object_score_logits, i.e. assuming the object is
            # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
            fill_value=10.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
    }
    for obj_idx in range(batch_size):
        obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx]
        obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx]
        out = (
            obj_temp_output_dict[storage_key].get(frame_idx)
            # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
            # we fall back and look up its previous output in "output_dict_per_obj".
            # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
            # "output_dict_per_obj" to find a previous output for this object.
            or obj_output_dict["cond_frame_outputs"].get(frame_idx)
            or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
        )
        # If the object doesn't appear in "output_dict_per_obj" either, we skip it
        # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
        # placeholder above) and set its object pointer to be a dummy pointer.
        if out is None:
            # Fill in dummy object pointers for those objects without any inputs or
            # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
            # i.e. when we need to build the memory for tracking).
            if run_mem_encoder:
                # fill object pointer with a dummy pointer (based on an empty mask)
                consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = self._get_empty_mask_ptr(frame_idx)
            continue
        # Add the temporary object output mask to consolidated output mask
        consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = out["pred_masks"]
        consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]

    # Optionally, apply non-overlapping constraints on the consolidated scores and rerun the memory encoder
    if run_mem_encoder:
        high_res_masks = F.interpolate(
            consolidated_out["pred_masks"],
            size=self.imgsz,
            mode="bilinear",
            align_corners=False,
        )
        if self.model.non_overlap_masks_for_mem_enc:
            high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks)
        consolidated_out["maskmem_features"], consolidated_out["maskmem_pos_enc"] = self._run_memory_encoder(
            batch_size=batch_size,
            high_res_masks=high_res_masks,
            is_mask_from_pts=True,  # these frames are what the user interacted with
            object_score_logits=consolidated_out["object_score_logits"],
        )

    return consolidated_out


method ultralytics.models.sam.predict.SAM2VideoPredictor._get_empty_mask_ptr

def _get_empty_mask_ptr(self, frame_idx)

Get a dummy object pointer based on an empty mask on the current frame.

Args

NameTypeDescriptionDefault
frame_idxintThe index of the current frame for which to generate the dummy object pointer.required

Returns

TypeDescription
torch.TensorA tensor representing the dummy object pointer generated from the empty mask.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _get_empty_mask_ptr(self, frame_idx):
    """Get a dummy object pointer based on an empty mask on the current frame.

    Args:
        frame_idx (int): The index of the current frame for which to generate the dummy object pointer.

    Returns:
        (torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask.
    """
    # Retrieve correct image features
    current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(self.inference_state["im"])

    # Feed the empty mask and image feature above to get a dummy object pointer
    current_out = self.model.track_step(
        frame_idx=frame_idx,
        is_init_cond_frame=True,
        current_vision_feats=current_vision_feats,
        current_vision_pos_embeds=current_vision_pos_embeds,
        feat_sizes=feat_sizes,
        point_inputs=None,
        # A dummy (empty) mask with a single object
        mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=self.torch_dtype, device=self.device),
        output_dict={},
        num_frames=self.inference_state["num_frames"],
        track_in_reverse=False,
        run_mem_encoder=False,
        prev_sam_mask_logits=None,
    )
    return current_out["obj_ptr"]


method ultralytics.models.sam.predict.SAM2VideoPredictor._get_maskmem_pos_enc

def _get_maskmem_pos_enc(self, out_maskmem_pos_enc)

Cache and manage the positional encoding for mask memory across frames and objects.

This method optimizes storage by caching the positional encoding (maskmem_pos_enc) for mask memory, which is constant across frames and objects, thus reducing the amount of redundant information stored during an inference session. It checks if the positional encoding has already been cached; if not, it caches a slice of the provided encoding. If the batch size is greater than one, it expands the cached positional encoding to match the current batch size.

Args

NameTypeDescriptionDefault
out_maskmem_pos_enclist[torch.Tensor] | NoneThe positional encoding for mask memory. Should be a list of tensors or None.required

Returns

TypeDescription
list[torch.Tensor]The positional encoding for mask memory, either cached or expanded.

Notes

  • The method assumes that out_maskmem_pos_enc is a list of tensors or None.
  • Only a single object's slice is cached since the encoding is the same across objects.
  • The method checks if the positional encoding has already been cached in the session's constants.
  • If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc):
    """Cache and manage the positional encoding for mask memory across frames and objects.

    This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for mask memory, which is
    constant across frames and objects, thus reducing the amount of redundant information stored during an inference
    session. It checks if the positional encoding has already been cached; if not, it caches a slice of the provided
    encoding. If the batch size is greater than one, it expands the cached positional encoding to match the current
    batch size.

    Args:
        out_maskmem_pos_enc (list[torch.Tensor] | None): The positional encoding for mask memory. Should be a list
            of tensors or None.

    Returns:
        (list[torch.Tensor]): The positional encoding for mask memory, either cached or expanded.

    Notes:
        - The method assumes that `out_maskmem_pos_enc` is a list of tensors or None.
        - Only a single object's slice is cached since the encoding is the same across objects.
        - The method checks if the positional encoding has already been cached in the session's constants.
        - If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
    """
    model_constants = self.inference_state["constants"]
    # "out_maskmem_pos_enc" should be either a list of tensors or None
    if out_maskmem_pos_enc is not None:
        if "maskmem_pos_enc" not in model_constants:
            assert isinstance(out_maskmem_pos_enc, list)
            # only take the slice for one object, since it's same across objects
            maskmem_pos_enc = [x[:1].clone() for x in out_maskmem_pos_enc]
            model_constants["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            maskmem_pos_enc = model_constants["maskmem_pos_enc"]
        # expand the cached maskmem_pos_enc to the actual batch size
        batch_size = out_maskmem_pos_enc[0].shape[0]
        if batch_size > 1:
            out_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
    return out_maskmem_pos_enc


method ultralytics.models.sam.predict.SAM2VideoPredictor._obj_id_to_idx

def _obj_id_to_idx(self, obj_id)

Map client-side object id to model-side object index.

Args

NameTypeDescriptionDefault
obj_idintThe unique identifier of the object provided by the client side.required

Returns

TypeDescription
intThe index of the object on the model side.

Notes

  • The method updates or retrieves mappings between object IDs and indices stored in inference_state.
  • It ensures that new objects can only be added before tracking commences.
  • It maintains two-way mappings between IDs and indices (obj_id_to_idx and obj_idx_to_id).
  • Additional data structures are initialized for the new object to store inputs and outputs.

Raises

TypeDescription
RuntimeErrorIf an attempt is made to add a new object after tracking has started.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _obj_id_to_idx(self, obj_id):
    """Map client-side object id to model-side object index.

    Args:
        obj_id (int): The unique identifier of the object provided by the client side.

    Returns:
        (int): The index of the object on the model side.

    Raises:
        RuntimeError: If an attempt is made to add a new object after tracking has started.

