مجموعة بيانات COCO8-Seg
مقدمة
Ultralytics COCO8-Seg عبارة عن مجموعة بيانات تجزئة صغيرة ومتعددة الاستخدامات ولكنها متعددة النماذج، وتتكون من أول 8 صور من مجموعة بيانات COCO التدريبية لعام 2017، 4 للتدريب و4 للتحقق من صحة الصور. تُعد مجموعة البيانات هذه مثالية لاختبار نماذج التجزئة وتصحيحها، أو لتجربة أساليب كشف جديدة. مع وجود 8 صور، فهي صغيرة بما يكفي لسهولة إدارتها، ولكنها متنوعة بما يكفي لاختبار خطوط أنابيب التدريب بحثًا عن الأخطاء والعمل بمثابة فحص للعقل قبل تدريب مجموعات بيانات أكبر.
مجموعة البيانات هذه مخصصة للاستخدام مع Ultralytics HUB و. YOLO11.
مجموعة البيانات YAML
يُستخدم ملف YAML (لغة ترميز أخرى) لتحديد تكوين مجموعة البيانات. وهو يحتوي على معلومات حول مسارات مجموعة البيانات وفئاتها والمعلومات الأخرى ذات الصلة. في حالة مجموعة بيانات COCO8-Seg، فإن ملف coco8-seg.yaml
يتم الاحتفاظ بالملف في https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml.
ultralytics/cfg/datasets/coco8-seg.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-seg ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
الاستخدام
لتدريب نموذج YOLO11n-seg على مجموعة بيانات COCO8-Seg لـ 100 حقبة زمنية بحجم صورة 640، يمكنك استخدام مقتطفات التعليمات البرمجية التالية. للحصول على قائمة شاملة بالوسائط المتاحة، راجع صفحة تدريب النموذج.
مثال على القطار
عينة من الصور والتعليقات التوضيحية
فيما يلي بعض الأمثلة على صور من مجموعة بيانات COCO8-Seg، إلى جانب التعليقات التوضيحية المقابلة لها:
- صورة فسيفساء: توضح هذه الصورة دفعة تدريب مكونة من صور مجموعة بيانات موزاييك. الفسيفساء هي تقنية تُستخدم أثناء التدريب تدمج صورًا متعددة في صورة واحدة لزيادة تنوع الأجسام والمشاهد داخل كل دفعة تدريب. يساعد ذلك في تحسين قدرة النموذج على التعميم على أحجام الأجسام المختلفة ونسب أبعادها وسياقاتها.
يعرض المثال تنوع وتعقيد الصور في مجموعة بيانات COCO8-Seg وفوائد استخدام الفسيفساء أثناء عملية التدريب.
الاستشهادات والشكر والتقدير
إذا كنت تستخدم مجموعة بيانات COCO في عملك البحثي أو التطويري، يرجى الاستشهاد بالورقة التالية:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
نودّ أن نعرب عن تقديرنا لاتحاد COCO Consortium على إنشاء هذا المورد القيّم لمجتمع الرؤية الحاسوبية والحفاظ عليه. لمزيد من المعلومات حول مجموعة بيانات COCO ومنشئيها، يرجى زيارة الموقع الإلكتروني لمجموعة بيانات COCO.
الأسئلة الشائعة
ما هي مجموعة بيانات COCO8-Seg، وكيف يتم استخدامها في Ultralytics YOLO11 ؟
مجموعة بيانات COCO8-Seg هي مجموعة بيانات مضغوطة لتجزئة النماذج بواسطة Ultralytics ، وتتكون من أول 8 صور من مجموعة بيانات COCO Train 2017 - 4 صور للتدريب و4 للتحقق من الصحة. صُممت مجموعة البيانات هذه لاختبار نماذج التجزئة وتصحيحها أو لتجربة طرق كشف جديدة. وهي مفيدة بشكل خاص مع Ultralytics YOLO11 و HUB للتكرار السريع والتحقق من أخطاء خط الأنابيب قبل التوسع إلى مجموعات بيانات أكبر. للحصول على الاستخدام التفصيلي، راجع صفحة تدريب النموذج.
كيف يمكنني تدريب نموذج YOLO11n-seg باستخدام مجموعة بيانات COCO8-Seg؟
لتدريب نموذج YOLO11n-seg على مجموعة بيانات COCO8-Seg لـ 100 حلقة تدريبية بحجم صورة 640، يمكنك استخدام الأوامر Python أو CLI . إليك مثال سريع:
مثال على القطار
للحصول على شرح شامل للوسائط وخيارات التكوين المتاحة، يمكنك مراجعة وثائق التدريب.
لماذا تعتبر مجموعة بيانات COCO8-Seg مهمة لتطوير النموذج وتصحيح الأخطاء؟
تُعد مجموعة بيانات COCO8-Seg مثالية لسهولة إدارتها وتنوعها ضمن حجم صغير. فهي تتألف من 8 صور فقط، مما يوفر طريقة سريعة لاختبار وتصحيح نماذج التجزئة أو أساليب الكشف الجديدة دون الحاجة إلى مجموعات بيانات أكبر. وهذا يجعلها أداة فعالة لفحوصات التعقل وتحديد أخطاء خط الأنابيب قبل الالتزام بالتدريب المكثف على مجموعات البيانات الكبيرة. تعرف على المزيد حول تنسيقات مجموعات البيانات هنا.
أين يمكنني العثور على ملف تكوين YAML لمجموعة بيانات COCO8-Seg؟
يتوفر ملف تكوين YAML لمجموعة بيانات COCO8-Seg في مستودع Ultralytics . يمكنك الوصول إلى الملف مباشرةً من هنا. يتضمن ملف YAML معلومات أساسية حول مسارات مجموعة البيانات، والفئات، وإعدادات التكوين المطلوبة لتدريب النموذج والتحقق من صحته.
ما هي بعض فوائد استخدام الفسيفساء أثناء التدريب باستخدام مجموعة بيانات COCO8-Seg؟
يساعد استخدام الفسيفساء أثناء التدريب على زيادة تنوع وتنوع الأجسام والمشاهد في كل دفعة تدريب. تدمج هذه التقنية صورًا متعددة في صورة مركبة واحدة، مما يعزز قدرة النموذج على التعميم على أحجام الأجسام المختلفة ونسب أبعادها وسياقاتها داخل المشهد. تُعد الفسيفساء مفيدة لتحسين متانة النموذج ودقته، خاصةً عند العمل مع مجموعات بيانات صغيرة مثل COCO8-Seg. للاطلاع على مثال على الصور الفسيفسائية، راجع قسم نماذج الصور والتعليقات التوضيحية.