Saltar al contenido

Conjunto de datos ImageNet

ImageNet es una base de datos a gran escala de im谩genes anotadas dise帽ada para su uso en la investigaci贸n del reconocimiento visual de objetos. Contiene m谩s de 14 millones de im谩genes, cada una de ellas anotada utilizando synsets de WordNet, lo que la convierte en uno de los recursos m谩s extensos disponibles para entrenar modelos de aprendizaje profundo en tareas de visi贸n por ordenador.

Modelos preentrenados de ImageNet

Modelo tama帽o
(p铆xeles)
acc
top1
acc
top5
Velocidad
CPU ONNX
(ms)
Velocidad
A100 TensorRT
(ms)
par谩metros
(M)
FLOPs
(B) a 640
YOLOv8n-cls 224 69.0 88.3 12.9 0.31 2.7 4.3
YOLOv8s-cls 224 73.8 91.7 23.4 0.35 6.4 13.5
YOLOv8m-cls 224 76.8 93.5 85.4 0.62 17.0 42.7
YOLOv8l-cls 224 76.8 93.5 163.0 0.87 37.5 99.7
YOLOv8x-cls 224 79.0 94.6 232.0 1.01 57.4 154.8

Caracter铆sticas principales

  • ImageNet contiene m谩s de 14 millones de im谩genes de alta resoluci贸n que abarcan miles de categor铆as de objetos.
  • El conjunto de datos est谩 organizado seg煤n la jerarqu铆a WordNet, y cada synset representa una categor铆a.
  • ImageNet se utiliza ampliamente para el entrenamiento y la evaluaci贸n comparativa en el campo de la visi贸n por ordenador, en particular para tareas de clasificaci贸n de im谩genes y detecci贸n de objetos.
  • El concurso anual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) ha sido decisivo para el avance de la investigaci贸n en visi贸n por ordenador.

Estructura del conjunto de datos

El conjunto de datos ImageNet se organiza utilizando la jerarqu铆a WordNet. Cada nodo de la jerarqu铆a representa una categor铆a, y cada categor铆a se describe mediante un synset (una colecci贸n de t茅rminos sin贸nimos). Las im谩genes de ImageNet est谩n anotadas con uno o m谩s synsets, lo que proporciona un rico recurso para entrenar modelos que reconozcan diversos objetos y sus relaciones.

Desaf铆o ImageNet de Reconocimiento Visual a Gran Escala (ILSVRC)

El concurso anual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) ha sido un acontecimiento importante en el campo de la visi贸n por ordenador. Ha proporcionado una plataforma para que investigadores y desarrolladores eval煤en sus algoritmos y modelos en un conjunto de datos a gran escala con m茅tricas de evaluaci贸n estandarizadas. El ILSVRC ha dado lugar a avances significativos en el desarrollo de modelos de aprendizaje profundo para la clasificaci贸n de im谩genes, la detecci贸n de objetos y otras tareas de visi贸n por ordenador.

Aplicaciones

El conjunto de datos ImageNet se utiliza ampliamente para entrenar y evaluar modelos de aprendizaje profundo en diversas tareas de visi贸n por ordenador, como la clasificaci贸n de im谩genes, la detecci贸n de objetos y la localizaci贸n de objetos. Algunas arquitecturas populares de aprendizaje profundo, como AlexNet, VGG y ResNet, se desarrollaron y evaluaron utilizando el conjunto de datos ImageNet.

Utilizaci贸n

Para entrenar un modelo de aprendizaje profundo en el conjunto de datos ImageNet durante 100 茅pocas con un tama帽o de imagen de 224x224, puedes utilizar los siguientes fragmentos de c贸digo. Para obtener una lista completa de los argumentos disponibles, consulta la p谩gina Entrenamiento del modelo.

Ejemplo de tren

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="imagenet", epochs=100, imgsz=224)
# Start training from a pretrained *.pt model
yolo train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224

Ejemplos de im谩genes y anotaciones

El conjunto de datos ImageNet contiene im谩genes de alta resoluci贸n que abarcan miles de categor铆as de objetos, lo que proporciona un conjunto de datos diverso y extenso para entrenar y evaluar modelos de visi贸n por ordenador. Aqu铆 tienes algunos ejemplos de im谩genes del conjunto de datos:

Im谩genes de muestra del conjunto de datos

El ejemplo muestra la variedad y complejidad de las im谩genes del conjunto de datos ImageNet, lo que pone de relieve la importancia de un conjunto de datos diverso para entrenar modelos robustos de visi贸n por ordenador.

Citas y agradecimientos

Si utilizas el conjunto de datos ImageNet en tu trabajo de investigaci贸n o desarrollo, cita el siguiente documento:

@article{ILSVRC15,
         author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
         title={ImageNet Large Scale Visual Recognition Challenge},
         year={2015},
         journal={International Journal of Computer Vision (IJCV)},
         volume={115},
         number={3},
         pages={211-252}
}

Queremos expresar nuestro reconocimiento al equipo de ImageNet, dirigido por Olga Russakovsky, Jia Deng y Li Fei-Fei, por crear y mantener el conjunto de datos ImageNet como un valioso recurso para la comunidad investigadora del aprendizaje autom谩tico y la visi贸n por ordenador. Para m谩s informaci贸n sobre el conjunto de datos ImageNet y sus creadores, visita el sitio web de ImageNet.



Creado 2023-11-12, Actualizado 2024-05-18
Autores: glenn-jocher (6), RizwanMunawar (1)

Comentarios