Ultralytics YOLO11 Tasks
YOLO11 is an AI framework that supports multiple computer vision tasks. The framework can be used to perform detection, segmentation, obb, classification, and pose estimation. Each of these tasks has a different objective and use case.
Observa: Explore Ultralytics YOLO Tasks: Detecci贸n de objetos, Segmentation, OBB, Tracking, and Pose Estimation.
Detecci贸n
Detection is the primary task supported by YOLO11. It involves detecting objects in an image or video frame and drawing bounding boxes around them. The detected objects are classified into different categories based on their features. YOLO11 can detect multiple objects in a single image or video frame with high accuracy and speed.
Segmentaci贸n
Segmentation is a task that involves segmenting an image into different regions based on the content of the image. Each region is assigned a label based on its content. This task is useful in applications such as image segmentation and medical imaging. YOLO11 uses a variant of the U-Net architecture to perform segmentation.
Clasificaci贸n
Classification is a task that involves classifying an image into different categories. YOLO11 can be used to classify images based on their content. It uses a variant of the EfficientNet architecture to perform classification.
Pose
Pose/keypoint detection is a task that involves detecting specific points in an image or video frame. These points are referred to as keypoints and are used to track movement or pose estimation. YOLO11 can detect keypoints in an image or video frame with high accuracy and speed.
OBB
Oriented object detection goes a step further than regular object detection with introducing an extra angle to locate objects more accurate in an image. YOLO11 can detect rotated objects in an image or video frame with high accuracy and speed.
Conclusi贸n
YOLO11 supports multiple tasks, including detection, segmentation, classification, oriented object detection and keypoints detection. Each of these tasks has different objectives and use cases. By understanding the differences between these tasks, you can choose the appropriate task for your computer vision application.
PREGUNTAS FRECUENTES
What tasks can Ultralytics YOLO11 perform?
Ultralytics YOLO11 is a versatile AI framework capable of performing various computer vision tasks with high accuracy and speed. These tasks include:
- Detecci贸n: Identificar y localizar objetos en im谩genes o fotogramas de v铆deo dibujando cuadros delimitadores a su alrededor.
- Segmentaci贸n: Segmentaci贸n de im谩genes en diferentes regiones en funci贸n de su contenido, 煤til para aplicaciones como las im谩genes m茅dicas.
- Clasificaci贸n: Categorizaci贸n de im谩genes enteras en funci贸n de su contenido, aprovechando variantes de la arquitectura EfficientNet.
- Estimaci贸n de la pose: Detecci贸n de puntos clave espec铆ficos en un fotograma de imagen o v铆deo para rastrear movimientos o poses.
- Detecci贸n de Objetos Orientados (OBB): Detecci贸n de objetos girados con un 谩ngulo de orientaci贸n a帽adido para mejorar la precisi贸n.
How do I use Ultralytics YOLO11 for object detection?
To use Ultralytics YOLO11 for object detection, follow these steps:
- Prepara tu conjunto de datos en el formato adecuado.
- Train the YOLO11 model using the detection task.
- Utiliza el modelo para hacer predicciones introduciendo nuevas im谩genes o fotogramas de v铆deo.
Ejemplo
from ultralytics import YOLO
# Load a pre-trained YOLO model (adjust model type as needed)
model = YOLO("yolo11n.pt") # n, s, m, l, x versions available
# Perform object detection on an image
results = model.predict(source="image.jpg") # Can also use video, directory, URL, etc.
# Display the results
results[0].show() # Show the first image results
Para obtener instrucciones m谩s detalladas, consulta nuestros ejemplos de detecci贸n.
What are the benefits of using YOLO11 for segmentation tasks?
Using YOLO11 for segmentation tasks provides several advantages:
- Alta precisi贸n: La tarea de segmentaci贸n aprovecha una variante de la arquitectura U-Net para lograr una segmentaci贸n precisa.
- Speed: YOLO11 is optimized for real-time applications, offering quick processing even for high-resolution images.
- M煤ltiples aplicaciones: Es ideal para im谩genes m茅dicas, conducci贸n aut贸noma y otras aplicaciones que requieran una segmentaci贸n detallada de las im谩genes.
Learn more about the benefits and use cases of YOLO11 for segmentation in the segmentation section.
Can Ultralytics YOLO11 handle pose estimation and keypoint detection?
Yes, Ultralytics YOLO11 can effectively perform pose estimation and keypoint detection with high accuracy and speed. This feature is particularly useful for tracking movements in sports analytics, healthcare, and human-computer interaction applications. YOLO11 detects keypoints in an image or video frame, allowing for precise pose estimation.
Para m谩s detalles y consejos de aplicaci贸n, visita nuestros ejemplos de estimaci贸n de pose.
Why should I choose Ultralytics YOLO11 for oriented object detection (OBB)?
Oriented Object Detection (OBB) with YOLO11 provides enhanced precision by detecting objects with an additional angle parameter. This feature is beneficial for applications requiring accurate localization of rotated objects, such as aerial imagery analysis and warehouse automation.
- Mayor precisi贸n: El componente angular reduce los falsos positivos de los objetos girados.
- Aplicaciones vers谩tiles: 脷til para tareas de an谩lisis geoespacial, rob贸tica, etc.
Consulta la secci贸n Detecci贸n de Objetos Orientados para obtener m谩s detalles y ejemplos.