Skip to content

Reference for ultralytics/utils/logger.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/logger.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.utils.logger.ConsoleLogger

ConsoleLogger(self, destination)

Console output capture with API/file streaming and deduplication.

Captures stdout/stderr output and streams it to either an API endpoint or local file, with intelligent deduplication to reduce noise from repetitive console output.

Args

NameTypeDescriptionDefault
destinationstr | PathAPI endpoint URL (http/https) or local file path for streaming output.required

Attributes

NameTypeDescription
destinationstr | PathTarget destination for streaming (URL or Path object).
is_apiboolWhether destination is an API endpoint (True) or local file (False).
original_stdoutReference to original sys.stdout for restoration.
original_stderrReference to original sys.stderr for restoration.
log_queuequeue.QueueThread-safe queue for buffering log messages.
activeboolWhether console capture is currently active.
worker_threadthreading.ThreadBackground thread for processing log queue.
last_linestrLast processed line for deduplication.
last_timefloatTimestamp of last processed line.
last_progress_linestrLast progress bar line for progress deduplication.
last_was_progressboolWhether the last line was a progress bar.

Methods

NameDescription
_queue_logQueue console text with deduplication and timestamp processing.
_safe_putSafely put item in queue with overflow handling.
_stream_workerBackground worker for streaming logs to destination.
_write_logWrite log to API endpoint or local file destination.
start_captureStart capturing console output and redirect stdout/stderr to custom capture objects.
stop_captureStop capturing console output and restore original stdout/stderr.

Examples

Basic file logging:
>>> logger = ConsoleLogger("training.log")
>>> logger.start_capture()
>>> print("This will be logged")
>>> logger.stop_capture()

API streaming:
>>> logger = ConsoleLogger("https://api.example.com/logs")
>>> logger.start_capture()
>>> # All output streams to API
>>> logger.stop_capture()
Source code in ultralytics/utils/logger.pyView on GitHub
class ConsoleLogger:
    """Console output capture with API/file streaming and deduplication.

    Captures stdout/stderr output and streams it to either an API endpoint or local file, with intelligent deduplication
    to reduce noise from repetitive console output.

    Attributes:
        destination (str | Path): Target destination for streaming (URL or Path object).
        is_api (bool): Whether destination is an API endpoint (True) or local file (False).
        original_stdout: Reference to original sys.stdout for restoration.
        original_stderr: Reference to original sys.stderr for restoration.
        log_queue (queue.Queue): Thread-safe queue for buffering log messages.
        active (bool): Whether console capture is currently active.
        worker_thread (threading.Thread): Background thread for processing log queue.
        last_line (str): Last processed line for deduplication.
        last_time (float): Timestamp of last processed line.
        last_progress_line (str): Last progress bar line for progress deduplication.
        last_was_progress (bool): Whether the last line was a progress bar.

    Examples:
        Basic file logging:
        >>> logger = ConsoleLogger("training.log")
        >>> logger.start_capture()
        >>> print("This will be logged")
        >>> logger.stop_capture()

        API streaming:
        >>> logger = ConsoleLogger("https://api.example.com/logs")
        >>> logger.start_capture()
        >>> # All output streams to API
        >>> logger.stop_capture()
    """

    def __init__(self, destination):
        """Initialize with API endpoint or local file path.

        Args:
            destination (str | Path): API endpoint URL (http/https) or local file path for streaming output.
        """
        self.destination = destination
        self.is_api = isinstance(destination, str) and destination.startswith(("http://", "https://"))
        if not self.is_api:
            self.destination = Path(destination)

        # Console capture
        self.original_stdout = sys.stdout
        self.original_stderr = sys.stderr
        self.log_queue = queue.Queue(maxsize=1000)
        self.active = False
        self.worker_thread = None

        # State tracking
        self.last_line = ""
        self.last_time = 0.0
        self.last_progress_line = ""  # Track last progress line for deduplication
        self.last_was_progress = False  # Track if last line was a progress bar


method ultralytics.utils.logger.ConsoleLogger._queue_log

def _queue_log(self, text)

Queue console text with deduplication and timestamp processing.