    Notes:
        - The method updates or retrieves mappings between object IDs and indices stored in
          `inference_state`.
        - It ensures that new objects can only be added before tracking commences.
        - It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`).
        - Additional data structures are initialized for the new object to store inputs and outputs.
    """
    obj_idx = self.inference_state["obj_id_to_idx"].get(obj_id, None)
    if obj_idx is not None:
        return obj_idx

    # This is a new object id not sent to the server before. We only allow adding
    # new objects *before* the tracking starts.
    allow_new_object = not self.inference_state["tracking_has_started"]
    if allow_new_object:
        # get the next object slot
        obj_idx = len(self.inference_state["obj_id_to_idx"])
        self.inference_state["obj_id_to_idx"][obj_id] = obj_idx
        self.inference_state["obj_idx_to_id"][obj_idx] = obj_id
        self.inference_state["obj_ids"] = list(self.inference_state["obj_id_to_idx"])
        # set up input and output structures for this object
        self.inference_state["point_inputs_per_obj"][obj_idx] = {}
        self.inference_state["mask_inputs_per_obj"][obj_idx] = {}
        self.inference_state["output_dict_per_obj"][obj_idx] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        self.inference_state["temp_output_dict_per_obj"][obj_idx] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        return obj_idx
    else:
        raise RuntimeError(
            f"Cannot add new object id {obj_id} after tracking starts. "
            f"All existing object ids: {self.inference_state['obj_ids']}. "
            f"Please call 'reset_state' to restart from scratch."
        )


method ultralytics.models.sam.predict.SAM2VideoPredictor._run_memory_encoder

def _run_memory_encoder(self, batch_size, high_res_masks, object_score_logits, is_mask_from_pts)

Run the memory encoder on masks.

This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their memory also needs to be computed again with the memory encoder.

Args

NameTypeDescriptionDefault
batch_sizeintThe batch size for processing the frame.required
high_res_maskstorch.TensorHigh-resolution masks for which to compute the memory.required
object_score_logitstorch.TensorLogits representing the object scores.required
is_mask_from_ptsboolIndicates if the mask is derived from point interactions.required

Returns

TypeDescription
maskmem_features (torch.Tensor)The encoded mask features.
maskmem_pos_enc (torch.Tensor)The positional encoding.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _run_memory_encoder(self, batch_size, high_res_masks, object_score_logits, is_mask_from_pts):
    """Run the memory encoder on masks.

    This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their
    memory also needs to be computed again with the memory encoder.

    Args:
        batch_size (int): The batch size for processing the frame.
        high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory.
        object_score_logits (torch.Tensor): Logits representing the object scores.
        is_mask_from_pts (bool): Indicates if the mask is derived from point interactions.

    Returns:
        maskmem_features (torch.Tensor): The encoded mask features.
        maskmem_pos_enc (torch.Tensor): The positional encoding.
    """
    # Retrieve correct image features
    current_vision_feats, _, feat_sizes = self.get_im_features(self.inference_state["im"], batch_size)
    maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
        current_vision_feats=current_vision_feats,
        feat_sizes=feat_sizes,
        pred_masks_high_res=high_res_masks,
        is_mask_from_pts=is_mask_from_pts,
        object_score_logits=object_score_logits,
    )

    # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
    maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc)
    return maskmem_features.to(
        dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
    ), maskmem_pos_enc


method ultralytics.models.sam.predict.SAM2VideoPredictor._run_single_frame_inference

def _run_single_frame_inference(
    self,
    output_dict,
    frame_idx,
    batch_size,
    is_init_cond_frame,
    point_inputs,
    mask_inputs,
    reverse,
    run_mem_encoder,
    prev_sam_mask_logits=None,
)

Run tracking on a single frame based on current inputs and previous memory.

Args

NameTypeDescriptionDefault
output_dictdictThe dictionary containing the output states of the tracking process.required
frame_idxintThe index of the current frame.required
batch_sizeintThe batch size for processing the frame.required
is_init_cond_frameboolIndicates if the current frame is an initial conditioning frame.required
point_inputsdict | NoneInput points and their labels.required
mask_inputstorch.Tensor | NoneInput binary masks.required
reverseboolIndicates if the tracking should be performed in reverse order.required
run_mem_encoderboolIndicates if the memory encoder should be executed.required
prev_sam_mask_logitstorch.Tensor | NonePrevious mask logits for the current object.None

Returns

TypeDescription
dictA dictionary containing the output of the tracking step, including updated features and predictions.

Notes

  • The method assumes that point_inputs and mask_inputs are mutually exclusive.
  • The method retrieves image features using the get_im_features method.
  • The maskmem_pos_enc is assumed to be constant across frames, hence only one copy is stored.
  • The fill_holes_in_mask_scores function is commented out and currently unsupported due to CUDA extension requirements.

Raises

TypeDescription
AssertionErrorIf both point_inputs and mask_inputs are provided, or neither is provided.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _run_single_frame_inference(
    self,
    output_dict,
    frame_idx,
    batch_size,
    is_init_cond_frame,
    point_inputs,
    mask_inputs,
    reverse,
    run_mem_encoder,
    prev_sam_mask_logits=None,
):
    """Run tracking on a single frame based on current inputs and previous memory.

    Args:
        output_dict (dict): The dictionary containing the output states of the tracking process.
        frame_idx (int): The index of the current frame.
        batch_size (int): The batch size for processing the frame.
        is_init_cond_frame (bool): Indicates if the current frame is an initial conditioning frame.
        point_inputs (dict | None): Input points and their labels.
        mask_inputs (torch.Tensor | None): Input binary masks.
        reverse (bool): Indicates if the tracking should be performed in reverse order.
        run_mem_encoder (bool): Indicates if the memory encoder should be executed.
        prev_sam_mask_logits (torch.Tensor | None): Previous mask logits for the current object.

    Returns:
        (dict): A dictionary containing the output of the tracking step, including updated features and predictions.

    Raises:
        AssertionError: If both `point_inputs` and `mask_inputs` are provided, or neither is provided.

