Skip to content

Reference for ultralytics/solutions/solutions.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.solutions.solutions.BaseSolution

BaseSolution(self, is_cli: bool = False, **kwargs: Any) -> None

A base class for managing Ultralytics Solutions.

This class provides core functionality for various Ultralytics Solutions, including model loading, object tracking, and region initialization. It serves as the foundation for implementing specific computer vision solutions such as object counting, pose estimation, and analytics.

Args

NameTypeDescriptionDefault
is_cliboolEnable CLI mode if set to True.False
**kwargsAnyAdditional configuration parameters that override defaults.required

Attributes

NameTypeDescription
LineStringClass for creating line string geometries from shapely.
PolygonClass for creating polygon geometries from shapely.
PointClass for creating point geometries from shapely.
prepPrepared geometry function from shapely for optimized spatial operations.
CFGdict[str, Any]Configuration dictionary loaded from YAML file and updated with kwargs.
LOGGERLogger instance for solution-specific logging.
annotatorAnnotator instance for drawing on images.
tracksYOLO tracking results from the latest inference.
track_dataExtracted tracking data (boxes or OBB) from tracks.
boxeslistBounding box coordinates from tracking results.
clsslist[int]Class indices from tracking results.
track_idslist[int]Track IDs from tracking results.
confslist[float]Confidence scores from tracking results.
track_lineCurrent track line for storing tracking history.
masksSegmentation masks from tracking results.
r_sRegion or line geometry object for spatial operations.
frame_nointCurrent frame number for logging purposes.
regionlist[tuple[int, int]]List of coordinate tuples defining region of interest.
line_widthintWidth of lines used in visualizations.
modelYOLOLoaded YOLO model instance.
namesdict[int, str]Dictionary mapping class indices to class names.
classeslist[int]List of class indices to track.
show_confboolFlag to show confidence scores in annotations.
show_labelsboolFlag to show class labels in annotations.
devicestrDevice for model inference.
track_add_argsdict[str, Any]Additional arguments for tracking configuration.
env_checkboolFlag indicating whether environment supports image display.
track_historydefaultdictDictionary storing tracking history for each object.
profilerstupleProfiler instances for performance monitoring.

Methods

NameDescription
__call__Allow instances to be called like a function with flexible arguments.
adjust_box_labelGenerate a formatted label for a bounding box.
display_outputDisplay the results of the processing, which could involve showing frames, printing counts, or saving
extract_tracksApply object tracking and extract tracks from an input image or frame.
initialize_regionInitialize the counting region and line segment based on configuration settings.
processProcess method should be implemented by each Solution subclass.
store_tracking_historyStore the tracking history of an object.

Examples

>>> solution = BaseSolution(model="yolo11n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
>>> solution.initialize_region()
>>> image = cv2.imread("image.jpg")
>>> solution.extract_tracks(image)
>>> solution.display_output(image)
Source code in ultralytics/solutions/solutions.pyView on GitHub
class BaseSolution:
    """A base class for managing Ultralytics Solutions.

    This class provides core functionality for various Ultralytics Solutions, including model loading, object tracking,
    and region initialization. It serves as the foundation for implementing specific computer vision solutions such as
    object counting, pose estimation, and analytics.

    Attributes:
        LineString: Class for creating line string geometries from shapely.
        Polygon: Class for creating polygon geometries from shapely.
        Point: Class for creating point geometries from shapely.
        prep: Prepared geometry function from shapely for optimized spatial operations.
        CFG (dict[str, Any]): Configuration dictionary loaded from YAML file and updated with kwargs.
        LOGGER: Logger instance for solution-specific logging.
        annotator: Annotator instance for drawing on images.
        tracks: YOLO tracking results from the latest inference.
        track_data: Extracted tracking data (boxes or OBB) from tracks.
        boxes (list): Bounding box coordinates from tracking results.
        clss (list[int]): Class indices from tracking results.
        track_ids (list[int]): Track IDs from tracking results.
        confs (list[float]): Confidence scores from tracking results.
        track_line: Current track line for storing tracking history.
        masks: Segmentation masks from tracking results.
        r_s: Region or line geometry object for spatial operations.
        frame_no (int): Current frame number for logging purposes.
        region (list[tuple[int, int]]): List of coordinate tuples defining region of interest.
        line_width (int): Width of lines used in visualizations.
        model (YOLO): Loaded YOLO model instance.
        names (dict[int, str]): Dictionary mapping class indices to class names.
        classes (list[int]): List of class indices to track.
        show_conf (bool): Flag to show confidence scores in annotations.
        show_labels (bool): Flag to show class labels in annotations.
        device (str): Device for model inference.
        track_add_args (dict[str, Any]): Additional arguments for tracking configuration.
        env_check (bool): Flag indicating whether environment supports image display.
        track_history (defaultdict): Dictionary storing tracking history for each object.
        profilers (tuple): Profiler instances for performance monitoring.

    Methods:
        adjust_box_label: Generate formatted label for bounding box.
        extract_tracks: Apply object tracking and extract tracks from input image.
        store_tracking_history: Store object tracking history for given track ID and bounding box.
        initialize_region: Initialize counting region and line segment based on configuration.
        display_output: Display processing results including frames or saved results.
        process: Process method to be implemented by each Solution subclass.

    Examples:
        >>> solution = BaseSolution(model="yolo11n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
        >>> solution.initialize_region()
        >>> image = cv2.imread("image.jpg")
        >>> solution.extract_tracks(image)
        >>> solution.display_output(image)
    """

    def __init__(self, is_cli: bool = False, **kwargs: Any) -> None:
        """Initialize the BaseSolution class with configuration settings and YOLO model.

