Reference for ultralytics/solutions/object_cropper.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_cropper.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
class ultralytics.solutions.object_cropper.ObjectCropper
ObjectCropper(self, **kwargs: Any) -> None
Bases: BaseSolution
A class to manage the cropping of detected objects in a real-time video stream or images.
This class extends the BaseSolution class and provides functionality for cropping objects based on detected bounding boxes. The cropped images are saved to a specified directory for further analysis or usage.
Args
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs | Any | Keyword arguments passed to the parent class and used for configuration including: - crop_dir (str): Path to the directory for saving cropped object images. | required |
Attributes
| Name | Type | Description |
|---|---|---|
crop_dir | str | Directory where cropped object images are stored. |
crop_idx | int | Counter for the total number of cropped objects. |
iou | float | IoU (Intersection over Union) threshold for non-maximum suppression. |
conf | float | Confidence threshold for filtering detections. |
Methods
| Name | Description |
|---|---|
process | Crop detected objects from the input image and save them as separate images. |
Examples
>>> cropper = ObjectCropper()
>>> frame = cv2.imread("frame.jpg")
>>> processed_results = cropper.process(frame)
>>> print(f"Total cropped objects: {cropper.crop_idx}")
Source code in ultralytics/solutions/object_cropper.py
View on GitHubclass ObjectCropper(BaseSolution):
"""A class to manage the cropping of detected objects in a real-time video stream or images.
This class extends the BaseSolution class and provides functionality for cropping objects based on detected bounding
boxes. The cropped images are saved to a specified directory for further analysis or usage.
Attributes:
crop_dir (str): Directory where cropped object images are stored.
crop_idx (int): Counter for the total number of cropped objects.
iou (float): IoU (Intersection over Union) threshold for non-maximum suppression.
conf (float): Confidence threshold for filtering detections.
Methods:
process: Crop detected objects from the input image and save them to the output directory.
Examples:
>>> cropper = ObjectCropper()
>>> frame = cv2.imread("frame.jpg")
>>> processed_results = cropper.process(frame)
>>> print(f"Total cropped objects: {cropper.crop_idx}")
"""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the ObjectCropper class for cropping objects from detected bounding boxes.
Args:
**kwargs (Any): Keyword arguments passed to the parent class and used for configuration including:
- crop_dir (str): Path to the directory for saving cropped object images.
"""
super().__init__(**kwargs)
self.crop_dir = self.CFG["crop_dir"] # Directory for storing cropped detections
if not os.path.exists(self.crop_dir):
os.mkdir(self.crop_dir) # Create directory if it does not exist
if self.CFG["show"]:
self.LOGGER.warning(
f"show=True disabled for crop solution, results will be saved in the directory named: {self.crop_dir}"
)
self.crop_idx = 0 # Initialize counter for total cropped objects
self.iou = self.CFG["iou"]
self.conf = self.CFG["conf"]
method ultralytics.solutions.object_cropper.ObjectCropper.process
def process(self, im0) -> SolutionResults
Crop detected objects from the input image and save them as separate images.
Args
| Name | Type | Description | Default |
|---|---|---|---|
im0 | np.ndarray | The input image containing detected objects. | required |
Returns
| Type | Description |
|---|---|
SolutionResults | A SolutionResults object containing the total number of cropped objects and processed |
Examples
>>> cropper = ObjectCropper()
>>> frame = cv2.imread("image.jpg")
>>> results = cropper.process(frame)
>>> print(f"Total cropped objects: {results.total_crop_objects}")
Source code in ultralytics/solutions/object_cropper.py
View on GitHubdef process(self, im0) -> SolutionResults:
"""Crop detected objects from the input image and save them as separate images.
Args:
im0 (np.ndarray): The input image containing detected objects.
Returns:
(SolutionResults): A SolutionResults object containing the total number of cropped objects and processed
image.
Examples:
>>> cropper = ObjectCropper()
>>> frame = cv2.imread("image.jpg")
>>> results = cropper.process(frame)
>>> print(f"Total cropped objects: {results.total_crop_objects}")
"""
with self.profilers[0]:
results = self.model.predict(
im0,
classes=self.classes,
conf=self.conf,
iou=self.iou,
device=self.CFG["device"],
verbose=False,
)[0]
self.clss = results.boxes.cls.tolist() # required for logging only.
for box in results.boxes:
self.crop_idx += 1
save_one_box(
box.xyxy,
im0,
file=Path(self.crop_dir) / f"crop_{self.crop_idx}.jpg",
BGR=True,
)
# Return SolutionResults
return SolutionResults(plot_im=im0, total_crop_objects=self.crop_idx)
📅 Created 8 months ago ✏️ Updated 3 days ago