Args

NameTypeDescriptionDefault
textrequired
Source code in ultralytics/utils/logger.pyView on GitHub
def _queue_log(self, text):
    """Queue console text with deduplication and timestamp processing."""
    if not self.active:
        return

    current_time = time.time()

    # Handle carriage returns and process lines
    if "\r" in text:
        text = text.split("\r")[-1]

    lines = text.split("\n")
    if lines and lines[-1] == "":
        lines.pop()

    for line in lines:
        line = line.rstrip()

        # Skip lines with only thin progress bars (partial progress)
        if "─" in line:  # Has thin lines but no thick lines
            continue

        # Deduplicate completed progress bars only if they match the previous progress line
        if " ━━" in line:
            progress_core = line.split(" ━━")[0].strip()
            if progress_core == self.last_progress_line and self.last_was_progress:
                continue
            self.last_progress_line = progress_core
            self.last_was_progress = True
        else:
            # Skip empty line after progress bar
            if not line and self.last_was_progress:
                self.last_was_progress = False
                continue
            self.last_was_progress = False

        # General deduplication
        if line == self.last_line and current_time - self.last_time < 0.1:
            continue

        self.last_line = line
        self.last_time = current_time

        # Add timestamp if needed
        if not line.startswith("[20"):
            timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            line = f"[{timestamp}] {line}"

        # Queue with overflow protection
        if not self._safe_put(f"{line}\n"):
            continue  # Skip if queue handling fails


method ultralytics.utils.logger.ConsoleLogger._safe_put

def _safe_put(self, item)

Safely put item in queue with overflow handling.

Args

NameTypeDescriptionDefault
itemrequired
Source code in ultralytics/utils/logger.pyView on GitHub
def _safe_put(self, item):
    """Safely put item in queue with overflow handling."""
    try:
        self.log_queue.put_nowait(item)
        return True
    except queue.Full:
        try:
            self.log_queue.get_nowait()  # Drop oldest
            self.log_queue.put_nowait(item)
            return True
        except queue.Empty:
            return False


method ultralytics.utils.logger.ConsoleLogger._stream_worker

def _stream_worker(self)

Background worker for streaming logs to destination.

Source code in ultralytics/utils/logger.pyView on GitHub
def _stream_worker(self):
    """Background worker for streaming logs to destination."""
    while self.active:
        try:
            log_text = self.log_queue.get(timeout=1)
            if log_text is None:
                break
            self._write_log(log_text)
        except queue.Empty:
            continue


method ultralytics.utils.logger.ConsoleLogger._write_log

def _write_log(self, text)

Write log to API endpoint or local file destination.

Args

NameTypeDescriptionDefault
textrequired
Source code in ultralytics/utils/logger.pyView on GitHub
def _write_log(self, text):
    """Write log to API endpoint or local file destination."""
    try:
        if self.is_api:
            import requests  # scoped as slow import

            payload = {"timestamp": datetime.now().isoformat(), "message": text.strip()}
            requests.post(str(self.destination), json=payload, timeout=5)
        else:
            self.destination.parent.mkdir(parents=True, exist_ok=True)
            with self.destination.open("a", encoding="utf-8") as f:
                f.write(text)
    except Exception as e:
        print(f"Platform logging error: {e}", file=self.original_stderr)


method ultralytics.utils.logger.ConsoleLogger.start_capture

def start_capture(self)

Start capturing console output and redirect stdout/stderr to custom capture objects.

Source code in ultralytics/utils/logger.pyView on GitHub
def start_capture(self):
    """Start capturing console output and redirect stdout/stderr to custom capture objects."""
    if self.active:
        return

    self.active = True
    sys.stdout = self._ConsoleCapture(self.original_stdout, self._queue_log)
    sys.stderr = self._ConsoleCapture(self.original_stderr, self._queue_log)

    # Hook Ultralytics logger
    try:
        handler = self._LogHandler(self._queue_log)
        logging.getLogger("ultralytics").addHandler(handler)
    except Exception:
        pass

    self.worker_thread = threading.Thread(target=self._stream_worker, daemon=True)
    self.worker_thread.start()


method ultralytics.utils.logger.ConsoleLogger.stop_capture

def stop_capture(self)

Stop capturing console output and restore original stdout/stderr.

Source code in ultralytics/utils/logger.pyView on GitHub
def stop_capture(self):
    """Stop capturing console output and restore original stdout/stderr."""
    if not self.active:
        return

    self.active = False
    sys.stdout = self.original_stdout
    sys.stderr = self.original_stderr
    self.log_queue.put(None)





class ultralytics.utils.logger.SystemLogger

SystemLogger(self)

Log dynamic system metrics for training monitoring.

Captures real-time system metrics including CPU, RAM, disk I/O, network I/O, and NVIDIA GPU statistics for training performance monitoring and analysis.

