Skip to content

Reference for ultralytics/utils/nms.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/nms.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.utils.nms.TorchNMS

TorchNMS()

Ultralytics custom NMS implementation optimized for YOLO.

This class provides static methods for performing non-maximum suppression (NMS) operations on bounding boxes, including both standard NMS and batched NMS for multi-class scenarios.

Methods

NameDescription
batched_nmsBatched NMS for class-aware suppression.
fast_nmsFast-NMS implementation from https://arxiv.org/pdf/1904.02689 using upper triangular matrix operations.
nmsOptimized NMS with early termination that matches torchvision behavior exactly.

Examples

Perform standard NMS on boxes and scores
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
>>> scores = torch.tensor([0.9, 0.8])
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
Source code in ultralytics/utils/nms.pyView on GitHub
class TorchNMS:


method ultralytics.utils.nms.TorchNMS.batched_nms

def batched_nms(
    boxes: torch.Tensor,
    scores: torch.Tensor,
    idxs: torch.Tensor,
    iou_threshold: float,
    use_fast_nms: bool = False,
) -> torch.Tensor

Batched NMS for class-aware suppression.

Args

NameTypeDescriptionDefault
boxestorch.TensorBounding boxes with shape (N, 4) in xyxy format.required
scorestorch.TensorConfidence scores with shape (N,).required
idxstorch.TensorClass indices with shape (N,).required
iou_thresholdfloatIoU threshold for suppression.required
use_fast_nmsboolWhether to use the Fast-NMS implementation.False

Returns

TypeDescription
torch.TensorIndices of boxes to keep after NMS.

Examples

Apply batched NMS across multiple classes
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
>>> scores = torch.tensor([0.9, 0.8])
>>> idxs = torch.tensor([0, 1])
>>> keep = TorchNMS.batched_nms(boxes, scores, idxs, 0.5)
Source code in ultralytics/utils/nms.pyView on GitHub
@staticmethod
def batched_nms(
    boxes: torch.Tensor,
    scores: torch.Tensor,
    idxs: torch.Tensor,
    iou_threshold: float,
    use_fast_nms: bool = False,
) -> torch.Tensor:
    """Batched NMS for class-aware suppression.

    Args:
        boxes (torch.Tensor): Bounding boxes with shape (N, 4) in xyxy format.
        scores (torch.Tensor): Confidence scores with shape (N,).
        idxs (torch.Tensor): Class indices with shape (N,).
        iou_threshold (float): IoU threshold for suppression.
        use_fast_nms (bool): Whether to use the Fast-NMS implementation.

    Returns:
        (torch.Tensor): Indices of boxes to keep after NMS.

    Examples:
        Apply batched NMS across multiple classes
        >>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
        >>> scores = torch.tensor([0.9, 0.8])
        >>> idxs = torch.tensor([0, 1])
        >>> keep = TorchNMS.batched_nms(boxes, scores, idxs, 0.5)
    """
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)

    # Strategy: offset boxes by class index to prevent cross-class suppression
    max_coordinate = boxes.max()
    offsets = idxs.to(boxes) * (max_coordinate + 1)
    boxes_for_nms = boxes + offsets[:, None]

    return (
        TorchNMS.fast_nms(boxes_for_nms, scores, iou_threshold)
        if use_fast_nms
        else TorchNMS.nms(boxes_for_nms, scores, iou_threshold)
    )


method ultralytics.utils.nms.TorchNMS.fast_nms

def fast_nms(
    boxes: torch.Tensor,
    scores: torch.Tensor,
    iou_threshold: float,
    use_triu: bool = True,
    iou_func=box_iou,
    exit_early: bool = True,
) -> torch.Tensor

Fast-NMS implementation from https://arxiv.org/pdf/1904.02689 using upper triangular matrix operations.

Args

NameTypeDescriptionDefault
boxestorch.TensorBounding boxes with shape (N, 4) in xyxy format.required
scorestorch.TensorConfidence scores with shape (N,).required
iou_thresholdfloatIoU threshold for suppression.required
use_triuboolWhether to use torch.triu operator for upper triangular matrix operations.True
iou_funccallableFunction to compute IoU between boxes.box_iou
exit_earlyboolWhether to exit early if there are no boxes.True

Returns

TypeDescription
torch.TensorIndices of boxes to keep after NMS.