        Args:
            is_cli (bool): Enable CLI mode if set to True.
            **kwargs (Any): Additional configuration parameters that override defaults.
        """
        self.CFG = vars(SolutionConfig().update(**kwargs))
        self.LOGGER = LOGGER  # Store logger object to be used in multiple solution classes

        check_requirements("shapely>=2.0.0")
        from shapely.geometry import LineString, Point, Polygon
        from shapely.prepared import prep

        self.LineString = LineString
        self.Polygon = Polygon
        self.Point = Point
        self.prep = prep
        self.annotator = None  # Initialize annotator
        self.tracks = None
        self.track_data = None
        self.boxes = []
        self.clss = []
        self.track_ids = []
        self.track_line = None
        self.masks = None
        self.r_s = None
        self.frame_no = -1  # Only for logging

        self.LOGGER.info(f"Ultralytics Solutions: ✅ {self.CFG}")
        self.region = self.CFG["region"]  # Store region data for other classes usage
        self.line_width = self.CFG["line_width"]

        # Load Model and store additional information (classes, show_conf, show_label)
        if self.CFG["model"] is None:
            self.CFG["model"] = "yolo11n.pt"
        self.model = YOLO(self.CFG["model"])
        self.names = self.model.names
        self.classes = self.CFG["classes"]
        self.show_conf = self.CFG["show_conf"]
        self.show_labels = self.CFG["show_labels"]
        self.device = self.CFG["device"]

        self.track_add_args = {  # Tracker additional arguments for advance configuration
            k: self.CFG[k] for k in {"iou", "conf", "device", "max_det", "half", "tracker"}
        }  # verbose must be passed to track method; setting it False in YOLO still logs the track information.

        if is_cli and self.CFG["source"] is None:
            d_s = "solutions_ci_demo.mp4" if "-pose" not in self.CFG["model"] else "solution_ci_pose_demo.mp4"
            self.LOGGER.warning(f"source not provided. using default source {ASSETS_URL}/{d_s}")
            from ultralytics.utils.downloads import safe_download

            safe_download(f"{ASSETS_URL}/{d_s}")  # download source from ultralytics assets
            self.CFG["source"] = d_s  # set default source

        # Initialize environment and region setup
        self.env_check = check_imshow(warn=True)
        self.track_history = defaultdict(list)

        self.profilers = (
            ops.Profile(device=self.device),  # track
            ops.Profile(device=self.device),  # solution
        )


method ultralytics.solutions.solutions.BaseSolution.__call__

def __call__(self, *args: Any, **kwargs: Any)

Allow instances to be called like a function with flexible arguments.

Args

NameTypeDescriptionDefault
*argsAnyrequired
**kwargsAnyrequired
Source code in ultralytics/solutions/solutions.pyView on GitHub
def __call__(self, *args: Any, **kwargs: Any):
    """Allow instances to be called like a function with flexible arguments."""
    with self.profilers[1]:
        result = self.process(*args, **kwargs)  # Call the subclass-specific process method
    track_or_predict = "predict" if type(self).__name__ == "ObjectCropper" else "track"
    track_or_predict_speed = self.profilers[0].dt * 1e3
    solution_speed = (self.profilers[1].dt - self.profilers[0].dt) * 1e3  # solution time = process - track
    result.speed = {track_or_predict: track_or_predict_speed, "solution": solution_speed}
    if self.CFG["verbose"]:
        self.frame_no += 1
        counts = Counter(self.clss)  # Only for logging.
        LOGGER.info(
            f"{self.frame_no}: {result.plot_im.shape[0]}x{result.plot_im.shape[1]} {solution_speed:.1f}ms,"
            f" {', '.join([f'{v} {self.names[k]}' for k, v in counts.items()])}\n"
            f"Speed: {track_or_predict_speed:.1f}ms {track_or_predict}, "
            f"{solution_speed:.1f}ms solution per image at shape "
            f"(1, {getattr(self.model, 'ch', 3)}, {result.plot_im.shape[0]}, {result.plot_im.shape[1]})\n"
        )
    return result


method ultralytics.solutions.solutions.BaseSolution.adjust_box_label

def adjust_box_label(self, cls: int, conf: float, track_id: int | None = None) -> str | None

Generate a formatted label for a bounding box.

This method constructs a label string for a bounding box using the class index and confidence score. Optionally includes the track ID if provided. The label format adapts based on the display settings defined in self.show_conf and self.show_labels.

Args

NameTypeDescriptionDefault
clsintThe class index of the detected object.required
conffloatThe confidence score of the detection.required
track_idint, optionalThe unique identifier for the tracked object.None

Returns

TypeDescription
str | NoneThe formatted label string if self.show_labels is True; otherwise, None.
Source code in ultralytics/solutions/solutions.pyView on GitHub
def adjust_box_label(self, cls: int, conf: float, track_id: int | None = None) -> str | None:
    """Generate a formatted label for a bounding box.

    This method constructs a label string for a bounding box using the class index and confidence score. Optionally
    includes the track ID if provided. The label format adapts based on the display settings defined in
    `self.show_conf` and `self.show_labels`.

    Args:
        cls (int): The class index of the detected object.
        conf (float): The confidence score of the detection.
        track_id (int, optional): The unique identifier for the tracked object.

    Returns:
        (str | None): The formatted label string if `self.show_labels` is True; otherwise, None.
    """
    name = ("" if track_id is None else f"{track_id} ") + self.names[cls]
    return (f"{name} {conf:.2f}" if self.show_conf else name) if self.show_labels else None


method ultralytics.solutions.solutions.BaseSolution.display_output

def display_output(self, plot_im: np.ndarray) -> None

Display the results of the processing, which could involve showing frames, printing counts, or saving

results.

This method is responsible for visualizing the output of the object detection and tracking process. It displays the processed frame with annotations, and allows for user interaction to close the display.

Args

NameTypeDescriptionDefault
plot_imnp.ndarrayThe image or frame that has been processed and annotated.required

Examples

>>> solution = BaseSolution()
>>> frame = cv2.imread("path/to/image.jpg")
>>> solution.display_output(frame)

Notes

  • This method will only display output if the 'show' configuration is set to True and the environment supports image display.
  • The display can be closed by pressing the 'q' key.
Source code in ultralytics/solutions/solutions.pyView on GitHub
def display_output(self, plot_im: np.ndarray) -> None:
    """Display the results of the processing, which could involve showing frames, printing counts, or saving
    results.

    This method is responsible for visualizing the output of the object detection and tracking process. It displays
    the processed frame with annotations, and allows for user interaction to close the display.

    Args:
        plot_im (np.ndarray): The image or frame that has been processed and annotated.