Attributes

NameTypeDescription
pynvmlNVIDIA pynvml module instance if successfully imported, None otherwise.
nvidia_initializedboolWhether NVIDIA GPU monitoring is available and initialized.
net_startInitial network I/O counters for calculating cumulative usage.
disk_startInitial disk I/O counters for calculating cumulative usage.

Methods

NameDescription
_get_nvidia_metricsGet NVIDIA GPU metrics including utilization, memory, temperature, and power.
_init_nvidiaInitialize NVIDIA GPU monitoring with pynvml.
get_metricsGet current system metrics.

Examples

Basic usage:
>>> logger = SystemLogger()
>>> metrics = logger.get_metrics()
>>> print(f"CPU: {metrics['cpu']}%, RAM: {metrics['ram']}%")
>>> if metrics["gpus"]:
...     gpu0 = metrics["gpus"]["0"]
...     print(f"GPU0: {gpu0['usage']}% usage, {gpu0['temp']}°C")

Training loop integration:
>>> system_logger = SystemLogger()
>>> for epoch in range(epochs):
...     # Training code here
...     metrics = system_logger.get_metrics()
...     # Log to database/file
Source code in ultralytics/utils/logger.pyView on GitHub
class SystemLogger:
    """Log dynamic system metrics for training monitoring.

    Captures real-time system metrics including CPU, RAM, disk I/O, network I/O, and NVIDIA GPU statistics for training
    performance monitoring and analysis.

    Attributes:
        pynvml: NVIDIA pynvml module instance if successfully imported, None otherwise.
        nvidia_initialized (bool): Whether NVIDIA GPU monitoring is available and initialized.
        net_start: Initial network I/O counters for calculating cumulative usage.
        disk_start: Initial disk I/O counters for calculating cumulative usage.

    Examples:
        Basic usage:
        >>> logger = SystemLogger()
        >>> metrics = logger.get_metrics()
        >>> print(f"CPU: {metrics['cpu']}%, RAM: {metrics['ram']}%")
        >>> if metrics["gpus"]:
        ...     gpu0 = metrics["gpus"]["0"]
        ...     print(f"GPU0: {gpu0['usage']}% usage, {gpu0['temp']}°C")

        Training loop integration:
        >>> system_logger = SystemLogger()
        >>> for epoch in range(epochs):
        ...     # Training code here
        ...     metrics = system_logger.get_metrics()
        ...     # Log to database/file
    """

    def __init__(self):
        """Initialize the system logger."""
        import psutil  # scoped as slow import

        self.pynvml = None
        self.nvidia_initialized = self._init_nvidia()
        self.net_start = psutil.net_io_counters()
        self.disk_start = psutil.disk_io_counters()


method ultralytics.utils.logger.SystemLogger._get_nvidia_metrics

def _get_nvidia_metrics(self)

Get NVIDIA GPU metrics including utilization, memory, temperature, and power.

Source code in ultralytics/utils/logger.pyView on GitHub
def _get_nvidia_metrics(self):
    """Get NVIDIA GPU metrics including utilization, memory, temperature, and power."""
    gpus = {}
    if not self.nvidia_initialized or not self.pynvml:
        return gpus
    try:
        device_count = self.pynvml.nvmlDeviceGetCount()
        for i in range(device_count):
            handle = self.pynvml.nvmlDeviceGetHandleByIndex(i)
            util = self.pynvml.nvmlDeviceGetUtilizationRates(handle)
            memory = self.pynvml.nvmlDeviceGetMemoryInfo(handle)
            temp = self.pynvml.nvmlDeviceGetTemperature(handle, self.pynvml.NVML_TEMPERATURE_GPU)
            power = self.pynvml.nvmlDeviceGetPowerUsage(handle) // 1000

            gpus[str(i)] = {
                "usage": round(util.gpu, 3),
                "memory": round((memory.used / memory.total) * 100, 3),
                "temp": temp,
                "power": power,
            }
    except Exception:
        pass
    return gpus


method ultralytics.utils.logger.SystemLogger._init_nvidia

def _init_nvidia(self)

Initialize NVIDIA GPU monitoring with pynvml.

Source code in ultralytics/utils/logger.pyView on GitHub
def _init_nvidia(self):
    """Initialize NVIDIA GPU monitoring with pynvml."""
    try:
        assert not MACOS
        check_requirements("nvidia-ml-py>=12.0.0")
        self.pynvml = __import__("pynvml")
        self.pynvml.nvmlInit()
        return True
    except Exception:
        return False


method ultralytics.utils.logger.SystemLogger.get_metrics

def get_metrics(self)

Get current system metrics.

