تخطي إلى المحتوى

MobileSAM الشعار

أي شيء قطاع الجوال أي شيء (MobileSAM)

MobileSAM is a compact, efficient image segmentation model purpose-built for mobile and edge devices. Designed to bring the power of Meta's Segment Anything Model (SAM) to environments with limited compute, MobileSAM delivers near-instant segmentation while maintaining compatibility with the original SAM pipeline. Whether you're developing real-time applications or lightweight deployments, MobileSAM provides impressive segmentation results with a fraction of the size and speed requirements of its predecessors.



شاهد: كيفية تشغيل الاستدلال باستخدام MobileSAM باستخدام Ultralytics | دليل خطوة بخطوة 🎉

MobileSAM has been adopted in a variety of projects, including Grounding-SAM, AnyLabeling, and Segment Anything in 3D.

MobileSAM was trained on a single GPU using a 100k image dataset (1% of the original images) in less than a day. The training code will be released in the future.

النماذج المتوفرة والمهام المدعومة وأوضاع التشغيل

The table below outlines the available MobileSAM model, its pre-trained weights, supported tasks, and compatibility with different operating modes such as Inference, Validation, Training, and Export. Supported modes are indicated by ✅ and unsupported modes by ❌.

نوع الموديل الأوزان المدربة مسبقاً المهام المدعومة الاستدلال التحقق من الصحة التدريب التصدير
MobileSAM موبايل_سام تجزئة المثيل

مقارنة بين MobileSAM و YOLO

The following comparison highlights the differences between Meta's SAM variants, MobileSAM, and Ultralytics' smallest segmentation models, including YOLO11n-seg:

الطراز الحجم
(ميغابايت)
المعلمات
(م)
السرعة (CPU)
(م/م) (م/م)
ميتا SAM-ب 375 93.7 49401
ميتا SAM2-ب 162 80.8 31901
ميتا SAM2-t 78.1 38.9 25997
MobileSAM 40.7 10.1 25381
FastSAM معالعمود الفقري YOLOv8 23.7 11.8 55.9
Ultralytics YOLOv8n 6.7 (11.7 مرة أقل) 3.4 (11.4 مرة أقل) 24.5 (1061 مرة أسرع)
Ultralytics YOLO11n-seg 5.9 (13.2 مرة أقل) 2.9 (13.4 مرة أقل) 30.1 (864 مرة أسرع)

This comparison demonstrates the substantial differences in model size and speed between SAM variants and YOLO segmentation models. While SAM models offer unique automatic segmentation capabilities, YOLO models—especially YOLOv8n-seg and YOLO11n-seg—are significantly smaller, faster, and more computationally efficient.

Tests were conducted on a 2025 Apple M4 Pro with 24GB RAM using torch==2.6.0 و ultralytics==8.3.90. To reproduce these results:

مثال على ذلك

from ultralytics import ASSETS, SAM, YOLO, FastSAM

# Profile SAM2-t, SAM2-b, SAM-b, MobileSAM
for file in ["sam_b.pt", "sam2_b.pt", "sam2_t.pt", "mobile_sam.pt"]:
    model = SAM(file)
    model.info()
    model(ASSETS)

# Profile FastSAM-s
model = FastSAM("FastSAM-s.pt")
model.info()
model(ASSETS)

# Profile YOLO models
for file_name in ["yolov8n-seg.pt", "yolo11n-seg.pt"]:
    model = YOLO(file_name)
    model.info()
    model(ASSETS)

التكيف من SAM إلى MobileSAM

MobileSAM retains the same pipeline as the original SAM, including pre-processing, post-processing, and all interfaces. This means you can transition from SAM to MobileSAM with minimal changes to your workflow.

The key difference is the image encoder: MobileSAM replaces the original ViT-H encoder (632M parameters) with a much smaller Tiny-ViT encoder (5M parameters). On a single GPU, MobileSAM processes an image in about 12ms (8ms for the encoder, 4ms for the mask decoder).

ViT-Based Image Encoder Comparison

أداة ترميز الصور الأصل SAM MobileSAM
المعلمات 611M 5M
السرعة 452 مللي ثانية 8 مللي ثانية

Prompt-Guided Mask Decoder

فك ترميز القناع الأصل SAM MobileSAM
المعلمات 3.876M 3.876M
السرعة 4 مللي ثانية 4 مللي ثانية

Whole Pipeline Comparison

خط الأنابيب بالكامل (Enc+Dec) الأصل SAM MobileSAM
المعلمات 615M 9.66M
السرعة 456 مللي ثانية 12 مللي ثانية

The performance of MobileSAM and the original SAM is illustrated below using both point and box prompts.

صورة مع نقطة كموجه

صورة مع مربع كموجه

MobileSAM is approximately 5 times smaller and 7 times faster than FastSAM. For further details, visit the MobileSAM project page.

الاختبار MobileSAM في Ultralytics

Just like the original SAM, Ultralytics provides a simple interface for testing MobileSAM, supporting both Point and Box prompts.

