İçeriğe geç

ImageWoof Veri Kümesi

The ImageWoof dataset is a subset of the ImageNet consisting of 10 classes that are challenging to classify, since they're all dog breeds. It was created as a more difficult task for image classification algorithms to solve, aiming at encouraging development of more advanced models.

Temel Özellikler

  • ImageWoof 10 farklı köpek ırkının resimlerini içerir: Avustralya teriyeri, Border teriyeri, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever ve Old English sheepdog.
  • Veri seti, farklı hesaplama yeteneklerine ve araştırma ihtiyaçlarına uyum sağlayan çeşitli çözünürlüklerde (tam boyut, 320 piksel, 160 piksel) görüntüler sağlar.
  • Ayrıca, etiketlerin her zaman güvenilir olmayabileceği daha gerçekçi bir senaryo sağlayan gürültülü etiketlere sahip bir versiyon da içerir.

Veri Kümesi Yapısı

ImageWoof veri kümesi yapısı, köpek cinsi sınıflarına dayanmaktadır ve her cinsin kendi görüntü dizini vardır.

Uygulamalar

ImageWoof veri kümesi, özellikle daha karmaşık ve benzer sınıflar söz konusu olduğunda, görüntü sınıflandırma görevlerinde derin öğrenme modellerini eğitmek ve değerlendirmek için yaygın olarak kullanılmaktadır. Veri setinin zorluğu, köpek ırkları arasındaki ince farklılıklarda yatmakta ve modelin performansının ve genellemesinin sınırlarını zorlamaktadır.

Kullanım

To train a CNN model on the ImageWoof dataset for 100 epochs with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.

Tren Örneği

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="imagewoof", epochs=100, imgsz=224)
# Start training from a pretrained *.pt model
yolo classify train data=imagewoof model=yolo11n-cls.pt epochs=100 imgsz=224

Veri Kümesi Varyantları

ImageWoof veri seti, çeşitli araştırma ihtiyaçlarını ve hesaplama yeteneklerini karşılamak için üç farklı boyutta gelir:

  1. Tam Boyut (imagewoof): Bu, ImageWoof veri kümesinin orijinal sürümüdür. Tam boyutlu görüntüler içerir ve son eğitim ve performans kıyaslaması için idealdir.

  2. Orta Boyut (imagewoof320): Bu sürüm, maksimum kenar uzunluğu 320 piksel olacak şekilde yeniden boyutlandırılmış görüntüler içerir. Model performansından önemli ölçüde ödün vermeden daha hızlı eğitim için uygundur.

  3. Küçük Boyut (imagewoof160): Bu sürüm, maksimum 160 piksel kenar uzunluğuna sahip olacak şekilde yeniden boyutlandırılmış görüntüler içerir. Eğitim hızının öncelikli olduğu hızlı prototipleme ve deneyler için tasarlanmıştır.

Eğitiminizde bu varyantları kullanmak için veri kümesi argümanında 'imagewoof' yerine 'imagewoof320' veya 'imagewoof160' yazmanız yeterlidir. Örneğin:

Örnek

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-cls.pt")  # load a pretrained model (recommended for training)

# For medium-sized dataset
model.train(data="imagewoof320", epochs=100, imgsz=224)

# For small-sized dataset
model.train(data="imagewoof160", epochs=100, imgsz=224)
# Load a pretrained model and train on the small-sized dataset
yolo classify train model=yolo11n-cls.pt data=imagewoof320 epochs=100 imgsz=224

Daha küçük görüntülerin kullanılmasının sınıflandırma doğruluğu açısından muhtemelen daha düşük performans sağlayacağını unutmamak önemlidir. Bununla birlikte, model geliştirme ve prototip oluşturmanın ilk aşamalarında hızlı bir şekilde yineleme yapmak için mükemmel bir yoldur.