Examples

Apply NMS to a set of boxes
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
>>> scores = torch.tensor([0.9, 0.8])
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
Source code in ultralytics/utils/nms.pyView on GitHub
@staticmethod
def fast_nms(
    boxes: torch.Tensor,
    scores: torch.Tensor,
    iou_threshold: float,
    use_triu: bool = True,
    iou_func=box_iou,
    exit_early: bool = True,
) -> torch.Tensor:
    """Fast-NMS implementation from https://arxiv.org/pdf/1904.02689 using upper triangular matrix operations.

    Args:
        boxes (torch.Tensor): Bounding boxes with shape (N, 4) in xyxy format.
        scores (torch.Tensor): Confidence scores with shape (N,).
        iou_threshold (float): IoU threshold for suppression.
        use_triu (bool): Whether to use torch.triu operator for upper triangular matrix operations.
        iou_func (callable): Function to compute IoU between boxes.
        exit_early (bool): Whether to exit early if there are no boxes.

    Returns:
        (torch.Tensor): Indices of boxes to keep after NMS.

    Examples:
        Apply NMS to a set of boxes
        >>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
        >>> scores = torch.tensor([0.9, 0.8])
        >>> keep = TorchNMS.nms(boxes, scores, 0.5)
    """
    if boxes.numel() == 0 and exit_early:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)

    sorted_idx = torch.argsort(scores, descending=True)
    boxes = boxes[sorted_idx]
    ious = iou_func(boxes, boxes)
    if use_triu:
        ious = ious.triu_(diagonal=1)
        # NOTE: handle the case when len(boxes) hence exportable by eliminating if-else condition
        pick = torch.nonzero((ious >= iou_threshold).sum(0) <= 0).squeeze_(-1)
    else:
        n = boxes.shape[0]
        row_idx = torch.arange(n, device=boxes.device).view(-1, 1).expand(-1, n)
        col_idx = torch.arange(n, device=boxes.device).view(1, -1).expand(n, -1)
        upper_mask = row_idx < col_idx
        ious = ious * upper_mask
        # Zeroing these scores ensures the additional indices would not affect the final results
        scores_ = scores[sorted_idx]
        scores_[~((ious >= iou_threshold).sum(0) <= 0)] = 0
        scores[sorted_idx] = scores_  # update original tensor for NMSModel
        # NOTE: return indices with fixed length to avoid TFLite reshape error
        pick = torch.topk(scores_, scores_.shape[0]).indices
    return sorted_idx[pick]


method ultralytics.utils.nms.TorchNMS.nms

def nms(boxes: torch.Tensor, scores: torch.Tensor, iou_threshold: float) -> torch.Tensor

Optimized NMS with early termination that matches torchvision behavior exactly.

Args

NameTypeDescriptionDefault
boxestorch.TensorBounding boxes with shape (N, 4) in xyxy format.required
scorestorch.TensorConfidence scores with shape (N,).required
iou_thresholdfloatIoU threshold for suppression.required

Returns

TypeDescription
torch.TensorIndices of boxes to keep after NMS.

Examples

Apply NMS to a set of boxes
>>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
>>> scores = torch.tensor([0.9, 0.8])
>>> keep = TorchNMS.nms(boxes, scores, 0.5)
Source code in ultralytics/utils/nms.pyView on GitHub
@staticmethod
def nms(boxes: torch.Tensor, scores: torch.Tensor, iou_threshold: float) -> torch.Tensor:
    """Optimized NMS with early termination that matches torchvision behavior exactly.

    Args:
        boxes (torch.Tensor): Bounding boxes with shape (N, 4) in xyxy format.
        scores (torch.Tensor): Confidence scores with shape (N,).
        iou_threshold (float): IoU threshold for suppression.

    Returns:
        (torch.Tensor): Indices of boxes to keep after NMS.

    Examples:
        Apply NMS to a set of boxes
        >>> boxes = torch.tensor([[0, 0, 10, 10], [5, 5, 15, 15]])
        >>> scores = torch.tensor([0.9, 0.8])
        >>> keep = TorchNMS.nms(boxes, scores, 0.5)
    """
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)

    # Pre-allocate and extract coordinates once
    x1, y1, x2, y2 = boxes.unbind(1)
    areas = (x2 - x1) * (y2 - y1)

    # Sort by scores descending
    order = scores.argsort(0, descending=True)

    # Pre-allocate keep list with maximum possible size
    keep = torch.zeros(order.numel(), dtype=torch.int64, device=boxes.device)
    keep_idx = 0
    while order.numel() > 0:
        i = order[0]
        keep[keep_idx] = i
        keep_idx += 1

        if order.numel() == 1:
            break
        # Vectorized IoU calculation for remaining boxes
        rest = order[1:]
        xx1 = torch.maximum(x1[i], x1[rest])
        yy1 = torch.maximum(y1[i], y1[rest])
        xx2 = torch.minimum(x2[i], x2[rest])
        yy2 = torch.minimum(y2[i], y2[rest])