    Examples:
        >>> solution = BaseSolution()
        >>> frame = cv2.imread("path/to/image.jpg")
        >>> solution.display_output(frame)

    Notes:
        - This method will only display output if the 'show' configuration is set to True and the environment
          supports image display.
        - The display can be closed by pressing the 'q' key.
    """
    if self.CFG.get("show") and self.env_check:
        cv2.imshow("Ultralytics Solutions", plot_im)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            cv2.destroyAllWindows()  # Closes current frame window
            return


method ultralytics.solutions.solutions.BaseSolution.extract_tracks

def extract_tracks(self, im0: np.ndarray) -> None

Apply object tracking and extract tracks from an input image or frame.

Args

NameTypeDescriptionDefault
im0np.ndarrayThe input image or frame.required

Examples

>>> solution = BaseSolution()
>>> frame = cv2.imread("path/to/image.jpg")
>>> solution.extract_tracks(frame)
Source code in ultralytics/solutions/solutions.pyView on GitHub
def extract_tracks(self, im0: np.ndarray) -> None:
    """Apply object tracking and extract tracks from an input image or frame.

    Args:
        im0 (np.ndarray): The input image or frame.

    Examples:
        >>> solution = BaseSolution()
        >>> frame = cv2.imread("path/to/image.jpg")
        >>> solution.extract_tracks(frame)
    """
    with self.profilers[0]:
        self.tracks = self.model.track(
            source=im0, persist=True, classes=self.classes, verbose=False, **self.track_add_args
        )[0]
    is_obb = self.tracks.obb is not None
    self.track_data = self.tracks.obb if is_obb else self.tracks.boxes  # Extract tracks for OBB or object detection

    if self.track_data and self.track_data.is_track:
        self.boxes = (self.track_data.xyxyxyxy if is_obb else self.track_data.xyxy).cpu()
        self.clss = self.track_data.cls.cpu().tolist()
        self.track_ids = self.track_data.id.int().cpu().tolist()
        self.confs = self.track_data.conf.cpu().tolist()
    else:
        self.LOGGER.warning("no tracks found!")
        self.boxes, self.clss, self.track_ids, self.confs = [], [], [], []


method ultralytics.solutions.solutions.BaseSolution.initialize_region

def initialize_region(self) -> None

Initialize the counting region and line segment based on configuration settings.

Source code in ultralytics/solutions/solutions.pyView on GitHub
def initialize_region(self) -> None:
    """Initialize the counting region and line segment based on configuration settings."""
    if self.region is None:
        self.region = [(10, 200), (540, 200), (540, 180), (10, 180)]
    self.r_s = (
        self.Polygon(self.region) if len(self.region) >= 3 else self.LineString(self.region)
    )  # region or line


method ultralytics.solutions.solutions.BaseSolution.process

def process(self, *args: Any, **kwargs: Any)

Process method should be implemented by each Solution subclass.

Args

NameTypeDescriptionDefault
*argsAnyrequired
**kwargsAnyrequired
Source code in ultralytics/solutions/solutions.pyView on GitHub
def process(self, *args: Any, **kwargs: Any):
    """Process method should be implemented by each Solution subclass."""


method ultralytics.solutions.solutions.BaseSolution.store_tracking_history

def store_tracking_history(self, track_id: int, box) -> None

Store the tracking history of an object.

This method updates the tracking history for a given object by appending the center point of its bounding box to the track line. It maintains a maximum of 30 points in the tracking history.

Args

NameTypeDescriptionDefault
track_idintThe unique identifier for the tracked object.required
boxlist[float]The bounding box coordinates of the object in the format [x1, y1, x2, y2].required

Examples

>>> solution = BaseSolution()
>>> solution.store_tracking_history(1, [100, 200, 300, 400])
Source code in ultralytics/solutions/solutions.pyView on GitHub
def store_tracking_history(self, track_id: int, box) -> None:
    """Store the tracking history of an object.

    This method updates the tracking history for a given object by appending the center point of its bounding box to
    the track line. It maintains a maximum of 30 points in the tracking history.

    Args:
        track_id (int): The unique identifier for the tracked object.
        box (list[float]): The bounding box coordinates of the object in the format [x1, y1, x2, y2].

    Examples:
        >>> solution = BaseSolution()
        >>> solution.store_tracking_history(1, [100, 200, 300, 400])
    """
    # Store tracking history
    self.track_line = self.track_history[track_id]
    self.track_line.append(tuple(box.mean(dim=0)) if box.numel() > 4 else (box[:4:2].mean(), box[1:4:2].mean()))
    if len(self.track_line) > 30:
        self.track_line.pop(0)





class ultralytics.solutions.solutions.SolutionAnnotator

def __init__(
    self,
    im: np.ndarray,
    line_width: int | None = None,
    font_size: int | None = None,
    font: str = "Arial.ttf",
    pil: bool = False,
    example: str = "abc",
)

Bases: Annotator

A specialized annotator class for visualizing and analyzing computer vision tasks.

This class extends the base Annotator class, providing additional methods for drawing regions, centroids, tracking trails, and visual annotations for Ultralytics Solutions. It offers comprehensive visualization capabilities for various computer vision applications including object detection, tracking, pose estimation, and analytics.

Args

NameTypeDescriptionDefault
imnp.ndarrayThe image to be annotated.required
line_widthint, optionalLine thickness for drawing on the image.None
font_sizeint, optionalFont size for text annotations.None
fontstrPath to the font file."Arial.ttf"
pilboolIndicates whether to use PIL for rendering text.False
examplestrAn example parameter for demonstration purposes."abc"

Attributes

NameTypeDescription
imnp.ndarrayThe image being annotated.
line_widthintThickness of lines used in annotations.
font_sizeintSize of the font used for text annotations.
fontstrPath to the font file used for text rendering.
pilboolWhether to use PIL for text rendering.
examplestrAn example attribute for demonstration purposes.

Methods

NameDescription
adaptive_labelDraw a label with a background rectangle or circle centered within a given bounding box.
display_analyticsDisplay the overall statistics for parking lots, object counter etc.
display_objects_labelsDisplay the bounding boxes labels in parking management app.
draw_regionDraw a region or line on the image.
draw_specific_kptsDraw specific keypoints for gym steps counting.
estimate_pose_angleCalculate the angle between three points for workout monitoring.
plot_angle_and_count_and_stagePlot the pose angle, count value, and step stage for workout monitoring.
plot_distance_and_linePlot the distance and line between two centroids on the frame.
plot_workout_informationDraw workout text with a background on the image.
queue_counts_displayDisplay queue counts on an image centered at the points with customizable font size and colors.
sweep_annotatorDraw a sweep annotation line and an optional label.
visioneyePerform pinpoint human-vision eye mapping and plotting.