تنزيل النموذج

Download the MobileSAM pretrained weights from Ultralytics assets.

موجه النقاط

مثال على ذلك

from ultralytics import SAM

# Load the model
model = SAM("mobile_sam.pt")

# Predict a segment based on a single point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])

# Predict multiple segments based on multiple points prompt
model.predict("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1])

# Predict a segment based on multiple points prompt per object
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]])

# Predict a segment using both positive and negative prompts.
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]])

موجه الصندوق

مثال على ذلك

from ultralytics import SAM

# Load the model
model = SAM("mobile_sam.pt")

# Predict a segment based on a single point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])

# Predict multiple segments based on multiple points prompt
model.predict("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1])

# Predict a segment based on multiple points prompt per object
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]])

# Predict a segment using both positive and negative prompts.
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]])

Both MobileSAM و SAM share the same API. For more usage details, see the SAM documentation.

Automatically Build Segmentation Datasets Using a Detection Model

To automatically annotate your dataset with the Ultralytics framework, use the auto_annotate كما هو موضح أدناه:

مثال على ذلك

from ultralytics.data.annotator import auto_annotate

auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="mobile_sam.pt")
الجدال النوع افتراضي الوصف
data str مطلوب المسار إلى الدليل الذي يحتوي على الصور المستهدفة للتعليق التوضيحي أو التجزئة.
det_model str 'yolo11x.pt' YOLO مسار نموذج الكشف عن مسار نموذج الكشف عن الكائن الأولي.
sam_model str 'sam_b.pt' مسار نموذج SAM للتجزئة (يدعم نماذج SAM ومتغيرات SAM2 ونماذج SAM2 المتنقلة).
device str '' جهاز الحساب (على سبيل المثال، "cuda:0" أو "cpu" أو " " أو "للكشف التلقائي عن الجهاز).
conf float 0.25 YOLO عتبة الثقة في الكشف لتصفية الاكتشافات الضعيفة.
iou float 0.45 عتبة IoU للقمع غير الأقصى لتصفية المربعات المتداخلة.
imgsz int 640 حجم الإدخال لتغيير حجم الصور (يجب أن يكون من مضاعفات 32).
max_det int 300 الحد الأقصى لعدد الاكتشافات لكل صورة لكفاءة الذاكرة.
classes list[int] None قائمة مؤشرات الفئات المراد اكتشافها (على سبيل المثال, [0, 1] للشخص والدراجة).
output_dir str None حفظ الدليل للتعليقات التوضيحية (افتراضيًا إلى "./ملصقات" بالنسبة إلى مسار البيانات).

الاستشهادات والشكر والتقدير

If MobileSAM is helpful in your research or development, please consider citing the following paper:

@article{mobile_sam,
  title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
  author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon},
  journal={arXiv preprint arXiv:2306.14289},
  year={2023}
}

Read the full MobileSAM paper on arXiv.

الأسئلة الشائعة

What Is MobileSAM and How Does It Differ from the Original SAM Model?

MobileSAM is a lightweight, fast image segmentation model optimized for mobile and edge applications. It maintains the same pipeline as the original SAM but replaces the large ViT-H encoder (632M parameters) with a compact Tiny-ViT encoder (5M parameters). This results in MobileSAM being about 5 times smaller and 7 times faster than the original SAM, operating at roughly 12ms per image versus SAM's 456ms. Explore more about MobileSAM's implementation on the MobileSAM GitHub repository.

How Can I Test MobileSAM Using Ultralytics?

Testing MobileSAM in Ultralytics is straightforward. You can use Point and Box prompts to predict segments. For example, using a Point prompt:

from ultralytics import SAM

# Load the model
model = SAM("mobile_sam.pt")

# Predict a segment based on a point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])

For more details, see the Testing MobileSAM in Ultralytics section.

Why Should I Use MobileSAM for My Mobile Application?

MobileSAM is ideal for mobile and edge applications due to its lightweight design and rapid inference speed. Compared to the original SAM, MobileSAM is about 5 times smaller and 7 times faster, making it suitable for real-time segmentation on devices with limited computational resources. Its efficiency enables mobile devices to perform real-time image segmentation without significant latency. Additionally, MobileSAM supports Inference mode optimized for mobile performance.

How Was MobileSAM Trained, and Is the Training Code Available?

MobileSAM was trained on a single GPU with a 100k image dataset (1% of the original images) in under a day. While the training code will be released in the future, you can currently access pre-trained weights and implementation details from the MobileSAM GitHub repository.

What Are the Primary Use Cases for MobileSAM?

MobileSAM is designed for fast, efficient image segmentation in mobile and edge environments. Primary use cases include:

  • Real-time object detection and segmentation for mobile apps
  • Low-latency image processing on devices with limited compute
  • Integration in AI-powered mobile applications for augmented reality (AR), analytics, and more

For more details on use cases and performance, see Adapting from SAM to MobileSAM and the Ultralytics blog on MobileSAM applications.



📅 تم إنشاؤها منذ 1 سنة مضت ✏️ تم التحديث منذ 7 أيام

التعليقات