COCO12-Formats Dataset
Introduction
The Ultralytics COCO12-Formats dataset is a specialized test dataset designed to validate image loading across all 12 supported image format extensions. It contains 12 images (6 for training, 6 for validation), each saved in a different format to ensure comprehensive testing of the image loading pipeline.
This dataset is invaluable for:
- Testing image format support: Verify that all supported formats load correctly
- CI/CD pipelines: Automated testing of format compatibility
- Debugging: Isolate format-specific issues in training pipelines
- Development: Validate new format additions or changes
Supported Formats
The dataset includes one image for each of the 12 supported format extensions defined in ultralytics/data/utils.py:
| Format | Extension | Description | Train/Val |
|---|---|---|---|
| AVIF | .avif | AV1 Image File Format (modern) | Train |
| BMP | .bmp | Bitmap - uncompressed raster format | Train |
| DNG | .dng | Digital Negative - Adobe RAW format | Train |
| HEIC | .heic | High Efficiency Image Coding | Train |
| JPEG | .jpeg | JPEG with full extension | Train |
| JPG | .jpg | JPEG with short extension | Train |
| JP2 | .jp2 | JPEG 2000 - medical/geospatial | Val |
| MPO | .mpo | Multi-Picture Object (stereo images) | Val |
| PNG | .png | Portable Network Graphics | Val |
| TIF | .tif | TIFF with short extension | Val |
| TIFF | .tiff | Tagged Image File Format | Val |
| WebP | .webp | Modern web image format | Val |
Dataset Structure
coco12-formats/
โโโ images/
โ โโโ train/ # 6 images (avif, bmp, dng, heic, jpeg, jpg)
โ โโโ val/ # 6 images (jp2, mpo, png, tif, tiff, webp)
โโโ labels/
โ โโโ train/ # Corresponding YOLO format labels
โ โโโ val/
โโโ coco12-formats.yaml # Dataset configuration
Dataset YAML
The COCO12-Formats dataset is configured using a YAML file that defines dataset paths and class names. You can review the official coco12-formats.yaml file in the Ultralytics GitHub repository.
ultralytics/cfg/datasets/coco12-formats.yaml
# Ultralytics ๐ AGPL-3.0 License - https://ultralytics.com/license
# COCO12-Formats dataset (12 images testing all supported image formats) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco12-formats/
# Example usage: yolo train data=coco12-formats.yaml
# parent
# โโโ ultralytics
# โโโ datasets
# โโโ coco12-formats โ downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: coco12-formats # dataset root dir
train: images/train # train images (relative to 'path') 6 images
val: images/val # val images (relative to 'path') 6 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco12-formats.zip
Dataset Generation
The dataset can be generated using the provided script that converts source images from COCO8 and COCO128 to all supported formats:
from ultralytics.data.scripts.generate_coco12_formats import generate_coco12_formats
# Generate the dataset
generate_coco12_formats()
Requirements
Some formats require additional dependencies:
pip install pillow pillow-heif pillow-avif-plugin
AVIF System Library (Optional)
For OpenCV to read AVIF files directly, libavif must be installed before building OpenCV:
brew install libavif
sudo apt install libavif-dev libavif-bin
git clone -b v1.2.1 https://github.com/AOMediaCodec/libavif.git
cd libavif
cmake -B build -DAVIF_CODEC_AOM=SYSTEM -DAVIF_BUILD_APPS=ON
cmake --build build --config Release --parallel
sudo cmake --install build
Note
The pip-installed opencv-python package may not include AVIF support since it's pre-built. Ultralytics uses Pillow with pillow-avif-plugin as a fallback for AVIF images when OpenCV lacks support.
Usage
To train a YOLO model on the COCO12-Formats dataset, use the following examples:
Train Example
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO("yolo26n.pt")
# Train on COCO12-Formats to test all image formats
results = model.train(data="coco12-formats.yaml", epochs=1, imgsz=640)
# Train YOLO on COCO12-Formats
yolo detect train data=coco12-formats.yaml model=yolo26n.pt epochs=1 imgsz=640
Format-Specific Notes
AVIF (AV1 Image File Format)
AVIF is a modern image format based on the AV1 video codec, offering excellent compression. Requires pillow-avif-plugin:
pip install pillow-avif-plugin
DNG (Digital Negative)
DNG is Adobe's open RAW format based on TIFF. For testing purposes, the dataset uses TIFF-based files with the .dng extension.
JP2 (JPEG 2000)
JPEG 2000 is a wavelet-based image compression standard offering better compression and quality than traditional JPEG. Commonly used in medical imaging (DICOM), geospatial applications, and digital cinema. Natively supported by both OpenCV and Pillow.
MPO (Multi-Picture Object)
MPO files are used for stereoscopic (3D) images. The dataset stores standard JPEG data with the .mpo extension for format testing.
HEIC (High Efficiency Image Coding)
HEIC requires the pillow-heif package for proper encoding:
pip install pillow-heif
Use Cases
CI/CD Testing
from ultralytics import YOLO
def test_all_image_formats():
"""Test that all image formats load correctly."""
model = YOLO("yolo26n.pt")
results = model.train(data="coco12-formats.yaml", epochs=1, imgsz=64)
assert results is not None
Format Validation
from pathlib import Path
from ultralytics.data.utils import IMG_FORMATS
# Verify all formats are represented
dataset_dir = Path("datasets/coco12-formats/images")
found_formats = {f.suffix[1:].lower() for f in dataset_dir.rglob("*.*")}
assert found_formats == IMG_FORMATS, f"Missing formats: {IMG_FORMATS - found_formats}"
Citations and Acknowledgments
If you use the COCO dataset in your research, please cite:
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Doll{\'a}r},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
FAQ
What Is the COCO12-Formats Dataset Used For?
The COCO12-Formats dataset is designed for testing image format compatibility in Ultralytics YOLO training pipelines. It ensures all 12 supported image formats (AVIF, BMP, DNG, HEIC, JP2, JPEG, JPG, MPO, PNG, TIF, TIFF, WebP) load and process correctly.
Why Test Multiple Image Formats?
Different image formats have unique characteristics (compression, bit depth, color spaces). Testing all formats ensures:
- Robust image loading code
- Compatibility across diverse datasets
- Early detection of format-specific bugs
Which Formats Require Special Dependencies?
- AVIF: Requires
pillow-avif-plugin - HEIC: Requires
pillow-heif
Can I Add New Format Tests?
Yes! Modify the generate_coco12_formats.py script to include additional formats. Ensure you also update IMG_FORMATS in ultralytics/data/utils.py.