Examples

>>> annotator = SolutionAnnotator(image)
>>> annotator.draw_region([(0, 0), (100, 100)], color=(0, 255, 0), thickness=5)
>>> annotator.display_analytics(
...     image, text={"Available Spots": 5}, txt_color=(0, 0, 0), bg_color=(255, 255, 255), margin=10
... )
Source code in ultralytics/solutions/solutions.pyView on GitHub
class SolutionAnnotator(Annotator):
    """A specialized annotator class for visualizing and analyzing computer vision tasks.

    This class extends the base Annotator class, providing additional methods for drawing regions, centroids, tracking
    trails, and visual annotations for Ultralytics Solutions. It offers comprehensive visualization capabilities for
    various computer vision applications including object detection, tracking, pose estimation, and analytics.

    Attributes:
        im (np.ndarray): The image being annotated.
        line_width (int): Thickness of lines used in annotations.
        font_size (int): Size of the font used for text annotations.
        font (str): Path to the font file used for text rendering.
        pil (bool): Whether to use PIL for text rendering.
        example (str): An example attribute for demonstration purposes.

    Methods:
        draw_region: Draw a region using specified points, colors, and thickness.
        queue_counts_display: Display queue counts in the specified region.
        display_analytics: Display overall statistics for parking lot management.
        estimate_pose_angle: Calculate the angle between three points in an object pose.
        draw_specific_kpts: Draw specific keypoints on the image.
        plot_workout_information: Draw a labeled text box on the image.
        plot_angle_and_count_and_stage: Visualize angle, step count, and stage for workout monitoring.
        plot_distance_and_line: Display the distance between centroids and connect them with a line.
        display_objects_labels: Annotate bounding boxes with object class labels.
        sweep_annotator: Visualize a vertical sweep line and optional label.
        visioneye: Map and connect object centroids to a visual "eye" point.
        adaptive_label: Draw a circular or rectangle background shape label in center of a bounding box.

    Examples:
        >>> annotator = SolutionAnnotator(image)
        >>> annotator.draw_region([(0, 0), (100, 100)], color=(0, 255, 0), thickness=5)
        >>> annotator.display_analytics(
        ...     image, text={"Available Spots": 5}, txt_color=(0, 0, 0), bg_color=(255, 255, 255), margin=10
        ... )
    """

    def __init__(
        self,
        im: np.ndarray,
        line_width: int | None = None,
        font_size: int | None = None,
        font: str = "Arial.ttf",
        pil: bool = False,
        example: str = "abc",
    ):
        """Initialize the SolutionAnnotator class with an image for annotation.

        Args:
            im (np.ndarray): The image to be annotated.
            line_width (int, optional): Line thickness for drawing on the image.
            font_size (int, optional): Font size for text annotations.
            font (str): Path to the font file.
            pil (bool): Indicates whether to use PIL for rendering text.
            example (str): An example parameter for demonstration purposes.
        """
        super().__init__(im, line_width, font_size, font, pil, example)


method ultralytics.solutions.solutions.SolutionAnnotator.adaptive_label

def adaptive_label(
    self,
    box: tuple[float, float, float, float],
    label: str = "",
    color: tuple[int, int, int] = (128, 128, 128),
    txt_color: tuple[int, int, int] = (255, 255, 255),
    shape: str = "rect",
    margin: int = 5,
)

Draw a label with a background rectangle or circle centered within a given bounding box.

Args

NameTypeDescriptionDefault
boxtuple[float, float, float, float]The bounding box coordinates (x1, y1, x2, y2).required
labelstrThe text label to be displayed.""
colortuple[int, int, int]The background color of the rectangle (B, G, R).(128, 128, 128)
txt_colortuple[int, int, int]The color of the text (R, G, B).(255, 255, 255)
shapestrThe shape of the label i.e "circle" or "rect""rect"
marginintThe margin between the text and the rectangle border.5
Source code in ultralytics/solutions/solutions.pyView on GitHub
def adaptive_label(
    self,
    box: tuple[float, float, float, float],
    label: str = "",
    color: tuple[int, int, int] = (128, 128, 128),
    txt_color: tuple[int, int, int] = (255, 255, 255),
    shape: str = "rect",
    margin: int = 5,
):
    """Draw a label with a background rectangle or circle centered within a given bounding box.

    Args:
        box (tuple[float, float, float, float]): The bounding box coordinates (x1, y1, x2, y2).
        label (str): The text label to be displayed.
        color (tuple[int, int, int]): The background color of the rectangle (B, G, R).
        txt_color (tuple[int, int, int]): The color of the text (R, G, B).
        shape (str): The shape of the label i.e "circle" or "rect"
        margin (int): The margin between the text and the rectangle border.
    """
    if shape == "circle" and len(label) > 3:
        LOGGER.warning(f"Length of label is {len(label)}, only first 3 letters will be used for circle annotation.")
        label = label[:3]

    x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)  # Calculate center of the bbox
    text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.15, self.tf)[0]  # Get size of the text
    text_x, text_y = x_center - text_size[0] // 2, y_center + text_size[1] // 2  # Calculate top-left corner of text

    if shape == "circle":
        cv2.circle(
            self.im,
            (x_center, y_center),
            int(((text_size[0] ** 2 + text_size[1] ** 2) ** 0.5) / 2) + margin,  # Calculate the radius
            color,
            -1,
        )
    else:
        cv2.rectangle(
            self.im,
            (text_x - margin, text_y - text_size[1] - margin),  # Calculate coordinates of the rectangle
            (text_x + text_size[0] + margin, text_y + margin),  # Calculate coordinates of the rectangle
            color,
            -1,
        )

    # Draw the text on top of the rectangle
    cv2.putText(
        self.im,
        label,
        (text_x, text_y),  # Calculate top-left corner of the text
        cv2.FONT_HERSHEY_SIMPLEX,
        self.sf - 0.15,
        self.get_txt_color(color, txt_color),
        self.tf,
        lineType=cv2.LINE_AA,
    )


method ultralytics.solutions.solutions.SolutionAnnotator.display_analytics

def display_analytics(
    self,
    im0: np.ndarray,
    text: dict[str, Any],
    txt_color: tuple[int, int, int],
    bg_color: tuple[int, int, int],
    margin: int,
)

Display the overall statistics for parking lots, object counter etc.