Collects comprehensive system metrics including CPU usage, RAM usage, disk I/O statistics, network I/O statistics, and GPU metrics (if available). Example output:

python metrics = { "cpu": 45.2, "ram": 78.9, "disk": {"read_mb": 156.7, "write_mb": 89.3, "used_gb": 256.8}, "network": {"recv_mb": 157.2, "sent_mb": 89.1}, "gpus": { 0: {"usage": 95.6, "memory": 85.4, "temp": 72, "power": 285}, 1: {"usage": 94.1, "memory": 82.7, "temp": 70, "power": 278}, }, }

  • cpu (float): CPU usage percentage (0-100%) - ram (float): RAM usage percentage (0-100%) - disk (dict): - read_mb (float): Cumulative disk read in MB since initialization - write_mb (float): Cumulative disk write in MB since initialization - used_gb (float): Total disk space used in GB - network (dict): - recv_mb (float): Cumulative network received in MB since initialization - sent_mb (float): Cumulative network sent in MB since initialization - gpus (dict): GPU metrics by device index (e.g., 0, 1) containing: - usage (int): GPU utilization percentage (0-100%) - memory (float): CUDA memory usage percentage (0-100%) - temp (int): GPU temperature in degrees Celsius - power (int): GPU power consumption in watts

Returns

TypeDescription
metrics (dict)System metrics containing 'cpu', 'ram', 'disk', 'network', 'gpus' with usage data.
Source code in ultralytics/utils/logger.pyView on GitHub
def get_metrics(self):
    """Get current system metrics.

    Collects comprehensive system metrics including CPU usage, RAM usage, disk I/O statistics, network I/O
    statistics, and GPU metrics (if available). Example output:

    ```python
    metrics = {
        "cpu": 45.2,
        "ram": 78.9,
        "disk": {"read_mb": 156.7, "write_mb": 89.3, "used_gb": 256.8},
        "network": {"recv_mb": 157.2, "sent_mb": 89.1},
        "gpus": {
            0: {"usage": 95.6, "memory": 85.4, "temp": 72, "power": 285},
            1: {"usage": 94.1, "memory": 82.7, "temp": 70, "power": 278},
        },
    }
    ```

    - cpu (float): CPU usage percentage (0-100%)
    - ram (float): RAM usage percentage (0-100%)
    - disk (dict):
        - read_mb (float): Cumulative disk read in MB since initialization
        - write_mb (float): Cumulative disk write in MB since initialization
        - used_gb (float): Total disk space used in GB
    - network (dict):
        - recv_mb (float): Cumulative network received in MB since initialization
        - sent_mb (float): Cumulative network sent in MB since initialization
    - gpus (dict): GPU metrics by device index (e.g., 0, 1) containing:
        - usage (int): GPU utilization percentage (0-100%)
        - memory (float): CUDA memory usage percentage (0-100%)
        - temp (int): GPU temperature in degrees Celsius
        - power (int): GPU power consumption in watts

    Returns:
        metrics (dict): System metrics containing 'cpu', 'ram', 'disk', 'network', 'gpus' with usage data.
    """
    import psutil  # scoped as slow import

    net = psutil.net_io_counters()
    disk = psutil.disk_io_counters()
    memory = psutil.virtual_memory()
    disk_usage = shutil.disk_usage("/")

    metrics = {
        "cpu": round(psutil.cpu_percent(), 3),
        "ram": round(memory.percent, 3),
        "disk": {
            "read_mb": round((disk.read_bytes - self.disk_start.read_bytes) / (1 << 20), 3),
            "write_mb": round((disk.write_bytes - self.disk_start.write_bytes) / (1 << 20), 3),
            "used_gb": round(disk_usage.used / (1 << 30), 3),
        },
        "network": {
            "recv_mb": round((net.bytes_recv - self.net_start.bytes_recv) / (1 << 20), 3),
            "sent_mb": round((net.bytes_sent - self.net_start.bytes_sent) / (1 << 20), 3),
        },
        "gpus": {},
    }

    # Add GPU metrics (NVIDIA only)
    if self.nvidia_initialized:
        metrics["gpus"].update(self._get_nvidia_metrics())

    return metrics





📅 Created 3 months ago ✏️ Updated 18 days ago
glenn-jocher