        # Fast intersection and IoU
        w = (xx2 - xx1).clamp_(min=0)
        h = (yy2 - yy1).clamp_(min=0)
        inter = w * h
        # Early exit: skip IoU calculation if no intersection
        if inter.sum() == 0:
            # No overlaps with current box, keep all remaining boxes
            order = rest
            continue
        iou = inter / (areas[i] + areas[rest] - inter)
        # Keep boxes with IoU <= threshold
        order = rest[iou <= iou_threshold]

    return keep[:keep_idx]





function ultralytics.utils.nms.non_max_suppression

def non_max_suppression(
    prediction,
    conf_thres: float = 0.25,
    iou_thres: float = 0.45,
    classes=None,
    agnostic: bool = False,
    multi_label: bool = False,
    labels=(),
    max_det: int = 300,
    nc: int = 0,  # number of classes (optional)
    max_time_img: float = 0.05,
    max_nms: int = 30000,
    max_wh: int = 7680,
    rotated: bool = False,
    end2end: bool = False,
    return_idxs: bool = False,
)

Perform non-maximum suppression (NMS) on prediction results.

Applies NMS to filter overlapping bounding boxes based on confidence and IoU thresholds. Supports multiple detection formats including standard boxes, rotated boxes, and masks.

Args

NameTypeDescriptionDefault
predictiontorch.TensorPredictions with shape (batch_size, num_classes + 4 + num_masks, num_boxes) containing boxes, classes, and optional masks.required
conf_thresfloatConfidence threshold for filtering detections. Valid values are between 0.0 and 1.0.0.25
iou_thresfloatIoU threshold for NMS filtering. Valid values are between 0.0 and 1.0.0.45
classeslist[int], optionalList of class indices to consider. If None, all classes are considered.None
agnosticboolWhether to perform class-agnostic NMS.False
multi_labelboolWhether each box can have multiple labels.False
labelslist[list[Union[int, float, torch.Tensor]]]A priori labels for each image.()
max_detintMaximum number of detections to keep per image.300
ncintNumber of classes. Indices after this are considered masks.0
max_time_imgfloatMaximum time in seconds for processing one image.0.05
max_nmsintMaximum number of boxes for NMS.30000
max_whintMaximum box width and height in pixels.7680
rotatedboolWhether to handle Oriented Bounding Boxes (OBB).False
end2endboolWhether the model is end-to-end and doesn't require NMS.False
return_idxsboolWhether to return the indices of kept detections.False

Returns

TypeDescription
output (list[torch.Tensor])List of detections per image with shape (num_boxes, 6 + num_masks) containing (x1,
keepi (list[torch.Tensor])Indices of kept detections if return_idxs=True.
Source code in ultralytics/utils/nms.pyView on GitHub
def non_max_suppression(
    prediction,
    conf_thres: float = 0.25,
    iou_thres: float = 0.45,
    classes=None,
    agnostic: bool = False,
    multi_label: bool = False,
    labels=(),
    max_det: int = 300,
    nc: int = 0,  # number of classes (optional)
    max_time_img: float = 0.05,
    max_nms: int = 30000,
    max_wh: int = 7680,
    rotated: bool = False,
    end2end: bool = False,
    return_idxs: bool = False,
):
    """Perform non-maximum suppression (NMS) on prediction results.

    Applies NMS to filter overlapping bounding boxes based on confidence and IoU thresholds. Supports multiple detection
    formats including standard boxes, rotated boxes, and masks.

    Args:
        prediction (torch.Tensor): Predictions with shape (batch_size, num_classes + 4 + num_masks, num_boxes)
            containing boxes, classes, and optional masks.
        conf_thres (float): Confidence threshold for filtering detections. Valid values are between 0.0 and 1.0.
        iou_thres (float): IoU threshold for NMS filtering. Valid values are between 0.0 and 1.0.
        classes (list[int], optional): List of class indices to consider. If None, all classes are considered.
        agnostic (bool): Whether to perform class-agnostic NMS.
        multi_label (bool): Whether each box can have multiple labels.
        labels (list[list[Union[int, float, torch.Tensor]]]): A priori labels for each image.
        max_det (int): Maximum number of detections to keep per image.
        nc (int): Number of classes. Indices after this are considered masks.
        max_time_img (float): Maximum time in seconds for processing one image.
        max_nms (int): Maximum number of boxes for NMS.
        max_wh (int): Maximum box width and height in pixels.
        rotated (bool): Whether to handle Oriented Bounding Boxes (OBB).
        end2end (bool): Whether the model is end-to-end and doesn't require NMS.
        return_idxs (bool): Whether to return the indices of kept detections.