Args

NameTypeDescriptionDefault
im0np.ndarrayInference image.required
textdict[str, Any]Labels dictionary.required
txt_colortuple[int, int, int]Display color for text foreground.required
bg_colortuple[int, int, int]Display color for text background.required
marginintGap between text and rectangle for better display.required
Source code in ultralytics/solutions/solutions.pyView on GitHub
def display_analytics(
    self,
    im0: np.ndarray,
    text: dict[str, Any],
    txt_color: tuple[int, int, int],
    bg_color: tuple[int, int, int],
    margin: int,
):
    """Display the overall statistics for parking lots, object counter etc.

    Args:
        im0 (np.ndarray): Inference image.
        text (dict[str, Any]): Labels dictionary.
        txt_color (tuple[int, int, int]): Display color for text foreground.
        bg_color (tuple[int, int, int]): Display color for text background.
        margin (int): Gap between text and rectangle for better display.
    """
    horizontal_gap = int(im0.shape[1] * 0.02)
    vertical_gap = int(im0.shape[0] * 0.01)
    text_y_offset = 0
    for label, value in text.items():
        txt = f"{label}: {value}"
        text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0]
        if text_size[0] < 5 or text_size[1] < 5:
            text_size = (5, 5)
        text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
        text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
        rect_x1 = text_x - margin * 2
        rect_y1 = text_y - text_size[1] - margin * 2
        rect_x2 = text_x + text_size[0] + margin * 2
        rect_y2 = text_y + margin * 2
        cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
        cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
        text_y_offset = rect_y2


method ultralytics.solutions.solutions.SolutionAnnotator.display_objects_labels

def display_objects_labels(
    self,
    im0: np.ndarray,
    text: str,
    txt_color: tuple[int, int, int],
    bg_color: tuple[int, int, int],
    x_center: float,
    y_center: float,
    margin: int,
)

Display the bounding boxes labels in parking management app.

Args

NameTypeDescriptionDefault
im0np.ndarrayInference image.required
textstrObject/class name.required
txt_colortuple[int, int, int]Display color for text foreground.required
bg_colortuple[int, int, int]Display color for text background.required
x_centerfloatThe x position center point for bounding box.required
y_centerfloatThe y position center point for bounding box.required
marginintThe gap between text and rectangle for better display.required
Source code in ultralytics/solutions/solutions.pyView on GitHub
def display_objects_labels(
    self,
    im0: np.ndarray,
    text: str,
    txt_color: tuple[int, int, int],
    bg_color: tuple[int, int, int],
    x_center: float,
    y_center: float,
    margin: int,
):
    """Display the bounding boxes labels in parking management app.

    Args:
        im0 (np.ndarray): Inference image.
        text (str): Object/class name.
        txt_color (tuple[int, int, int]): Display color for text foreground.
        bg_color (tuple[int, int, int]): Display color for text background.
        x_center (float): The x position center point for bounding box.
        y_center (float): The y position center point for bounding box.
        margin (int): The gap between text and rectangle for better display.
    """
    text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
    text_x = x_center - text_size[0] // 2
    text_y = y_center + text_size[1] // 2

    rect_x1 = text_x - margin
    rect_y1 = text_y - text_size[1] - margin
    rect_x2 = text_x + text_size[0] + margin
    rect_y2 = text_y + margin
    cv2.rectangle(
        im0,
        (int(rect_x1), int(rect_y1)),
        (int(rect_x2), int(rect_y2)),
        tuple(map(int, bg_color)),  # Ensure color values are int
        -1,
    )

    cv2.putText(
        im0,
        text,
        (int(text_x), int(text_y)),
        0,
        self.sf,
        tuple(map(int, txt_color)),  # Ensure color values are int
        self.tf,
        lineType=cv2.LINE_AA,
    )


method ultralytics.solutions.solutions.SolutionAnnotator.draw_region

def draw_region(
    self,
    reg_pts: list[tuple[int, int]] | None = None,
    color: tuple[int, int, int] = (0, 255, 0),
    thickness: int = 5,
)

Draw a region or line on the image.

Args

NameTypeDescriptionDefault
reg_ptslist[tuple[int, int]], optionalRegion points (for line 2 points, for region 4+ points).None
colortuple[int, int, int]RGB color value for the region.(0, 255, 0)
thicknessintLine thickness for drawing the region.5
Source code in ultralytics/solutions/solutions.pyView on GitHub
def draw_region(
    self,
    reg_pts: list[tuple[int, int]] | None = None,
    color: tuple[int, int, int] = (0, 255, 0),
    thickness: int = 5,
):
    """Draw a region or line on the image.

    Args:
        reg_pts (list[tuple[int, int]], optional): Region points (for line 2 points, for region 4+ points).
        color (tuple[int, int, int]): RGB color value for the region.
        thickness (int): Line thickness for drawing the region.
    """
    cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

    # Draw small circles at the corner points
    for point in reg_pts:
        cv2.circle(self.im, (point[0], point[1]), thickness * 2, color, -1)  # -1 fills the circle


method ultralytics.solutions.solutions.SolutionAnnotator.draw_specific_kpts

def draw_specific_kpts(
    self,
    keypoints: list[list[float]],
    indices: list[int] | None = None,
    radius: int = 2,
    conf_thresh: float = 0.25,
) -> np.ndarray

Draw specific keypoints for gym steps counting.

Args

NameTypeDescriptionDefault
keypointslist[list[float]]Keypoints data to be plotted, each in format [x, y, confidence].required
indiceslist[int], optionalKeypoint indices to be plotted.None
radiusintKeypoint radius.2
conf_threshfloatConfidence threshold for keypoints.0.25

Returns

TypeDescription
np.ndarrayImage with drawn keypoints.

Notes

Keypoint format: [x, y] or [x, y, confidence]. Modifies self.im in-place.

