Reference for ultralytics/solutions/heatmap.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/heatmap.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
class ultralytics.solutions.heatmap.Heatmap
Heatmap(self, **kwargs: Any) -> None
Bases: ObjectCounter
A class to draw heatmaps in real-time video streams based on object tracks.
This class extends the ObjectCounter class to generate and visualize heatmaps of object movements in video streams. It uses tracked object positions to create a cumulative heatmap effect over time.
Args
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs | Any | Keyword arguments passed to the parent ObjectCounter class. | required |
Attributes
| Name | Type | Description |
|---|---|---|
initialized | bool | Flag indicating whether the heatmap has been initialized. |
colormap | int | OpenCV colormap used for heatmap visualization. |
heatmap | np.ndarray | Array storing the cumulative heatmap data. |
annotator | SolutionAnnotator | Object for drawing annotations on the image. |
Methods
| Name | Description |
|---|---|
heatmap_effect | Efficiently calculate heatmap area and effect location for applying colormap. |
process | Generate heatmap for each frame using Ultralytics tracking. |
Examples
>>> from ultralytics.solutions import Heatmap
>>> heatmap = Heatmap(model="yolo11n.pt", colormap=cv2.COLORMAP_JET)
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = heatmap.process(frame)
Source code in ultralytics/solutions/heatmap.py
View on GitHubclass Heatmap(ObjectCounter):
"""A class to draw heatmaps in real-time video streams based on object tracks.
This class extends the ObjectCounter class to generate and visualize heatmaps of object movements in video
streams. It uses tracked object positions to create a cumulative heatmap effect over time.
Attributes:
initialized (bool): Flag indicating whether the heatmap has been initialized.
colormap (int): OpenCV colormap used for heatmap visualization.
heatmap (np.ndarray): Array storing the cumulative heatmap data.
annotator (SolutionAnnotator): Object for drawing annotations on the image.
Methods:
heatmap_effect: Calculate and update the heatmap effect for a given bounding box.
process: Generate and apply the heatmap effect to each frame.
Examples:
>>> from ultralytics.solutions import Heatmap
>>> heatmap = Heatmap(model="yolo11n.pt", colormap=cv2.COLORMAP_JET)
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = heatmap.process(frame)
"""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the Heatmap class for real-time video stream heatmap generation based on object tracks.
Args:
**kwargs (Any): Keyword arguments passed to the parent ObjectCounter class.
"""
super().__init__(**kwargs)
self.initialized = False # Flag for heatmap initialization
if self.region is not None: # Check if user provided the region coordinates
self.initialize_region()
# Store colormap
self.colormap = self.CFG["colormap"]
self.heatmap = None
method ultralytics.solutions.heatmap.Heatmap.heatmap_effect
def heatmap_effect(self, box: list[float]) -> None
Efficiently calculate heatmap area and effect location for applying colormap.
Args
| Name | Type | Description | Default |
|---|---|---|---|
box | list[float] | Bounding box coordinates [x0, y0, x1, y1]. | required |
Source code in ultralytics/solutions/heatmap.py
View on GitHubdef heatmap_effect(self, box: list[float]) -> None:
"""Efficiently calculate heatmap area and effect location for applying colormap.
Args:
box (list[float]): Bounding box coordinates [x0, y0, x1, y1].
"""
x0, y0, x1, y1 = map(int, box)
radius_squared = (min(x1 - x0, y1 - y0) // 2) ** 2
# Create a meshgrid with region of interest (ROI) for vectorized distance calculations
xv, yv = np.meshgrid(np.arange(x0, x1), np.arange(y0, y1))
# Calculate squared distances from the center
dist_squared = (xv - ((x0 + x1) // 2)) ** 2 + (yv - ((y0 + y1) // 2)) ** 2
# Create a mask of points within the radius
within_radius = dist_squared <= radius_squared
# Update only the values within the bounding box in a single vectorized operation
self.heatmap[y0:y1, x0:x1][within_radius] += 2
method ultralytics.solutions.heatmap.Heatmap.process
def process(self, im0: np.ndarray) -> SolutionResults
Generate heatmap for each frame using Ultralytics tracking.
Args
| Name | Type | Description | Default |
|---|---|---|---|
im0 | np.ndarray | Input image array for processing. | required |
Returns
| Type | Description |
|---|---|
SolutionResults | Contains processed image plot_im, 'in_count' (int, count of objects entering the |
Source code in ultralytics/solutions/heatmap.py
View on GitHubdef process(self, im0: np.ndarray) -> SolutionResults:
"""Generate heatmap for each frame using Ultralytics tracking.
Args:
im0 (np.ndarray): Input image array for processing.
Returns:
(SolutionResults): Contains processed image `plot_im`, 'in_count' (int, count of objects entering the
region), 'out_count' (int, count of objects exiting the region), 'classwise_count' (dict, per-class
object count), and 'total_tracks' (int, total number of tracked objects).
"""
if not self.initialized:
self.heatmap = np.zeros_like(im0, dtype=np.float32) * 0.99
self.initialized = True # Initialize heatmap only once
self.extract_tracks(im0) # Extract tracks
self.annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator
# Iterate over bounding boxes, track ids and classes index
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
# Apply heatmap effect for the bounding box
self.heatmap_effect(box)
if self.region is not None:
self.annotator.draw_region(reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2)
self.store_tracking_history(track_id, box) # Store track history
# Get previous position if available
prev_position = None
if len(self.track_history[track_id]) > 1:
prev_position = self.track_history[track_id][-2]
self.count_objects(self.track_history[track_id][-1], track_id, prev_position, cls) # object counting
plot_im = self.annotator.result()
if self.region is not None:
self.display_counts(plot_im) # Display the counts on the frame
# Normalize, apply colormap to heatmap and combine with original image
if self.track_data.is_track:
normalized_heatmap = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
colored_heatmap = cv2.applyColorMap(normalized_heatmap, self.colormap)
plot_im = cv2.addWeighted(plot_im, 0.5, colored_heatmap, 0.5, 0)
self.display_output(plot_im) # Display output with base class function
# Return SolutionResults
return SolutionResults(
plot_im=plot_im,
in_count=self.in_count,
out_count=self.out_count,
classwise_count=dict(self.classwise_count),
total_tracks=len(self.track_ids),
)
📅 Created 1 year ago ✏️ Updated 0 days ago