Saltar al contenido

Estimación de la pose

Ejemplos de estimación de la pose

La estimación de la pose es una tarea que consiste en identificar la ubicación de puntos específicos en una imagen, normalmente denominados puntos clave. Los puntos clave pueden representar diversas partes del objeto, como articulaciones, puntos de referencia u otros rasgos distintivos. Las ubicaciones de los puntos clave suelen representarse como un conjunto de 2D [x, y] o 3D [x, y, visible] coordenadas.

La salida de un modelo de estimación de pose es un conjunto de puntos que representan los puntos clave de un objeto en la imagen, normalmente junto con las puntuaciones de confianza de cada punto. La estimación de la pose es una buena opción cuando necesitas identificar partes concretas de un objeto en una escena, y su ubicación en relación con las demás.



Observa: Estimación de la pose con Ultralytics YOLOv8 .

Consejo

YOLOv8 posa Los modelos utilizan la -pose sufijo, es decir yolov8n-pose.pt. Estos modelos se entrenan con la Puntos clave COCO y son adecuados para diversas tareas de estimación de la postura.

Modelos

YOLOv8 Aquí se muestran los modelos Pose preentrenados. Los modelos Detectar, Segmentar y Pose están preentrenados en el conjunto de datos COCO, mientras que los modelos Clasificar están preentrenados en el conjunto de datos ImageNet.

Los modelos se descargan automáticamente de la últimaversión de Ultralytics la primera vez que se utilizan.

Modelo tamaño
(píxeles)
mAPpose
50-95
mAPpose
50
Velocidad
CPU ONNX
(ms)
Velocidad
A100 TensorRT
(ms)
parámetros
(M)
FLOPs
(B)
YOLOv8n-pose 640 50.4 80.1 131.8 1.18 3.3 9.2
YOLOv8s-pose 640 60.0 86.2 233.2 1.42 11.6 30.2
YOLOv8m-pose 640 65.0 88.8 456.3 2.00 26.4 81.0
YOLOv8l-pose 640 67.6 90.0 784.5 2.59 44.4 168.6
YOLOv8x-pose 640 69.2 90.2 1607.1 3.73 69.4 263.2
YOLOv8x-pose-p6 1280 71.6 91.2 4088.7 10.04 99.1 1066.4
  • mAPval son para un modelo de escala única en COCO Puntos clave val2017 conjunto de datos.
    Reproducir por yolo val pose data=coco-pose.yaml device=0
  • Velocidad promediada sobre las imágenes COCO val utilizando un Amazon EC2 P4d instancia.
    Reproducir por yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu

Tren

Entrena un modelo YOLOv8-pose en el conjunto de datos COCO128-pose.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-pose.yaml')  # build a new model from YAML
model = YOLO('yolov8n-pose.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt')  # build from YAML and transfer weights

# Train the model
results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640

Formato del conjunto de datos

YOLO El formato de los conjuntos de datos se puede consultar en detalle en la Guía de conjuntos de datos. Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato YOLO , utiliza la herramienta JSON2YOLO de Ultralytics.

Val

Valida la precisión del modelo entrenado YOLOv8n-pose en el conjunto de datos COCO128-pose. No es necesario pasar ningún argumento como model conserva su formación data y argumentos como atributos del modelo.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-pose.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps   # a list contains map50-95 of each category
yolo pose val model=yolov8n-pose.pt  # val official model
yolo pose val model=path/to/best.pt  # val custom model

Predecir

Utiliza un modelo entrenado YOLOv8n-pose para realizar predicciones sobre las imágenes.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-pose.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

Ver todo predict detalles del modo en el Predecir página.

Exportar

Exporta un modelo YOLOv8n Pose a un formato diferente como ONNX, CoreML, etc.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-pose.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained model

# Export the model
model.export(format='onnx')
yolo export model=yolov8n-pose.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Los formatos de exportación disponibles de YOLOv8-pose están en la tabla siguiente. Puedes predecir o validar directamente los modelos exportados, es decir yolo predict model=yolov8n-pose.onnx. Se muestran ejemplos de uso de tu modelo una vez finalizada la exportación.

Formato format Argumento Modelo Metadatos Argumentos
PyTorch - yolov8n-pose.pt ✅ -
TorchScript torchscript yolov8n-pose.torchscript ✅ imgsz, optimize
ONNX onnx yolov8n-pose.onnx ✅ imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n-pose_openvino_model/ ✅ imgsz, half, int8
TensorRT engine yolov8n-pose.engine ✅ imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n-pose.mlpackage ✅ imgsz, half, int8, nms
TF SavedModel saved_model yolov8n-pose_saved_model/ ✅ imgsz, keras
TF GraphDef pb yolov8n-pose.pb ❌ imgsz
TF Lite tflite yolov8n-pose.tflite ✅ imgsz, half, int8
TF Arista TPU edgetpu yolov8n-pose_edgetpu.tflite ✅ imgsz
TF.js tfjs yolov8n-pose_web_model/ ✅ imgsz, half, int8
PaddlePaddle paddle yolov8n-pose_paddle_model/ ✅ imgsz
ncnn ncnn yolov8n-pose_ncnn_model/ ✅ imgsz, half

Ver todo export detalles en el Exportar página.



Creado 2023-11-12, Actualizado 2024-02-03
Autores: glenn-jocher (10), AyushExel (1), Laughing-q (1)

Comentarios