Source code in ultralytics/solutions/solutions.pyView on GitHub
def draw_specific_kpts(
    self,
    keypoints: list[list[float]],
    indices: list[int] | None = None,
    radius: int = 2,
    conf_thresh: float = 0.25,
) -> np.ndarray:
    """Draw specific keypoints for gym steps counting.

    Args:
        keypoints (list[list[float]]): Keypoints data to be plotted, each in format [x, y, confidence].
        indices (list[int], optional): Keypoint indices to be plotted.
        radius (int): Keypoint radius.
        conf_thresh (float): Confidence threshold for keypoints.

    Returns:
        (np.ndarray): Image with drawn keypoints.

    Notes:
        Keypoint format: [x, y] or [x, y, confidence].
        Modifies self.im in-place.
    """
    indices = indices or [2, 5, 7]
    points = [(int(k[0]), int(k[1])) for i, k in enumerate(keypoints) if i in indices and k[2] >= conf_thresh]

    # Draw lines between consecutive points
    for start, end in zip(points[:-1], points[1:]):
        cv2.line(self.im, start, end, (0, 255, 0), 2, lineType=cv2.LINE_AA)

    # Draw circles for keypoints
    for pt in points:
        cv2.circle(self.im, pt, radius, (0, 0, 255), -1, lineType=cv2.LINE_AA)

    return self.im


method ultralytics.solutions.solutions.SolutionAnnotator.estimate_pose_angle

def estimate_pose_angle(a: list[float], b: list[float], c: list[float]) -> float

Calculate the angle between three points for workout monitoring.

Args

NameTypeDescriptionDefault
alist[float]The coordinates of the first point.required
blist[float]The coordinates of the second point (vertex).required
clist[float]The coordinates of the third point.required

Returns

TypeDescription
floatThe angle in degrees between the three points.
Source code in ultralytics/solutions/solutions.pyView on GitHub
@staticmethod
@lru_cache(maxsize=256)
def estimate_pose_angle(a: list[float], b: list[float], c: list[float]) -> float:
    """Calculate the angle between three points for workout monitoring.

    Args:
        a (list[float]): The coordinates of the first point.
        b (list[float]): The coordinates of the second point (vertex).
        c (list[float]): The coordinates of the third point.

    Returns:
        (float): The angle in degrees between the three points.
    """
    radians = math.atan2(c[1] - b[1], c[0] - b[0]) - math.atan2(a[1] - b[1], a[0] - b[0])
    angle = abs(radians * 180.0 / math.pi)
    return angle if angle <= 180.0 else (360 - angle)


method ultralytics.solutions.solutions.SolutionAnnotator.plot_angle_and_count_and_stage

def plot_angle_and_count_and_stage(
    self,
    angle_text: str,
    count_text: str,
    stage_text: str,
    center_kpt: list[int],
    color: tuple[int, int, int] = (104, 31, 17),
    txt_color: tuple[int, int, int] = (255, 255, 255),
)

Plot the pose angle, count value, and step stage for workout monitoring.

Args

NameTypeDescriptionDefault
angle_textstrAngle value for workout monitoring.required
count_textstrCounts value for workout monitoring.required
stage_textstrStage decision for workout monitoring.required
center_kptlist[int]Centroid pose index for workout monitoring.required
colortuple[int, int, int]Text background color.(104, 31, 17)
txt_colortuple[int, int, int]Text foreground color.(255, 255, 255)
Source code in ultralytics/solutions/solutions.pyView on GitHub
def plot_angle_and_count_and_stage(
    self,
    angle_text: str,
    count_text: str,
    stage_text: str,
    center_kpt: list[int],
    color: tuple[int, int, int] = (104, 31, 17),
    txt_color: tuple[int, int, int] = (255, 255, 255),
):
    """Plot the pose angle, count value, and step stage for workout monitoring.

    Args:
        angle_text (str): Angle value for workout monitoring.
        count_text (str): Counts value for workout monitoring.
        stage_text (str): Stage decision for workout monitoring.
        center_kpt (list[int]): Centroid pose index for workout monitoring.
        color (tuple[int, int, int]): Text background color.
        txt_color (tuple[int, int, int]): Text foreground color.
    """
    # Format text
    angle_text, count_text, stage_text = f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}"

    # Draw angle, count and stage text
    angle_height = self.plot_workout_information(
        angle_text, (int(center_kpt[0]), int(center_kpt[1])), color, txt_color
    )
    count_height = self.plot_workout_information(
        count_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + 20), color, txt_color
    )
    self.plot_workout_information(
        stage_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + count_height + 40), color, txt_color
    )


method ultralytics.solutions.solutions.SolutionAnnotator.plot_distance_and_line

def plot_distance_and_line(
    self,
    pixels_distance: float,
    centroids: list[tuple[int, int]],
    line_color: tuple[int, int, int] = (104, 31, 17),
    centroid_color: tuple[int, int, int] = (255, 0, 255),
)

Plot the distance and line between two centroids on the frame.

Args

NameTypeDescriptionDefault
pixels_distancefloatPixels distance between two bbox centroids.required
centroidslist[tuple[int, int]]Bounding box centroids data.required
line_colortuple[int, int, int]Distance line color.(104, 31, 17)
centroid_colortuple[int, int, int]Bounding box centroid color.(255, 0, 255)
Source code in ultralytics/solutions/solutions.pyView on GitHub
def plot_distance_and_line(
    self,
    pixels_distance: float,
    centroids: list[tuple[int, int]],
    line_color: tuple[int, int, int] = (104, 31, 17),
    centroid_color: tuple[int, int, int] = (255, 0, 255),
):
    """Plot the distance and line between two centroids on the frame.

