Saltar al contenido

Detección de objetos

Ejemplos de detección de objetos

La detección de objetos es una tarea que consiste en identificar la ubicación y la clase de los objetos en una imagen o secuencia de vídeo.

La salida de un detector de objetos es un conjunto de cuadros delimitadores que encierran los objetos de la imagen, junto con etiquetas de clase y puntuaciones de confianza para cada cuadro. La detección de objetos es una buena opción cuando necesitas identificar objetos de interés en una escena, pero no necesitas saber exactamente dónde está el objeto ni su forma exacta.



Observa: Detección de objetos con el modelo preentrenado Ultralytics YOLOv8 .

Consejo

YOLOv8 Los modelos de detección son los modelos por defecto de YOLOv8 , es decir yolov8n.pt y están preentrenados en COCO.

Modelos

YOLOv8 Aquí se muestran los modelos Detectar preentrenados. Los modelos Detectar, Segmentar y Pose están preentrenados en el conjunto de datos COCO, mientras que los modelos Clasificar están preentrenados en el conjunto de datos ImageNet.

Los modelos se descargan automáticamente de la últimaversión de Ultralytics la primera vez que se utilizan.

Modelo tamaño
(píxeles)
mAPval
50-95
Velocidad
CPU ONNX
(ms)
Velocidad
A100 TensorRT
(ms)
parámetros
(M)
FLOPs
(B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8
  • mAPval son para un modelo de escala única en COCO val2017 conjunto de datos.
    Reproducir por yolo val detect data=coco.yaml device=0
  • Velocidad promediada sobre las imágenes COCO val utilizando un Amazon EC2 P4d instancia.
    Reproducir por yolo val detect data=coco128.yaml batch=1 device=0|cpu

Tren

Entrena YOLOv8n en el conjunto de datos COCO128 durante 100 épocas con un tamaño de imagen de 640. Para ver la lista completa de argumentos disponibles, consulta la página Configuración.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

Formato del conjunto de datos

YOLO El formato del conjunto de datos de detección se puede consultar en detalle en la Guía del conjunto de datos. Para convertir tu conjunto de datos existente de otros formatos (como COCO, etc.) al formato YOLO , utiliza la herramienta JSON2YOLO de Ultralytics.

Val

Valida la precisión del modelo entrenado YOLOv8n en el conjunto de datos COCO128. No es necesario pasar ningún argumento model conserva su formación data y argumentos como atributos del modelo.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps   # a list contains map50-95 of each category
yolo detect val model=yolov8n.pt  # val official model
yolo detect val model=path/to/best.pt  # val custom model

Predecir

Utiliza un modelo YOLOv8n entrenado para realizar predicciones sobre las imágenes.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

Ver todo predict detalles del modo en el Predecir página.

Exportar

Exporta un modelo YOLOv8n a un formato diferente como ONNX, CoreML, etc.

Ejemplo

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained model

# Export the model
model.export(format='onnx')
yolo export model=yolov8n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Los formatos de exportación disponibles de YOLOv8 están en la tabla siguiente. Puedes predecir o validar directamente los modelos exportados, es decir yolo predict model=yolov8n.onnx. Se muestran ejemplos de uso de tu modelo una vez finalizada la exportación.

Formato format Argumento Modelo Metadatos Argumentos
PyTorch - yolov8n.pt ✅ -
TorchScript torchscript yolov8n.torchscript ✅ imgsz, optimize
ONNX onnx yolov8n.onnx ✅ imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n_openvino_model/ ✅ imgsz, half, int8
TensorRT engine yolov8n.engine ✅ imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n.mlpackage ✅ imgsz, half, int8, nms
TF SavedModel saved_model yolov8n_saved_model/ ✅ imgsz, keras, int8
TF GraphDef pb yolov8n.pb ❌ imgsz
TF Lite tflite yolov8n.tflite ✅ imgsz, half, int8
TF Arista TPU edgetpu yolov8n_edgetpu.tflite ✅ imgsz
TF.js tfjs yolov8n_web_model/ ✅ imgsz, half, int8
PaddlePaddle paddle yolov8n_paddle_model/ ✅ imgsz
ncnn ncnn yolov8n_ncnn_model/ ✅ imgsz, half

Ver todo export detalles en el Exportar página.



Creado 2023-11-12, Actualizado 2024-02-03
Autores: glenn-jocher (10), Laughing-q (1), AyushExel (1)

Comentarios