    Notes:
        - The method assumes that `point_inputs` and `mask_inputs` are mutually exclusive.
        - The method retrieves image features using the `get_im_features` method.
        - The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored.
        - The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements.
    """
    # Retrieve correct image features
    current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
        self.inference_state["im"], batch_size
    )

    # point and mask should not appear as input simultaneously on the same frame
    assert point_inputs is None or mask_inputs is None
    current_out = self.model.track_step(
        frame_idx=frame_idx,
        is_init_cond_frame=is_init_cond_frame,
        current_vision_feats=current_vision_feats,
        current_vision_pos_embeds=current_vision_pos_embeds,
        feat_sizes=feat_sizes,
        point_inputs=point_inputs,
        mask_inputs=mask_inputs,
        output_dict=output_dict,
        num_frames=self.inference_state["num_frames"],
        track_in_reverse=reverse,
        run_mem_encoder=run_mem_encoder,
        prev_sam_mask_logits=prev_sam_mask_logits,
    )

    maskmem_features = current_out["maskmem_features"]
    if maskmem_features is not None:
        current_out["maskmem_features"] = maskmem_features.to(
            dtype=torch.float16, device=self.device, non_blocking=self.device.type == "cuda"
        )
    # NOTE: Do not support the `fill_holes_in_mask_scores` function since it needs cuda extensions
    # potentially fill holes in the predicted masks
    # if self.fill_hole_area > 0:
    #     pred_masks = current_out["pred_masks"].to(self.device, non_blocking=self.device.type == "cuda")
    #     pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area)

    # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
    current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"])
    return current_out


method ultralytics.models.sam.predict.SAM2VideoPredictor.add_new_prompts

def add_new_prompts(self, obj_id, points = None, labels = None, masks = None, frame_idx = 0)

Add new points or masks to a specific frame for a given object ID.

This method updates the inference state with new prompts (points or masks) for a specified object and frame index. It ensures that the prompts are either points or masks, but not both, and updates the internal state accordingly. It also handles the generation of new segmentations based on the provided prompts and the existing state.

Args

NameTypeDescriptionDefault
obj_idintThe ID of the object to which the prompts are associated.required
pointstorch.Tensor, optionalThe coordinates of the points of interest.None
labelstorch.Tensor, optionalThe labels corresponding to the points.None
maskstorch.Tensor, optionalBinary masks for the object.None
frame_idxint, optionalThe index of the frame to which the prompts are applied.0

Returns

TypeDescription
pred_masks (torch.Tensor)The flattened predicted masks.
pred_scores (torch.Tensor)A tensor of ones indicating the number of objects.

Notes

  • Only one type of prompt (either points or masks) can be added per call.
  • If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
  • The method handles the consolidation of outputs and resizing of masks to the original video resolution.

Raises

TypeDescription
AssertionErrorIf both masks and points are provided, or neither is provided.
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def add_new_prompts(
    self,
    obj_id,
    points=None,
    labels=None,
    masks=None,
    frame_idx=0,
):
    """Add new points or masks to a specific frame for a given object ID.

    This method updates the inference state with new prompts (points or masks) for a specified object and frame
    index. It ensures that the prompts are either points or masks, but not both, and updates the internal state
    accordingly. It also handles the generation of new segmentations based on the provided prompts and the existing
    state.

    Args:
        obj_id (int): The ID of the object to which the prompts are associated.
        points (torch.Tensor, optional): The coordinates of the points of interest.
        labels (torch.Tensor, optional): The labels corresponding to the points.
        masks (torch.Tensor, optional): Binary masks for the object.
        frame_idx (int, optional): The index of the frame to which the prompts are applied.

    Returns:
        pred_masks (torch.Tensor): The flattened predicted masks.
        pred_scores (torch.Tensor): A tensor of ones indicating the number of objects.

    Raises:
        AssertionError: If both `masks` and `points` are provided, or neither is provided.

    Notes:
        - Only one type of prompt (either points or masks) can be added per call.
        - If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
        - The method handles the consolidation of outputs and resizing of masks to the original video resolution.
    """
    assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other."
    obj_idx = self._obj_id_to_idx(obj_id)

    point_inputs = None
    pop_key = "point_inputs_per_obj"
    if points is not None:
        point_inputs = {"point_coords": points, "point_labels": labels}
        self.inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs
        pop_key = "mask_inputs_per_obj"
    self.inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks
    self.inference_state[pop_key][obj_idx].pop(frame_idx, None)
    # If this frame hasn't been tracked before, we treat it as an initial conditioning
    # frame, meaning that the inputs points are to generate segments on this frame without
    # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
    # the input points will be used to correct the already tracked masks.
    is_init_cond_frame = frame_idx not in self.inference_state["frames_already_tracked"]
    obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx]
    obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx]
    # Add a frame to conditioning output if it's an initial conditioning frame or
    # if the model sees all frames receiving clicks/mask as conditioning frames.
    is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond
    storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

    # Get any previously predicted mask logits on this object and feed it along with
    # the new clicks into the SAM mask decoder.
    prev_sam_mask_logits = None
    # lookup temporary output dict first, which contains the most recent output
    # (if not found, then lookup conditioning and non-conditioning frame output)
    if point_inputs is not None:
        prev_out = (
            obj_temp_output_dict[storage_key].get(frame_idx)
            or obj_output_dict["cond_frame_outputs"].get(frame_idx)
            or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
        )

        if prev_out is not None and prev_out.get("pred_masks") is not None:
            prev_sam_mask_logits = prev_out["pred_masks"].to(
                device=self.device, non_blocking=self.device.type == "cuda"
            )
            # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
            prev_sam_mask_logits.clamp_(-32.0, 32.0)
    current_out = self._run_single_frame_inference(
        output_dict=obj_output_dict,  # run on the slice of a single object
        frame_idx=frame_idx,
        batch_size=1,  # run on the slice of a single object
        is_init_cond_frame=is_init_cond_frame,
        point_inputs=point_inputs,
        mask_inputs=masks,
        reverse=False,
        # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
        # at the beginning of `propagate_in_video` (after user finalize their clicks). This
        # allows us to enforce non-overlapping constraints on all objects before encoding
        # them into memory.
        run_mem_encoder=False,
        prev_sam_mask_logits=prev_sam_mask_logits,
    )
    # Add the output to the output dict (to be used as future memory)
    obj_temp_output_dict[storage_key][frame_idx] = current_out

    # Resize the output mask to the original video resolution
    consolidated_out = self._consolidate_temp_output_across_obj(
        frame_idx,
        is_cond=is_cond,
        run_mem_encoder=False,
    )
    pred_masks = consolidated_out["pred_masks"].flatten(0, 1)
    return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device)


method ultralytics.models.sam.predict.SAM2VideoPredictor.get_im_features

def get_im_features(self, im, batch = 1)

Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.

Args

NameTypeDescriptionDefault
imtorch.TensorThe input image tensor.required
batchint, optionalThe batch size for expanding features if there are multiple prompts.1

Returns

TypeDescription
vis_feats (torch.Tensor)The visual features extracted from the image.
vis_pos_embed (torch.Tensor)The positional embeddings for the visual features.
feat_sizes (list[tuple])A list containing the sizes of the extracted features.

Notes

  • If batch is greater than 1, the features are expanded to fit the batch size.
  • The method leverages the model's _prepare_backbone_features method to prepare the backbone features.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, im, batch=1):
    """Extract and process image features using SAM2's image encoder for subsequent segmentation tasks.

    Args:
        im (torch.Tensor): The input image tensor.
        batch (int, optional): The batch size for expanding features if there are multiple prompts.

    Returns:
        vis_feats (torch.Tensor): The visual features extracted from the image.
        vis_pos_embed (torch.Tensor): The positional embeddings for the visual features.
        feat_sizes (list[tuple]): A list containing the sizes of the extracted features.