    Args:
        pixels_distance (float): Pixels distance between two bbox centroids.
        centroids (list[tuple[int, int]]): Bounding box centroids data.
        line_color (tuple[int, int, int]): Distance line color.
        centroid_color (tuple[int, int, int]): Bounding box centroid color.
    """
    # Get the text size
    text = f"Pixels Distance: {pixels_distance:.2f}"
    (text_width_m, text_height_m), _ = cv2.getTextSize(text, 0, self.sf, self.tf)

    # Define corners with 10-pixel margin and draw rectangle
    cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 20, 25 + text_height_m + 20), line_color, -1)

    # Calculate the position for the text with a 10-pixel margin and draw text
    text_position = (25, 25 + text_height_m + 10)
    cv2.putText(
        self.im,
        text,
        text_position,
        0,
        self.sf,
        (255, 255, 255),
        self.tf,
        cv2.LINE_AA,
    )

    cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
    cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
    cv2.circle(self.im, centroids[1], 6, centroid_color, -1)


method ultralytics.solutions.solutions.SolutionAnnotator.plot_workout_information

def plot_workout_information(
    self,
    display_text: str,
    position: tuple[int, int],
    color: tuple[int, int, int] = (104, 31, 17),
    txt_color: tuple[int, int, int] = (255, 255, 255),
) -> int

Draw workout text with a background on the image.

Args

NameTypeDescriptionDefault
display_textstrThe text to be displayed.required
positiontuple[int, int]Coordinates (x, y) on the image where the text will be placed.required
colortuple[int, int, int]Text background color.(104, 31, 17)
txt_colortuple[int, int, int]Text foreground color.(255, 255, 255)

Returns

TypeDescription
intThe height of the text.
Source code in ultralytics/solutions/solutions.pyView on GitHub
def plot_workout_information(
    self,
    display_text: str,
    position: tuple[int, int],
    color: tuple[int, int, int] = (104, 31, 17),
    txt_color: tuple[int, int, int] = (255, 255, 255),
) -> int:
    """Draw workout text with a background on the image.

    Args:
        display_text (str): The text to be displayed.
        position (tuple[int, int]): Coordinates (x, y) on the image where the text will be placed.
        color (tuple[int, int, int]): Text background color.
        txt_color (tuple[int, int, int]): Text foreground color.

    Returns:
        (int): The height of the text.
    """
    (text_width, text_height), _ = cv2.getTextSize(display_text, 0, fontScale=self.sf, thickness=self.tf)

    # Draw background rectangle
    cv2.rectangle(
        self.im,
        (position[0], position[1] - text_height - 5),
        (position[0] + text_width + 10, position[1] - text_height - 5 + text_height + 10 + self.tf),
        color,
        -1,
    )
    # Draw text
    cv2.putText(self.im, display_text, position, 0, self.sf, txt_color, self.tf)

    return text_height


method ultralytics.solutions.solutions.SolutionAnnotator.queue_counts_display

def queue_counts_display(
    self,
    label: str,
    points: list[tuple[int, int]] | None = None,
    region_color: tuple[int, int, int] = (255, 255, 255),
    txt_color: tuple[int, int, int] = (0, 0, 0),
)

Display queue counts on an image centered at the points with customizable font size and colors.

Args

NameTypeDescriptionDefault
labelstrQueue counts label.required
pointslist[tuple[int, int]], optionalRegion points for center point calculation to display text.None
region_colortuple[int, int, int]RGB queue region color.(255, 255, 255)
txt_colortuple[int, int, int]RGB text display color.(0, 0, 0)
Source code in ultralytics/solutions/solutions.pyView on GitHub
def queue_counts_display(
    self,
    label: str,
    points: list[tuple[int, int]] | None = None,
    region_color: tuple[int, int, int] = (255, 255, 255),
    txt_color: tuple[int, int, int] = (0, 0, 0),
):
    """Display queue counts on an image centered at the points with customizable font size and colors.

    Args:
        label (str): Queue counts label.
        points (list[tuple[int, int]], optional): Region points for center point calculation to display text.
        region_color (tuple[int, int, int]): RGB queue region color.
        txt_color (tuple[int, int, int]): RGB text display color.
    """
    x_values = [point[0] for point in points]
    y_values = [point[1] for point in points]
    center_x = sum(x_values) // len(points)
    center_y = sum(y_values) // len(points)

    text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
    text_width = text_size[0]
    text_height = text_size[1]

    rect_width = text_width + 20
    rect_height = text_height + 20
    rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2)
    rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2)
    cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1)

    text_x = center_x - text_width // 2
    text_y = center_y + text_height // 2

    # Draw text
    cv2.putText(
        self.im,
        label,
        (text_x, text_y),
        0,
        fontScale=self.sf,
        color=txt_color,
        thickness=self.tf,
        lineType=cv2.LINE_AA,
    )


method ultralytics.solutions.solutions.SolutionAnnotator.sweep_annotator

def sweep_annotator(
    self,
    line_x: int = 0,
    line_y: int = 0,
    label: str | None = None,
    color: tuple[int, int, int] = (221, 0, 186),
    txt_color: tuple[int, int, int] = (255, 255, 255),
)

Draw a sweep annotation line and an optional label.

Args

NameTypeDescriptionDefault
line_xintThe x-coordinate of the sweep line.0
line_yintThe y-coordinate limit of the sweep line.0
labelstr, optionalText label to be drawn in center of sweep line. If None, no label is drawn.None
colortuple[int, int, int]RGB color for the line and label background.(221, 0, 186)
txt_colortuple[int, int, int]RGB color for the label text.(255, 255, 255)
Source code in ultralytics/solutions/solutions.pyView on GitHub
def sweep_annotator(
    self,
    line_x: int = 0,
    line_y: int = 0,
    label: str | None = None,
    color: tuple[int, int, int] = (221, 0, 186),
    txt_color: tuple[int, int, int] = (255, 255, 255),
):
    """Draw a sweep annotation line and an optional label.

    Args:
        line_x (int): The x-coordinate of the sweep line.
        line_y (int): The y-coordinate limit of the sweep line.
        label (str, optional): Text label to be drawn in center of sweep line. If None, no label is drawn.
        color (tuple[int, int, int]): RGB color for the line and label background.
        txt_color (tuple[int, int, int]): RGB color for the label text.
    """
    # Draw the sweep line
    cv2.line(self.im, (line_x, 0), (line_x, line_y), color, self.tf * 2)

    # Draw label, if provided
    if label:
        (text_width, text_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf, self.tf)
        cv2.rectangle(
            self.im,
            (line_x - text_width // 2 - 10, line_y // 2 - text_height // 2 - 10),
            (line_x + text_width // 2 + 10, line_y // 2 + text_height // 2 + 10),
            color,
            -1,
        )
        cv2.putText(
            self.im,
            label,
            (line_x - text_width // 2, line_y // 2 + text_height // 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            self.sf,
            txt_color,
            self.tf,
        )


method ultralytics.solutions.solutions.SolutionAnnotator.visioneye

def visioneye(
    self,
    box: list[float],
    center_point: tuple[int, int],
    color: tuple[int, int, int] = (235, 219, 11),
    pin_color: tuple[int, int, int] = (255, 0, 255),
)

Perform pinpoint human-vision eye mapping and plotting.