    Returns:
        output (list[torch.Tensor]): List of detections per image with shape (num_boxes, 6 + num_masks) containing (x1,
            y1, x2, y2, confidence, class, mask1, mask2, ...).
        keepi (list[torch.Tensor]): Indices of kept detections if return_idxs=True.
    """
    # Checks
    assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
    assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
    if isinstance(prediction, (list, tuple)):  # YOLOv8 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output
    if classes is not None:
        classes = torch.tensor(classes, device=prediction.device)

    if prediction.shape[-1] == 6 or end2end:  # end-to-end model (BNC, i.e. 1,300,6)
        output = [pred[pred[:, 4] > conf_thres][:max_det] for pred in prediction]
        if classes is not None:
            output = [pred[(pred[:, 5:6] == classes).any(1)] for pred in output]
        return output

    bs = prediction.shape[0]  # batch size (BCN, i.e. 1,84,6300)
    nc = nc or (prediction.shape[1] - 4)  # number of classes
    extra = prediction.shape[1] - nc - 4  # number of extra info
    mi = 4 + nc  # mask start index
    xc = prediction[:, 4:mi].amax(1) > conf_thres  # candidates
    xinds = torch.arange(prediction.shape[-1], device=prediction.device).expand(bs, -1)[..., None]  # to track idxs

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    time_limit = 2.0 + max_time_img * bs  # seconds to quit after
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)

    prediction = prediction.transpose(-1, -2)  # shape(1,84,6300) to shape(1,6300,84)
    if not rotated:
        prediction[..., :4] = xywh2xyxy(prediction[..., :4])  # xywh to xyxy

    t = time.time()
    output = [torch.zeros((0, 6 + extra), device=prediction.device)] * bs
    keepi = [torch.zeros((0, 1), device=prediction.device)] * bs  # to store the kept idxs
    for xi, (x, xk) in enumerate(zip(prediction, xinds)):  # image index, (preds, preds indices)
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        filt = xc[xi]  # confidence
        x = x[filt]
        if return_idxs:
            xk = xk[filt]

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]) and not rotated:
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + extra + 4), device=x.device)
            v[:, :4] = xywh2xyxy(lb[:, 1:5])  # box
            v[range(len(lb)), lb[:, 0].long() + 4] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = x.split((4, nc, extra), 1)

        if multi_label:
            i, j = torch.where(cls > conf_thres)
            x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
            if return_idxs:
                xk = xk[i]
        else:  # best class only
            conf, j = cls.max(1, keepdim=True)
            filt = conf.view(-1) > conf_thres
            x = torch.cat((box, conf, j.float(), mask), 1)[filt]
            if return_idxs:
                xk = xk[filt]

        # Filter by class
        if classes is not None:
            filt = (x[:, 5:6] == classes).any(1)
            x = x[filt]
            if return_idxs:
                xk = xk[filt]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        if n > max_nms:  # excess boxes
            filt = x[:, 4].argsort(descending=True)[:max_nms]  # sort by confidence and remove excess boxes
            x = x[filt]
            if return_idxs:
                xk = xk[filt]

        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        scores = x[:, 4]  # scores
        if rotated:
            boxes = torch.cat((x[:, :2] + c, x[:, 2:4], x[:, -1:]), dim=-1)  # xywhr
            i = TorchNMS.fast_nms(boxes, scores, iou_thres, iou_func=batch_probiou)
        else:
            boxes = x[:, :4] + c  # boxes (offset by class)
            # Speed strategy: torchvision for val or already loaded (faster), TorchNMS for predict (lower latency)
            if "torchvision" in sys.modules:
                import torchvision  # scope as slow import

                i = torchvision.ops.nms(boxes, scores, iou_thres)
            else:
                i = TorchNMS.nms(boxes, scores, iou_thres)
        i = i[:max_det]  # limit detections

        output[xi] = x[i]
        if return_idxs:
            keepi[xi] = xk[i].view(-1)
        if (time.time() - t) > time_limit:
            LOGGER.warning(f"NMS time limit {time_limit:.3f}s exceeded")
            break  # time limit exceeded

    return (output, keepi) if return_idxs else output





📅 Created 2 months ago ✏️ Updated 2 days ago
glenn-jocher