    Notes:
        - If `batch` is greater than 1, the features are expanded to fit the batch size.
        - The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features.
    """
    self.model.set_imgsz(self.imgsz)
    backbone_out = self.model.forward_image(im)
    if batch > 1:  # expand features if there's more than one prompt
        for i, feat in enumerate(backbone_out["backbone_fpn"]):
            backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1)
        for i, pos in enumerate(backbone_out["vision_pos_enc"]):
            pos = pos.expand(batch, -1, -1, -1)
            backbone_out["vision_pos_enc"][i] = pos
    _, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
    return vis_feats, vis_pos_embed, feat_sizes


method ultralytics.models.sam.predict.SAM2VideoPredictor.get_model

def get_model(self)

Retrieve and configure the model with binarization enabled.

Notes

This method overrides the base class implementation to set the binarize flag to True.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_model(self):
    """Retrieve and configure the model with binarization enabled.

    Notes:
        This method overrides the base class implementation to set the binarize flag to True.
    """
    model = super().get_model()
    model.set_binarize(True)
    return model


method ultralytics.models.sam.predict.SAM2VideoPredictor.inference

def inference(self, im, bboxes = None, points = None, labels = None, masks = None)

Perform image segmentation inference based on the given input cues, using the currently loaded image. This

method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and mask decoder for real-time and promptable segmentation tasks.

Args

NameTypeDescriptionDefault
imtorch.TensorThe preprocessed input image in tensor format, with shape (N, C, H, W).required
bboxesnp.ndarray | list, optionalBounding boxes with shape (N, 4), in XYXY format.None
pointsnp.ndarray | list, optionalPoints indicating object locations with shape (N, 2), in pixels.None
labelsnp.ndarray | list, optionalLabels for point prompts, shape (N, ). 1 = foreground, 0 = background.None
masksnp.ndarray, optionalLow-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.None

Returns

TypeDescription
pred_masks (torch.Tensor)The output masks in shape CxHxW, where C is the number of generated masks.
pred_scores (torch.Tensor)An array of length C containing predicted quality scores for each mask.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def inference(self, im, bboxes=None, points=None, labels=None, masks=None):
    """Perform image segmentation inference based on the given input cues, using the currently loaded image. This
    method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
    encoder, and mask decoder for real-time and promptable segmentation tasks.

    Args:
        im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
        bboxes (np.ndarray | list, optional): Bounding boxes with shape (N, 4), in XYXY format.
        points (np.ndarray | list, optional): Points indicating object locations with shape (N, 2), in pixels.
        labels (np.ndarray | list, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
        masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.

    Returns:
        pred_masks (torch.Tensor): The output masks in shape CxHxW, where C is the number of generated masks.
        pred_scores (torch.Tensor): An array of length C containing predicted quality scores for each mask.
    """
    # Override prompts if any stored in self.prompts
    bboxes = self.prompts.pop("bboxes", bboxes)
    points = self.prompts.pop("points", points)
    masks = self.prompts.pop("masks", masks)

    frame = self.dataset.frame
    self.inference_state["im"] = im
    output_dict = self.inference_state["output_dict"]
    if len(output_dict["cond_frame_outputs"]) == 0:  # initialize prompts
        points, labels, masks = self._prepare_prompts(
            im.shape[2:], self.batch[1][0].shape[:2], bboxes, points, labels, masks
        )
        if points is not None:
            for i in range(len(points)):
                self.add_new_prompts(obj_id=i, points=points[[i]], labels=labels[[i]], frame_idx=frame)
        elif masks is not None:
            for i in range(len(masks)):
                self.add_new_prompts(obj_id=i, masks=masks[[i]], frame_idx=frame)
    self.propagate_in_video_preflight()

    consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
    batch_size = len(self.inference_state["obj_idx_to_id"])
    if len(output_dict["cond_frame_outputs"]) == 0:
        raise RuntimeError("No points are provided; please add points first")

    if frame in consolidated_frame_inds["cond_frame_outputs"]:
        storage_key = "cond_frame_outputs"
        current_out = output_dict[storage_key][frame]
        if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
            # clear non-conditioning memory of the surrounding frames
            self._clear_non_cond_mem_around_input(frame)
    elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
        storage_key = "non_cond_frame_outputs"
        current_out = output_dict[storage_key][frame]
    else:
        storage_key = "non_cond_frame_outputs"
        current_out = self._run_single_frame_inference(
            output_dict=output_dict,
            frame_idx=frame,
            batch_size=batch_size,
            is_init_cond_frame=False,
            point_inputs=None,
            mask_inputs=None,
            reverse=False,
            run_mem_encoder=True,
        )
        output_dict[storage_key][frame] = current_out
    # Create slices of per-object outputs for subsequent interaction with each
    # individual object after tracking.
    self._add_output_per_object(frame, current_out, storage_key)
    self.inference_state["frames_already_tracked"].append(frame)
    pred_masks = current_out["pred_masks"].flatten(0, 1)
    pred_masks = pred_masks[(pred_masks > self.model.mask_threshold).sum((1, 2)) > 0]  # filter blank masks

    return pred_masks, torch.ones(pred_masks.shape[0], dtype=pred_masks.dtype, device=pred_masks.device)


method ultralytics.models.sam.predict.SAM2VideoPredictor.init_state

def init_state(predictor)

Initialize an inference state for the predictor.

This function sets up the initial state required for performing inference on video data. It includes initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata relevant to the tracking process.

Args

NameTypeDescriptionDefault
predictorSAM2VideoPredictorThe predictor object for which to initialize the state.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
@staticmethod
def init_state(predictor):
    """Initialize an inference state for the predictor.

    This function sets up the initial state required for performing inference on video data. It includes
    initializing various dictionaries and ordered dictionaries that will store inputs, outputs, and other metadata
    relevant to the tracking process.

    Args:
        predictor (SAM2VideoPredictor): The predictor object for which to initialize the state.
    """
    if len(predictor.inference_state) > 0:  # means initialized
        return
    assert predictor.dataset is not None
    assert predictor.dataset.mode == "video"

    inference_state = {
        "num_frames": predictor.dataset.frames,
        "point_inputs_per_obj": {},  # inputs points on each frame
        "mask_inputs_per_obj": {},  # inputs mask on each frame
        "constants": {},  # values that don't change across frames (so we only need to hold one copy of them)
        # mapping between client-side object id and model-side object index
        "obj_id_to_idx": OrderedDict(),
        "obj_idx_to_id": OrderedDict(),
        "obj_ids": [],
        # A storage to hold the model's tracking results and states on each frame
        "output_dict": {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        },
        # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
        "output_dict_per_obj": {},
        # A temporary storage to hold new outputs when user interact with a frame
        # to add clicks or mask (it's merged into "output_dict" before propagation starts)
        "temp_output_dict_per_obj": {},
        # Frames that already holds consolidated outputs from click or mask inputs
        # (we directly use their consolidated outputs during tracking)
        "consolidated_frame_inds": {
            "cond_frame_outputs": set(),  # set containing frame indices
            "non_cond_frame_outputs": set(),  # set containing frame indices
        },
        # metadata for each tracking frame (e.g. which direction it's tracked)
        "tracking_has_started": False,
        "frames_already_tracked": [],
    }
    predictor.inference_state = inference_state


method ultralytics.models.sam.predict.SAM2VideoPredictor.postprocess

def postprocess(self, preds, img, orig_imgs)

Post-process the predictions to apply non-overlapping constraints if required.