Args

NameTypeDescriptionDefault
boxlist[float]Bounding box coordinates in format [x1, y1, x2, y2].required
center_pointtuple[int, int]Center point for vision eye view.required
colortuple[int, int, int]Object centroid and line color.(235, 219, 11)
pin_colortuple[int, int, int]Visioneye point color.(255, 0, 255)
Source code in ultralytics/solutions/solutions.pyView on GitHub
def visioneye(
    self,
    box: list[float],
    center_point: tuple[int, int],
    color: tuple[int, int, int] = (235, 219, 11),
    pin_color: tuple[int, int, int] = (255, 0, 255),
):
    """Perform pinpoint human-vision eye mapping and plotting.

    Args:
        box (list[float]): Bounding box coordinates in format [x1, y1, x2, y2].
        center_point (tuple[int, int]): Center point for vision eye view.
        color (tuple[int, int, int]): Object centroid and line color.
        pin_color (tuple[int, int, int]): Visioneye point color.
    """
    center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
    cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1)
    cv2.circle(self.im, center_bbox, self.tf * 2, color, -1)
    cv2.line(self.im, center_point, center_bbox, color, self.tf)





class ultralytics.solutions.solutions.SolutionResults

SolutionResults(self, **kwargs)

A class to encapsulate the results of Ultralytics Solutions.

This class is designed to store and manage various outputs generated by the solution pipeline, including counts, angles, workout stages, and other analytics data. It provides a structured way to access and manipulate results from different computer vision solutions such as object counting, pose estimation, and tracking analytics.

Args

NameTypeDescriptionDefault
**kwargsAnyOptional arguments to override default attribute values.required

Attributes

NameTypeDescription
plot_imnp.ndarrayProcessed image with counts, blurred, or other effects from solutions.
in_countintThe total number of "in" counts in a video stream.
out_countintThe total number of "out" counts in a video stream.
classwise_countdict[str, int]A dictionary containing counts of objects categorized by class.
queue_countintThe count of objects in a queue or waiting area.
workout_countintThe count of workout repetitions.
workout_anglefloatThe angle calculated during a workout exercise.
workout_stagestrThe current stage of the workout.
pixels_distancefloatThe calculated distance in pixels between two points or objects.
available_slotsintThe number of available slots in a monitored area.
filled_slotsintThe number of filled slots in a monitored area.
email_sentboolA flag indicating whether an email notification was sent.
total_tracksintThe total number of tracked objects.
region_countsdict[str, int]The count of objects within a specific region.
speed_dictdict[str, float]A dictionary containing speed information for tracked objects.
total_crop_objectsintTotal number of cropped objects using ObjectCropper class.
speeddict[str, float]Performance timing information for tracking and solution processing.

Methods

NameDescription
__str__Return a formatted string representation of the SolutionResults object.
Source code in ultralytics/solutions/solutions.pyView on GitHub
class SolutionResults:
    """A class to encapsulate the results of Ultralytics Solutions.

    This class is designed to store and manage various outputs generated by the solution pipeline, including counts,
    angles, workout stages, and other analytics data. It provides a structured way to access and manipulate results from
    different computer vision solutions such as object counting, pose estimation, and tracking analytics.

    Attributes:
        plot_im (np.ndarray): Processed image with counts, blurred, or other effects from solutions.
        in_count (int): The total number of "in" counts in a video stream.
        out_count (int): The total number of "out" counts in a video stream.
        classwise_count (dict[str, int]): A dictionary containing counts of objects categorized by class.
        queue_count (int): The count of objects in a queue or waiting area.
        workout_count (int): The count of workout repetitions.
        workout_angle (float): The angle calculated during a workout exercise.
        workout_stage (str): The current stage of the workout.
        pixels_distance (float): The calculated distance in pixels between two points or objects.
        available_slots (int): The number of available slots in a monitored area.
        filled_slots (int): The number of filled slots in a monitored area.
        email_sent (bool): A flag indicating whether an email notification was sent.
        total_tracks (int): The total number of tracked objects.
        region_counts (dict[str, int]): The count of objects within a specific region.
        speed_dict (dict[str, float]): A dictionary containing speed information for tracked objects.
        total_crop_objects (int): Total number of cropped objects using ObjectCropper class.
        speed (dict[str, float]): Performance timing information for tracking and solution processing.
    """

    def __init__(self, **kwargs):
        """Initialize a SolutionResults object with default or user-specified values.

        Args:
            **kwargs (Any): Optional arguments to override default attribute values.
        """
        self.plot_im = None
        self.in_count = 0
        self.out_count = 0
        self.classwise_count = {}
        self.queue_count = 0
        self.workout_count = 0
        self.workout_angle = 0.0
        self.workout_stage = None
        self.pixels_distance = 0.0
        self.available_slots = 0
        self.filled_slots = 0
        self.email_sent = False
        self.total_tracks = 0
        self.region_counts = {}
        self.speed_dict = {}  # for speed estimation
        self.total_crop_objects = 0
        self.speed = {}

        # Override with user-defined values
        self.__dict__.update(kwargs)


method ultralytics.solutions.solutions.SolutionResults.__str__

def __str__(self) -> str

Return a formatted string representation of the SolutionResults object.

Returns

TypeDescription
strA string representation listing non-null attributes.
Source code in ultralytics/solutions/solutions.pyView on GitHub
def __str__(self) -> str:
    """Return a formatted string representation of the SolutionResults object.

    Returns:
        (str): A string representation listing non-null attributes.
    """
    attrs = {
        k: v
        for k, v in self.__dict__.items()
        if k != "plot_im" and v not in [None, {}, 0, 0.0, False]  # Exclude `plot_im` explicitly
    }
    return ", ".join(f"{k}={v}" for k, v in attrs.items())





📅 Created 1 year ago ✏️ Updated 17 days ago
RizwanMunawarglenn-jocher