Örnek Görüntüler ve Açıklamalar

ImageWoof veri kümesi, çeşitli köpek ırklarının renkli görüntülerini içerir ve görüntü sınıflandırma görevleri için zorlu bir veri kümesi sağlar. İşte veri kümesinden bazı görüntü örnekleri:

Veri kümesi örnek görüntüsü

Örnek, ImageWoof veri kümesindeki farklı köpek ırkları arasındaki ince farklılıkları ve benzerlikleri göstererek sınıflandırma görevinin karmaşıklığını ve zorluğunu vurgulamaktadır.

Atıflar ve Teşekkür

Araştırma veya geliştirme çalışmalarınızda ImageWoof veri setini kullanırsanız, lütfen resmi veri seti deposuna bağlantı vererek veri setinin yaratıcılarına teşekkür ettiğinizden emin olun.

We would like to acknowledge the FastAI team for creating and maintaining the ImageWoof dataset as a valuable resource for the machine learning and computer vision research community. For more information about the ImageWoof dataset, visit the ImageWoof dataset repository.

SSS

Ultralytics adresindeki ImageWoof veri seti nedir?

ImageWoof veri kümesi, ImageNet'in 10 özel köpek ırkına odaklanan zorlu bir alt kümesidir. Görüntü sınıflandırma modellerinin sınırlarını zorlamak için oluşturulan bu veri kümesinde Beagle, Shih-Tzu ve Golden Retriever gibi ırklar yer almaktadır. Veri kümesi, daha gerçekçi eğitim senaryoları için çeşitli çözünürlüklerde (tam boyut, 320 piksel, 160 piksel) görüntüler ve hatta gürültülü etiketler içerir. Bu karmaşıklık ImageWoof'u daha gelişmiş derin öğrenme modelleri geliştirmek için ideal kılmaktadır.

ImageWoof veri kümesini kullanarak bir modeli Ultralytics YOLO ile nasıl eğitebilirim?

To train a Convolutional Neural Network (CNN) model on the ImageWoof dataset using Ultralytics YOLO for 100 epochs at an image size of 224x224, you can use the following code:

Tren Örneği

from ultralytics import YOLO

model = YOLO("yolo11n-cls.pt")  # Load a pretrained model
results = model.train(data="imagewoof", epochs=100, imgsz=224)
yolo classify train data=imagewoof model=yolo11n-cls.pt epochs=100 imgsz=224

Mevcut eğitim argümanları hakkında daha fazla bilgi için Eğitim sayfasına bakın.

ImageWoof veri setinin hangi sürümleri mevcut?

ImageWoof veri kümesi üç boyutta gelir:

  1. Tam Boyut (imagewoof): Tam boyutlu görüntüler içeren son eğitim ve kıyaslama için idealdir.
  2. Orta Boyut (imagewoof320): Maksimum kenar uzunluğu 320 piksel olan yeniden boyutlandırılmış görüntüler, daha hızlı eğitim için uygundur.
  3. Küçük Boyut (imagewoof160): Maksimum 160 piksel kenar uzunluğuna sahip yeniden boyutlandırılmış görüntüler, hızlı prototipleme için mükemmeldir.

Use these versions by replacing 'imagewoof' in the dataset argument accordingly. Note, however, that smaller images may yield lower classification accuracy but can be useful for quicker iterations.

ImageWoof veri setindeki gürültülü etiketler eğitime nasıl fayda sağlar?

ImageWoof veri setindeki gürültülü etiketler, etiketlerin her zaman doğru olmayabileceği gerçek dünya koşullarını simüle eder. Modelleri bu verilerle eğitmek, görüntü sınıflandırma görevlerinde sağlamlık ve genelleme geliştirmeye yardımcı olur. Bu, modelleri pratik uygulamalarda sıklıkla karşılaşılan belirsiz veya yanlış etiketlenmiş verileri etkili bir şekilde ele almaya hazırlar.

ImageWoof veri setini kullanmanın temel zorlukları nelerdir?

The primary challenge of the ImageWoof dataset lies in the subtle differences among the dog breeds it includes. Since it focuses on 10 closely related breeds, distinguishing between them requires more advanced and fine-tuned image classification models. This makes ImageWoof an excellent benchmark to test the capabilities and improvements of deep learning models.

📅 1 yıl önce oluşturuldu ✏️ 1 ay önce güncellendi

Yorumlar