This method extends the post-processing functionality by applying non-overlapping constraints to the predicted masks if the non_overlap_masks flag is set to True. This ensures that the masks do not overlap, which can be useful for certain applications.

Args

NameTypeDescriptionDefault
predstuple[torch.Tensor, torch.Tensor]The predicted masks and scores from the model.required
imgtorch.TensorThe processed image tensor.required
orig_imgslist[np.ndarray]The original images before processing.required

Returns

TypeDescription
listThe post-processed predictions.

Notes

If non_overlap_masks is True, the method applies constraints to ensure non-overlapping masks.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def postprocess(self, preds, img, orig_imgs):
    """Post-process the predictions to apply non-overlapping constraints if required.

    This method extends the post-processing functionality by applying non-overlapping constraints to the predicted
    masks if the `non_overlap_masks` flag is set to True. This ensures that the masks do not overlap, which can be
    useful for certain applications.

    Args:
        preds (tuple[torch.Tensor, torch.Tensor]): The predicted masks and scores from the model.
        img (torch.Tensor): The processed image tensor.
        orig_imgs (list[np.ndarray]): The original images before processing.

    Returns:
        (list): The post-processed predictions.

    Notes:
        If `non_overlap_masks` is True, the method applies constraints to ensure non-overlapping masks.
    """
    results = super().postprocess(preds, img, orig_imgs)
    if self.non_overlap_masks:
        for result in results:
            if result.masks is None or len(result.masks) == 0:
                continue
            result.masks.data = self.model._apply_non_overlapping_constraints(result.masks.data.unsqueeze(0))[0]
    return results


method ultralytics.models.sam.predict.SAM2VideoPredictor.propagate_in_video_preflight

def propagate_in_video_preflight(self)

Prepare inference_state and consolidate temporary outputs before tracking.

This method marks the start of tracking, disallowing the addition of new objects until the session is reset. It consolidates temporary outputs from temp_output_dict_per_obj and merges them into output_dict. Additionally, it clears non-conditioning memory around input frames and ensures that the state is consistent with the provided inputs.

Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def propagate_in_video_preflight(self):
    """Prepare inference_state and consolidate temporary outputs before tracking.

    This method marks the start of tracking, disallowing the addition of new objects until the session is reset. It
    consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`. Additionally,
    it clears non-conditioning memory around input frames and ensures that the state is consistent with the provided
    inputs.
    """
    # Tracking has started and we don't allow adding new objects until session is reset.
    self.inference_state["tracking_has_started"] = True
    batch_size = len(self.inference_state["obj_idx_to_id"])

    # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
    # add them into "output_dict".
    temp_output_dict_per_obj = self.inference_state["temp_output_dict_per_obj"]
    output_dict = self.inference_state["output_dict"]
    # "consolidated_frame_inds" contains indices of those frames where consolidated
    # temporary outputs have been added (either in this call or any previous calls
    # to `propagate_in_video_preflight`).
    consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
    for is_cond in {False, True}:
        # Separately consolidate conditioning and non-conditioning temp outputs
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
        # Find all the frames that contain temporary outputs for any objects
        # (these should be the frames that have just received clicks for mask inputs
        # via `add_new_points` or `add_new_mask`)
        temp_frame_inds = set()
        for obj_temp_output_dict in temp_output_dict_per_obj.values():
            temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
        consolidated_frame_inds[storage_key].update(temp_frame_inds)
        # consolidate the temporary output across all objects on this frame
        for frame_idx in temp_frame_inds:
            consolidated_out = self._consolidate_temp_output_across_obj(
                frame_idx, is_cond=is_cond, run_mem_encoder=True
            )
            # merge them into "output_dict" and also create per-object slices
            output_dict[storage_key][frame_idx] = consolidated_out
            self._add_output_per_object(frame_idx, consolidated_out, storage_key)
            if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
                # clear non-conditioning memory of the surrounding frames
                self._clear_non_cond_mem_around_input(frame_idx)

        # clear temporary outputs in `temp_output_dict_per_obj`
        for obj_temp_output_dict in temp_output_dict_per_obj.values():
            obj_temp_output_dict[storage_key].clear()

    # edge case: if an output is added to "cond_frame_outputs", we remove any prior
    # output on the same frame in "non_cond_frame_outputs"
    for frame_idx in output_dict["cond_frame_outputs"]:
        output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
    for obj_output_dict in self.inference_state["output_dict_per_obj"].values():
        for frame_idx in obj_output_dict["cond_frame_outputs"]:
            obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
    for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
        assert frame_idx in output_dict["cond_frame_outputs"]
        consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)

    # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
    # with either points or mask inputs (which should be true under a correct workflow).
    all_consolidated_frame_inds = (
        consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"]
    )
    input_frames_inds = set()
    for point_inputs_per_frame in self.inference_state["point_inputs_per_obj"].values():
        input_frames_inds.update(point_inputs_per_frame.keys())
    for mask_inputs_per_frame in self.inference_state["mask_inputs_per_obj"].values():
        input_frames_inds.update(mask_inputs_per_frame.keys())
    assert all_consolidated_frame_inds == input_frames_inds





class ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor

def __init__(
    self,
    cfg: Any = DEFAULT_CFG,
    overrides: dict[str, Any] | None = None,
    max_obj_num: int = 3,
    _callbacks: dict[str, Any] | None = None,
) -> None

Bases: SAM2Predictor

SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a

sequence of images.

This constructor initializes the SAM2DynamicInteractivePredictor with a given configuration, applies any specified overrides

Args

NameTypeDescriptionDefault
cfgdict[str, Any]Configuration dictionary containing default settings.DEFAULT_CFG
overridesdict[str, Any] | NoneDictionary of values to override default configuration.None
max_obj_numintMaximum number of objects to track. Default is 3. this is set to keep fix feature size for the model.3
_callbacksdict[str, Any] | NoneDictionary of callback functions to customize behavior.None

Attributes

NameTypeDescription
memory_banklistOrderedDict: Stores the states of each image with prompts.
obj_idx_setsetA set to keep track of the object indices that have been added.
obj_id_to_idxOrderedDictMaps object IDs to their corresponding indices.
obj_idx_to_idOrderedDictMaps object indices to their corresponding IDs.

Methods

NameDescription
_obj_id_to_idxMap client-side object id to model-side object index.
_prepare_memory_conditioned_featuresPrepare the memory-conditioned features for the current image state. If obj_idx is provided, it supposes to
get_im_featuresInitialize the image state by processing the input image and extracting features.
get_maskmem_encGet memory and positional encoding from memory, which is used to condition the current image features.
inferencePerform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two
track_stepTracking step for the current image state to predict masks.
update_memoryAppend the imgState to the memory_bank and update the memory for the model.

Examples

>>> predictor = SAM2DynamicInteractivePredictor(cfg=DEFAULT_CFG)
>>> predictor(source=support_img1, bboxes=bboxes1, obj_ids=labels1, update_memory=True)
>>> results1 = predictor(source=query_img1)
>>> predictor(source=support_img2, bboxes=bboxes2, obj_ids=labels2, update_memory=True)
>>> results2 = predictor(source=query_img2)
Source code in ultralytics/models/sam/predict.pyView on GitHub
class SAM2DynamicInteractivePredictor(SAM2Predictor):
    """SAM2DynamicInteractivePredictor extends SAM2Predictor to support dynamic interactions with video frames or a
    sequence of images.

    Attributes:
        memory_bank (list): OrderedDict: Stores the states of each image with prompts.
        obj_idx_set (set): A set to keep track of the object indices that have been added.
        obj_id_to_idx (OrderedDict): Maps object IDs to their corresponding indices.
        obj_idx_to_id (OrderedDict): Maps object indices to their corresponding IDs.

    Methods:
        get_model: Retrieves and configures the model with binarization enabled.
        inference: Performs inference on a single image with optional prompts and object IDs.
        postprocess: Post-processes the predictions to apply non-overlapping constraints if required.
        update_memory: Append the imgState to the memory_bank and update the memory for the model.
        track_step: Tracking step for the current image state to predict masks.
        get_maskmem_enc: Get memory and positional encoding from the memory bank.

    Examples:
            >>> predictor = SAM2DynamicInteractivePredictor(cfg=DEFAULT_CFG)
            >>> predictor(source=support_img1, bboxes=bboxes1, obj_ids=labels1, update_memory=True)
            >>> results1 = predictor(source=query_img1)
            >>> predictor(source=support_img2, bboxes=bboxes2, obj_ids=labels2, update_memory=True)
            >>> results2 = predictor(source=query_img2)
    """

    def __init__(
        self,
        cfg: Any = DEFAULT_CFG,
        overrides: dict[str, Any] | None = None,
        max_obj_num: int = 3,
        _callbacks: dict[str, Any] | None = None,
    ) -> None:
        """Initialize the predictor with configuration and optional overrides.

        This constructor initializes the SAM2DynamicInteractivePredictor with a given configuration, applies any
        specified overrides

        Args:
            cfg (dict[str, Any]): Configuration dictionary containing default settings.
            overrides (dict[str, Any] | None): Dictionary of values to override default configuration.
            max_obj_num (int): Maximum number of objects to track. Default is 3. this is set to keep fix feature size
                for the model.
            _callbacks (dict[str, Any] | None): Dictionary of callback functions to customize behavior.
        """
        super().__init__(cfg, overrides, _callbacks)
        self.non_overlap_masks = True

        # Initialize the memory bank to store image states
        # NOTE: probably need to use dict for better query
        self.memory_bank = []

        # Initialize the object index set and mappings
        self.obj_idx_set = set()
        self.obj_id_to_idx = self.obj_idx_to_id = OrderedDict(enumerate(range(max_obj_num)))
        self._max_obj_num = max_obj_num


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor._obj_id_to_idx

def _obj_id_to_idx(self, obj_id: int) -> int | None

Map client-side object id to model-side object index.

Args

NameTypeDescriptionDefault
obj_idintThe client-side object ID.required

Returns

TypeDescription
intThe model-side object index, or None if not found.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _obj_id_to_idx(self, obj_id: int) -> int | None:
    """Map client-side object id to model-side object index.

    Args:
        obj_id (int): The client-side object ID.

    Returns:
        (int): The model-side object index, or None if not found.
    """
    return self.obj_id_to_idx.get(obj_id, None)


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor._prepare_memory_conditioned_features

def _prepare_memory_conditioned_features(self, obj_idx: int | None) -> torch.Tensor

Prepare the memory-conditioned features for the current image state. If obj_idx is provided, it supposes to

prepare features for a specific prompted object in the image. If obj_idx is None, it prepares features for all objects in the image. If there is no memory, it will directly add a no-memory embedding to the current vision features. If there is memory, it will use the memory features from previous frames to condition the current vision features using a transformer attention mechanism.

Args

NameTypeDescriptionDefault
obj_idxint | NoneThe index of the object for which to prepare the features.required

Returns

TypeDescription
pix_feat_with_mem (torch.Tensor)The memory-conditioned pixel features.
Source code in ultralytics/models/sam/predict.pyView on GitHub
def _prepare_memory_conditioned_features(self, obj_idx: int | None) -> torch.Tensor:
    """Prepare the memory-conditioned features for the current image state. If obj_idx is provided, it supposes to
    prepare features for a specific prompted object in the image. If obj_idx is None, it prepares features
    for all objects in the image. If there is no memory, it will directly add a no-memory embedding to the
    current vision features. If there is memory, it will use the memory features from previous frames to
    condition the current vision features using a transformer attention mechanism.

    Args:
        obj_idx (int | None): The index of the object for which to prepare the features.

    Returns:
        pix_feat_with_mem (torch.Tensor): The memory-conditioned pixel features.
    """
    if len(self.memory_bank) == 0 or isinstance(obj_idx, int):
        # for initial conditioning frames with, encode them without using any previous memory
        # directly add no-mem embedding (instead of using the transformer encoder)
        pix_feat_with_mem = self.vision_feats[-1] + self.model.no_mem_embed
    else:
        # for inference frames, use the memory features from previous frames
        memory, memory_pos_embed = self.get_maskmem_enc()
        pix_feat_with_mem = self.model.memory_attention(
            curr=self.vision_feats[-1:],
            curr_pos=self.vision_pos_embeds[-1:],
            memory=memory,
            memory_pos=memory_pos_embed,
            num_obj_ptr_tokens=0,  # num_obj_ptr_tokens
        )
    # reshape the output (HW)BC => BCHW
    return pix_feat_with_mem.permute(1, 2, 0).view(
        self._max_obj_num,
        self.model.memory_attention.d_model,
        *self.feat_sizes[-1],
    )


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.get_im_features

def get_im_features(self, img: torch.Tensor | np.ndarray) -> None

Initialize the image state by processing the input image and extracting features.

Args

NameTypeDescriptionDefault
imgtorch.Tensor | np.ndarrayThe input image tensor or numpy array.required
Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_im_features(self, img: torch.Tensor | np.ndarray) -> None:
    """Initialize the image state by processing the input image and extracting features.

    Args:
        img (torch.Tensor | np.ndarray): The input image tensor or numpy array.
    """
    vis_feats, vis_pos_embed, feat_sizes = SAM2VideoPredictor.get_im_features(self, img, batch=self._max_obj_num)
    self.high_res_features = [
        feat.permute(1, 2, 0).view(*feat.shape[1:], *feat_size)
        for feat, feat_size in zip(vis_feats[:-1], feat_sizes[:-1])
    ]

    self.vision_feats = vis_feats
    self.vision_pos_embeds = vis_pos_embed
    self.feat_sizes = feat_sizes


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.get_maskmem_enc

def get_maskmem_enc(self) -> tuple[torch.Tensor, torch.Tensor]

Get memory and positional encoding from memory, which is used to condition the current image features.

Source code in ultralytics/models/sam/predict.pyView on GitHub
def get_maskmem_enc(self) -> tuple[torch.Tensor, torch.Tensor]:
    """Get memory and positional encoding from memory, which is used to condition the current image features."""
    to_cat_memory, to_cat_memory_pos_embed = [], []
    for consolidated_out in self.memory_bank:
        to_cat_memory.append(consolidated_out["maskmem_features"].flatten(2).permute(2, 0, 1))  # (H*W, B, C)
        maskmem_enc = consolidated_out["maskmem_pos_enc"][-1].flatten(2).permute(2, 0, 1)
        maskmem_enc = maskmem_enc + self.model.maskmem_tpos_enc[self.model.num_maskmem - 1]
        to_cat_memory_pos_embed.append(maskmem_enc)

    memory = torch.cat(to_cat_memory, dim=0)
    memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
    return memory, memory_pos_embed


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.inference

def inference(
    self,
    im: torch.Tensor | np.ndarray,
    bboxes: list[list[float]] | None = None,
    masks: torch.Tensor | np.ndarray | None = None,
    points: list[list[float]] | None = None,
    labels: list[int] | None = None,
    obj_ids: list[int] | None = None,
    update_memory: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]

Perform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two

modes: one is to run inference on a single image without updating the memory, and the other is to update the memory with the provided prompts and object IDs. When update_memory is True, it will update the memory with the provided prompts and obj_ids. When update_memory is False, it will only run inference on the provided image without updating the memory.

Args

NameTypeDescriptionDefault
imtorch.Tensor | np.ndarrayThe input image tensor or numpy array.required
bboxeslist[list[float]] | NoneOptional list of bounding boxes to update the memory.None
maskslist[torch.Tensor | np.ndarray] | NoneOptional masks to update the memory.None
pointslist[list[float]] | NoneOptional list of points to update the memory, each point is [x, y].None
labelslist[int] | NoneOptional list of object IDs corresponding to the points (>0 for positive, 0 for negative).None
obj_idslist[int] | NoneOptional list of object IDs corresponding to the prompts.None
update_memoryboolFlag to indicate whether to update the memory with new objects.False

Returns

TypeDescription
res_masks (torch.Tensor)The output masks in shape (C, H, W)
object_score_logits (torch.Tensor)Quality scores for each mask
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def inference(
    self,
    im: torch.Tensor | np.ndarray,
    bboxes: list[list[float]] | None = None,
    masks: torch.Tensor | np.ndarray | None = None,
    points: list[list[float]] | None = None,
    labels: list[int] | None = None,
    obj_ids: list[int] | None = None,
    update_memory: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
    """Perform inference on a single image with optional bounding boxes, masks, points and object IDs. It has two
    modes: one is to run inference on a single image without updating the memory, and the other is to update
    the memory with the provided prompts and object IDs. When update_memory is True, it will update the
    memory with the provided prompts and obj_ids. When update_memory is False, it will only run inference on
    the provided image without updating the memory.

    Args:
        im (torch.Tensor | np.ndarray): The input image tensor or numpy array.
        bboxes (list[list[float]] | None): Optional list of bounding boxes to update the memory.
        masks (list[torch.Tensor | np.ndarray] | None): Optional masks to update the memory.
        points (list[list[float]] | None): Optional list of points to update the memory, each point is [x, y].
        labels (list[int] | None): Optional list of object IDs corresponding to the points (>0 for positive, 0 for
            negative).
        obj_ids (list[int] | None): Optional list of object IDs corresponding to the prompts.
        update_memory (bool): Flag to indicate whether to update the memory with new objects.

    Returns:
        res_masks (torch.Tensor): The output masks in shape (C, H, W)
        object_score_logits (torch.Tensor): Quality scores for each mask
    """
    self.get_im_features(im)
    points, labels, masks = self._prepare_prompts(
        dst_shape=self.imgsz,
        src_shape=self.batch[1][0].shape[:2],
        points=points,
        bboxes=bboxes,
        labels=labels,
        masks=masks,
    )

    if update_memory:
        if isinstance(obj_ids, int):
            obj_ids = [obj_ids]
        assert obj_ids is not None, "obj_ids must be provided when update_memory is True"
        assert masks is not None or points is not None, (
            "bboxes, masks, or points must be provided when update_memory is True"
        )
        if points is None:  # placeholder
            points = torch.zeros((len(obj_ids), 0, 2), dtype=self.torch_dtype, device=self.device)
            labels = torch.zeros((len(obj_ids), 0), dtype=torch.int32, device=self.device)
        if masks is not None:
            assert len(masks) == len(obj_ids), "masks and obj_ids must have the same length."
        assert len(points) == len(obj_ids), "points and obj_ids must have the same length."
        self.update_memory(obj_ids, points, labels, masks)

    current_out = self.track_step()
    pred_masks, pred_scores = current_out["pred_masks"], current_out["object_score_logits"]
    # filter the masks and logits based on the object indices
    if len(self.obj_idx_set) == 0:
        raise RuntimeError("No objects have been added to the state. Please add objects before inference.")
    idx = list(self.obj_idx_set)  # cls id
    pred_masks, pred_scores = pred_masks[idx], pred_scores[idx]
    # the original score are in [-32,32], and a object score larger than 0 means the object is present, we map it to [-1,1] range,
    # and use a activate function to make sure the object score logits are non-negative, so that we can use it as a mask
    pred_scores = torch.clamp_(pred_scores / 32, min=0)
    return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.track_step

def track_step(
    self,
    obj_idx: int | None = None,
    point: torch.Tensor | None = None,
    label: torch.Tensor | None = None,
    mask: torch.Tensor | None = None,
) -> dict[str, Any]

Tracking step for the current image state to predict masks.

This method processes the image features and runs the SAM heads to predict masks. If obj_idx is provided, it processes the features for a specific prompted object in the image. If obj_idx is None, it processes the features for all objects in the image. The method supports both mask-based output without SAM and full SAM processing with memory-conditioned features.

Args

NameTypeDescriptionDefault
obj_idxint | NoneThe index of the object for which to predict masks. If None, it processes all objects.None
pointtorch.Tensor | NoneThe coordinates of the points of interest with shape (N, 2).None
labeltorch.Tensor | NoneThe labels corresponding to the points where 1 means positive clicks, 0 means negative clicks.None
masktorch.Tensor | NoneThe mask input for the object with shape (H, W).None

Returns

TypeDescription
current_out (dict[str, Any])A dictionary containing the current output with mask predictions and object
Source code in ultralytics/models/sam/predict.pyView on GitHub
def track_step(
    self,
    obj_idx: int | None = None,
    point: torch.Tensor | None = None,
    label: torch.Tensor | None = None,
    mask: torch.Tensor | None = None,
) -> dict[str, Any]:
    """Tracking step for the current image state to predict masks.

    This method processes the image features and runs the SAM heads to predict masks. If obj_idx is provided, it
    processes the features for a specific prompted object in the image. If obj_idx is None, it processes the
    features for all objects in the image. The method supports both mask-based output without SAM and full SAM
    processing with memory-conditioned features.

    Args:
        obj_idx (int | None): The index of the object for which to predict masks. If None, it processes all objects.
        point (torch.Tensor | None): The coordinates of the points of interest with shape (N, 2).
        label (torch.Tensor | None): The labels corresponding to the points where 1 means positive clicks, 0 means
            negative clicks.
        mask (torch.Tensor | None): The mask input for the object with shape (H, W).

    Returns:
        current_out (dict[str, Any]): A dictionary containing the current output with mask predictions and object
            pointers. Keys include 'point_inputs', 'mask_inputs', 'pred_masks', 'pred_masks_high_res',
            'obj_ptr', 'object_score_logits'.
    """
    if mask is not None and self.model.use_mask_input_as_output_without_sam:
        # When use_mask_input_as_output_without_sam=True, we directly output the mask input
        # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
        pix_feat = self.vision_feats[-1].permute(1, 2, 0)
        pix_feat = pix_feat.view(-1, self.model.memory_attention.d_model, *self.feat_sizes[-1])
        _, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = self.model._use_mask_as_output(mask)
    else:
        # fused the visual feature with previous memory features in the memory bank
        pix_feat_with_mem = self._prepare_memory_conditioned_features(obj_idx)
        # calculate the first feature if adding obj_idx exists(means adding prompts)
        pix_feat_with_mem = pix_feat_with_mem[:1] if obj_idx is not None else pix_feat_with_mem
        _, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = self.model._forward_sam_heads(
            backbone_features=pix_feat_with_mem,
            point_inputs={"point_coords": point, "point_labels": label} if obj_idx is not None else None,
            mask_inputs=mask,
            multimask_output=False,
            high_res_features=[feat[: pix_feat_with_mem.shape[0]] for feat in self.high_res_features],
        )
    return {
        "pred_masks": low_res_masks,
        "pred_masks_high_res": high_res_masks,
        "obj_ptr": obj_ptr,
        "object_score_logits": object_score_logits,
    }


method ultralytics.models.sam.predict.SAM2DynamicInteractivePredictor.update_memory

def update_memory(
    self,
    obj_ids: list[int] | None = None,
    points: torch.Tensor | None = None,
    labels: torch.Tensor | None = None,
    masks: torch.Tensor | None = None,
) -> None

Append the imgState to the memory_bank and update the memory for the model.

Args

NameTypeDescriptionDefault
obj_idslist[int]List of object IDs corresponding to the prompts.None
pointstorch.Tensor | NoneTensor of shape (B, N, 2) representing the input points for N objects.None
labelstorch.Tensor | NoneTensor of shape (B, N) representing the labels for the input points.None
maskstorch.Tensor | NoneOptional tensor of shape (N, H, W) representing the input masks for N objects.None
Source code in ultralytics/models/sam/predict.pyView on GitHub
@smart_inference_mode()
def update_memory(
    self,
    obj_ids: list[int] | None = None,
    points: torch.Tensor | None = None,
    labels: torch.Tensor | None = None,
    masks: torch.Tensor | None = None,
) -> None:
    """Append the imgState to the memory_bank and update the memory for the model.

    Args:
        obj_ids (list[int]): List of object IDs corresponding to the prompts.
        points (torch.Tensor | None): Tensor of shape (B, N, 2) representing the input points for N objects.
        labels (torch.Tensor | None): Tensor of shape (B, N) representing the labels for the input points.
        masks (torch.Tensor | None): Optional tensor of shape (N, H, W) representing the input masks for N objects.
    """
    consolidated_out = {
        "maskmem_features": None,
        "maskmem_pos_enc": None,
        "pred_masks": torch.full(
            size=(self._max_obj_num, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "obj_ptr": torch.full(
            size=(self._max_obj_num, self.model.hidden_dim),
            fill_value=-1024.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
        "object_score_logits": torch.full(
            size=(self._max_obj_num, 1),
            # default to 10.0 for object_score_logits, i.e. assuming the object is
            # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
            fill_value=-32,  # 10.0,
            dtype=self.torch_dtype,
            device=self.device,
        ),
    }

    for i, obj_id in enumerate(obj_ids):
        assert obj_id < self._max_obj_num
        obj_idx = self._obj_id_to_idx(int(obj_id))
        self.obj_idx_set.add(obj_idx)
        point, label = points[[i]], labels[[i]]
        mask = masks[[i]][None] if masks is not None else None
        # Currently, only bbox prompt or mask prompt is supported, so we assert that bbox is not None.
        assert point is not None or mask is not None, "Either bbox, points or mask is required"
        out = self.track_step(obj_idx, point, label, mask)
        if out is not None:
            obj_mask = out["pred_masks"]
            assert obj_mask.shape[-2:] == consolidated_out["pred_masks"].shape[-2:], (
                f"Expected mask shape {consolidated_out['pred_masks'].shape[-2:]} but got {obj_mask.shape[-2:]} for object {obj_idx}."
            )
            consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = obj_mask
            consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]

            if "object_score_logits" in out.keys():
                consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out["object_score_logits"]

    high_res_masks = F.interpolate(
        consolidated_out["pred_masks"].to(self.device, non_blocking=self.device.type == "cuda"),
        size=self.imgsz,
        mode="bilinear",
        align_corners=False,
    )

    if self.model.non_overlap_masks_for_mem_enc:
        high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks)
    maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
        current_vision_feats=self.vision_feats,
        feat_sizes=self.feat_sizes,
        pred_masks_high_res=high_res_masks,
        object_score_logits=consolidated_out["object_score_logits"],
        is_mask_from_pts=True,
    )
    consolidated_out["maskmem_features"] = maskmem_features
    consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
    self.memory_bank.append(consolidated_out)





📅 Created 2 years ago ✏️ Updated 2 days ago
glenn-jocherLaughing-qShuaiLYUjk4eBurhan-Q